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This overview of design concerning uniaxial loading is meant to supplement theoretical
information presented in your text.  It covers design for strength, stiffness, and stress
concentrations.  A detailed example is included.

Design for Strength
Strength is the most important component to safe design.  Both normal and shear stresses
must be considered.

Normal Stress
To determine dimensions for a safe design for normal stress in a uniform member, we
must locate the place were the normal internal reaction is the greatest, perhaps by the
method of sectioning or by drawing a load diagram.  There are times when the area is not
uniform, or dimensions change, but those scenarios will be covered under stress
concentrations.  For the present, we will consider a load P acting perpendicular to a
constant cross-sectional area A which is to be determined.  The stress, σ, is related as
follows:
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Pmax is the maximum internal force acting at the section of interest and σall  is the
allowable stress the material can sustain.  For elastic materials, σall is usually determined
by σyield /F.S. where F.S. is the Factor of Safety and σyield is the maximum stress a material
can withstand without permanent deformation.  σyield can be found for many materials in
reference and/or textbooks.  A factor of safety F.S. must be specified in all design
projects; typical values for stress analysis are 1<F.S.<2.

Shear Stress
There is often a shear stress associated with an axially loaded member.  It is commonly
found in connections such as those made with bolts, pins, or glued or welded joints.  The
shear stress τ is related to the internal force V acting parallel to a constant cross sectional
area A as follows:
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where Vmax is the maximum internal shear force acting at the section of interest and τall is
the allowable shear stress for the material of choice.  τall is defined to be τyield /F.S.  where
τyield is the maximum shear stress a material can withstand without permanent deformation



and F.S.  is the Factor of Safety in shear which may differ from