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Figure 1. A ‘quasi-optical’ electron paramagnetic resonance (EPR)
spectrometer.

EPR: Progress towards spin-based quantum computing
Electron- and/or nuclear-spin-based
quantum computing requires the con-
trol and measurement of a very small
number of spins, ideally just one.
Spin-dependent recombination
(SDR)1-4 is an electron paramagnetic
resonance (EPR) technique that is
potentially useful in spin-based quan-
tum computing.5 It is orders of mag-
nitude more sensitive than conven-
tional EPR and permits magnetic
resonance measurements on the fun-
damental building blocks of modern
microelectronics: metal oxide silicon
field effect transistors (MOSFETs).
SDR-detected magnetic resonance
applied to an array of MOSFET-like
devices may have particular promise
in quantum computing because the
response can be turned on and off at
specific sites via application of volt-
age.5 In fact, a leading spin-based
quantum computer proposal is based
upon an exotic MOS system.6

At ‘modest’ magnetic-field strength, the sen-
sitivity of SDR is often, to zero-order, field in-
dependent.1-5 However, since SDR involves the
polarization of charge carriers and deep-level
spin systems, very-high-field SDR should pro-
vide additional high-sensitivity advantages.
This could eventually allow for single-spin de-
tection, because the high fields greatly increase
polarization. However, at very-high fields and
frequencies, the conventional microwave ap-
proaches (microwave waveguides, conven-
tional cavities, etc.) become essentially impos-
sible as the wavelengths of the electromagnetic
irradiation—and consequently the dimensions
of the microwave cavities and waveguides—
extend from microwave dimensions (~cm) to
far-infrared dimensions (~mm or less).

Recently, ‘quasi-optical’ approaches have
been shown to have great promise for conven-
tional EPR at extremely high fields.7 Here we
report on high-sensitivity SDR measurements
using a ‘quasi-optical’ spectrometer. These pre-
liminary high-field measurements were made
under circumstances very far from those that
would yield optimal sensitivity. Several clearly-

possible modifications of our initial measure-
ments should each yield improvements of one
to several orders of magnitude: thus, our re-
sults strongly suggest that (fairly rapid) single
paramagnetic site detection will be possible
with high-field SDR.

The experiment
At the National High Magnetic Fields Labora-

tory we made SDR-detected EPR
measurements using SiC
MOSFETs. These were configured
as gate-controlled diodes with gate
areas of 100µm×100µm and mea-
sured using a high field ‘quasi-opti-
cal’ EPR spectrometer. The fre-
quency we used was 110GHz: the
resonance appeared at 4.26 Tesla.
The ‘quasi-optical’ system is shown
in Figure 1, and is described in de-
tail elsewhere.7 A representative
SDR trace (200s acquisition time) is
illustrated in Figure 2. The signal-
to-noise ratio is approximately 120,
and the full width at half maximum
of the (essentially Gaussian) line
shape is 26 Gauss, yielding a sensi-
tivity of about 4×104 spins/Gauss.
This sensitivity was: achieved at
room temperature, at quite low B1
(the resonance frequency field),
without significant signal averaging,

and at considerably less than the highest-pos-
sible fields that can be achieved.

Although a direct extrapolation of response
is not possible, a comparison of SDR ampli-
tude versus power at low and high field
strengths is shown in Figure 3. This suggests
that a large improvement in high-field sensi-
tivity will be achieved by increasing B1. The
low-field measurements were carried out us-

Figure 2. A representative spin-dependent recombination (SDR) trace.
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Figure 3a. SDR amplitude versus power at high field (4.26 Tesla), low
power, and no resonant cavity.

Figure 3b. SDR amplitude versus power at low field (~1/3 Tesla), high
power, and up to 150mW applied to a Q 5000 TE102 cavity.

ing a 150mW microwave source and a TE102
microwave cavity with a loaded quality factor
of about 5000. The polarization in our prelimi-
nary room-temperature measurements was less
than 2%. Lower temperatures and even-higher
fields will allow for a several orders of magni-
tude boost in the ratio of magnetic field to ab-
solute temperature, permitting essentially-com-
plete polarization of the charge carrier and the
deep-level spin systems. The increased polar-
ization will yield a large, if difficult to precisely
quantify, increase in sensitivity.1-3,5 Although
long-signal averaging is of questionable utility
in quantum computing applications, it is worth
noting that the practical limit for signal aver-
aging is at least a day. Signal averaging for a
day would increase sensitivity by about a fac-
tor of 20.

Since several fairly straightforward modifi-
cations of our measurements will each likely
provide one to several orders of magnitude in-
crease in sensitivity, our results strongly sug-
gest that fairly-rapid single-spin detection will
be possible via high-field quasi-optical SDR
detected EPR. This sensitivity will be possible

in MOS integrated circuits in which individual
transistor spin sites may be rendered address-
able via application of gate and source-drain
bias. A very-recent study argues that somewhat
similar high-field electrically-detected mag-
netic-resonance measurements (involving ex-
tensive periods of data acquisition) have pro-
duced single paramagnetic site sensitivity in a
MOSFET.8
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