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Grading Scheme1

ITEM POINTS

Title
The title should consist only of words that contribute directly to the reportÕs subject.

Abstract
The abstract should be a very succinct summary of the report. It should summarize the
nature of the report, its rationale and the important findings. It should be written using
passive tense and it should not exceed one page.

Introduction
The introduction should offer immediate context for the reader by establishing why the
problem being studied is important. Furthermore, it should illustrate the problemÕs
nature and scope. The introduction should not exceed two pages.

Methods
This section should include a description of what was done and what procedures were
used to obtain the results. The description should be detailed enough to allow one to
replicate the work being discussed. If the inclusion of extensive derivations is required
for clarity, it may be placed in an appendix and simply referenced.

Results and Discussion
This section contains a summary of the results along with their interpretation.
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This section is for the presentation of the conclusions you have arrived at as they relate
to your experiments or analysis.

Paragraphing, Arrangement, Headings
Paragraphs are clearly focused, unified, and sensibly arranged. Transitions between
and within paragraphs are thoughtfully chosen, and section headings, if included, are
carefully worded and germane.

Formatting and Use of Figures, Tables and Equations
Tables and figures are purposefully and professionally presented. Captions are well
worded and the accompanying interpretation of tables and figures meaningful. Tables
and figures work both independently and in context. All numbered figures and tables
should be referred to in the text. The equations are treated as an integral part of the
sentence and property punctuated.

Sentence structure
The paper should exhibit ease with idiom. The writer should show facility with various
sentence lengths and types so that the paper is highly readable. The paper should ex-
hibit good use of grammar and syntax. Punctuation should enhance readability.

Spelling and Proofreading
There are few or no spelling or typographical errors.
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1 This table contains material taken from the book entitled ÒStyle for Students: Effective Writing in Science
and EngineeringÓ, by J. Schall, Burgess Publishing, Edina (MN), 1995.
2 This section may be followed by one or more appendices. When an appendix is included, it should be
properly typed and formatted in a way that is consistent with the rest of the report. However, it is possible
to include hand written appendices. In this case, it is expected that they be legible and neat. When included,
their contribution to the overall report grade will be lumped with that of the Conclusion section.
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Abstract
The dependence of the period of oscillation of a simple pendulum, released from rest,

on the initial angle is analyzed. Using a numerical approach, it is shown that the period of
oscillation is indeed a strong function of the initial angle except when the angle is small.

1. Introduction
In Activity One, the period of the oscillations of a simple pendulum was experimen-

tally measured to obtain the value of the acceleration of gravity g. The experiment in
question was conducted by making a pendulum swing gently. Clearly, the concept of
gentleness is hardly a precise and quantifiable scientific notion. In fact, in this context, a
Ògentle swingÓ actually means Òsmall amplitude oscillationsÓ, where small is meant to
indicate that the oscillation amplitude is within a range for which the oscillation period
does not change significantly. The adverb significantly can be given a precise meaning by
means of a convention, e.g., by deciding that a significant change of the period of oscil-
lation consists of 0.1 s (seconds).

From a practical viewpoint, the validity of the experimental method illustrated above
is predicated upon the assumption that there exists a range of oscillation amplitudes for
which the period is a constant. Hence, in order to justify the validity of the method and in
order to gauge its accuracy, a study of the pendulum motion for any oscillation amplitude
is necessary to determine whether or not it is true that there exists a range of oscillation
amplitudes for which the period is independent of said amplitudes.

The overall objective of this activity is that of investigating the behavior of a simple
pendulum, set in motion by changing the angle formed by the pendulum cord and the
vertical direction, without imparting on the pendulum bob an initial velocity different
from zero. More specifically, we want to obtain a curve representing the value of the pe-
riod of oscillation as a function of the initial swing angle. This study will only include
numerical experiments as the results presented will be obtained via computer simulations.

2. Methods
With reference to Fig. 1, consider a simple pendulum consisting of an inextensible

cord of length L with a bob of mass m released from rest with an initial angle θ0. In the
calculations presented herein, L has been chosen to be equal to 1 m and the mass m has
been chosen to be equal to 10 kg. The free-body and mass-acceleration diagrams for the
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system at hand are depicted in Fig.Ê2. By equating the FBD and the MAD3 in Fig.Ê2, we
derived the equations of motion for the pendulum in Fig.Ê1.
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L

Figure 1: A simple pendulum.
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Figure 2: Free body and mass-acceleration diagrams for a simple pendulum.

In particular, the equation which describes the pendulumÕs free oscillations reads as fol-
lows:

˙̇θ θ+ =g

L
sin .0 (1)

The above equation is rather difficult to solve analytically. Thus, we resorted to a nu-
merical method to determine the equationÕs solution. In particular, we used the so-called
modified EulerÕs method for the integration of ordinary differential equations. The nu-
merical calculations have been carried out by coding the modified EulerÕs method in
MATLAB (c.f. Appendix B for a listing of the MATLAB code). In order to study the de-
pendence of the period on the initial swing angle, Eq.Ê(1) was solved for a variety of an-
gles, ranging from 0.01 rad to π/2 rad.

                                                  
3 The longhand calculations are reported in Appendix A.
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3. Results and Discussion
FigureÊ3 depicts a series of solutions differing from one another by the value of θ( )0 ,

that is, the initial condition in terms of the swing angle θ , whereas the initial condition in
terms of θ̇  is taken to be null for all cases.

FigureÊ3, displays the value of the swing angle as a function of time. The various
curves differ in the initial swing angle.
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Figure 3: Plots of the swing angle as a function of time. The various curves differ in the
value of the initial swing angle.

As it can be seen in the figure, the period of oscillation increases as the initial swing an-
gle increases. Furthermore, it can be seen that the increase in period of oscillation be-
comes rather visible for values of the swing angles larger than 0.3Êrad, whereas it is es-
sentially negligible for angles smaller than 0.2Êrad. In order to better illustrate this con-
cept, consider the graph in Fig.Ê4. This graph depicts the value of the period of oscillation
as a function of the initial swing angle. In addition to this function, the graph displays the
actual value of the period of oscillation for the various data points. It should be noticed
that the value of the period of oscillation for the first two data points is the same and co-
incides with the theoretical value that one would obtain by considering the linearized ver-
sion of the ordinary differential equation which governs the small oscillations of a pen-
dulum. It can also be noticed that once the value of the initial swing angle is larger than
0.35Êrad the error in the estimate of the oscillation period is larger than 10%.
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Figure 4: Plot of the period of oscillation as a function of the initial swing angle.

4. Conclusions
The data reported in the previous sections indicate that the period of oscillation of a

simple pendulum that is released from rest can only be taken to be independent of the
initial swing angle if the angle is sufficiently small. For the particular example reported
herein, the expression sufficiently small was shown to correspond to angles less than
0.2Êrad. This allows us to obtain estimates of the oscillation period within 10% error rela-
tive to the theoretical value obtained by considering the linearized equation of motion as
opposed to the full nonlinear one.

As one may recall, in Activity One it was suggested that the initial swing angle not be
taken to be greater than 6°, corresponding to roughly 0.1Êrad. In view of the results shown
in the previous section and with reference to Fig.Ê4 in particular, it can be said that such a
recommendation allows one to compute estimates of the oscillation period with an error
smaller than 1%. Such a small error margin is usually acceptable in engineering applica-
tions.
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Appendix A
This appendix contains the long-hand derivations to obtain Eq.Ê(1). With reference to

Fig.Ê2, consider the sum of forces in the tangential direction, that is, in the direction per-
pendicular to the pendulumÕs cord. The only force that contributes to the resultant in this
direction is the bobÕs weight mg, since the tension T acts in the normal direction. Also,
notice that the component of the bobÕs weight in the tangential direction has its orienta-
tion opposite to the positive tangential direction determined by the orientation chosen for
the angle θ . Hence we have

F mgt = −∑ sinθ. (2)

With reference to Fig.Ê(3) and recalling that the pendulum cord is inextensible, we see
that the acceleration in the tangential direction consists only of the term ρθ̇̇. Also, the
path radius of curvature coincides with the length of the pendulum L. Therefore, equating
the product of the acceleration and the mass in the tangent direction with the resultant of
all the forces in that direction we obtain the following equation of motion (in the tangen-
tial direction):

− =mg mLsin ˙̇θ θ. (3)

Dividing both sides of the equation above by mL and moving the right hand side to the
left of of the equal sign, we obtain Eq.Ê(1):

˙̇ sinθ θ+ =g

L
0. (4)

EquationÊ(1) (or Eq.Ê4), is not the only equation of motion. In fact, one can repeat the
process illustrated in this Appendix to derive the equation of motion in the normal direc-
tion. This would deliver an equation that allows one to compute the tension in the pen-
dulum cord. However, this equation does not provide any useful information concerning
the oscillation period and therefore will not be considered.
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Appendix B
This appendix contains the listing of a MATLAB program for the integration of an or-

dinary differential equation of second of the form

˙̇ ( , , ˙)y f x y y= , (5)

using the modified EulerÕs method. A description of the modified EulerÕs method can
found in the textbook used in class: ÒEngineering Mechanics: DynamicsÓ, by Andrew
Pytel and Jaan Kiusalaas, HarperCollins, New York, (1994).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [X,Y,YDot] = ModifiedEuler(xi,xf,y0,ydot0,N,fcn) % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ModifiedEuler() integrates a second order ODE of the form %
% yÕÕ = fcn(x,y,yÕ) whose name is contained in the string   %
% variable ÔfcnÕ. The function named in the string variable %
% fcn must expect SCALAR input for x, y and yÕ, and returns %
% a SCALAR.                                                 %
% The variables xi and xf define the extremes of the inter- %
% val of integration and must be such that xi < xf.         %
% The quantities y0 and ydot0 are the initial conditions.   %
% N is the number of integration steps.                     %
% The results are returned in the (row) vectors X, Y, and   %
% YDot, containing the coordinates of the of the evaluation %
% points and the corresponding values of y and yÕ.          %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dx = (xf - xi) / N;
X(1) = xi; X(2) = X(1) + dx; X(3) = X(1) + 2 * dx;
YDot(1) = ydot0; Y(1) = y0;
YDot(2) = YDot(1) + dx * feval(fcn,X(1),Y(1),YDot(1));
Y(2) = Y(1) + dx * YDot(1);
YDot(3) = YDot(1) + 2 * dx * feval(fcn,X(2),Y(2),YDot(2));
Y(3) = Y(1) + 2 * dx * YDot(2);
for i = 4:N

T(i) = T(i-2) + 2 * dx;
YDot(i) = YDot(i-2) + 2 * dx * feval(fcn,X(i-1),Y(i-1),YDot(i-

1));
Y(i) = Y(i-2) + 2 * dx * YDot(i-1);

end
X = X(:);
Y = Y(:);
YDot = YDot(:);


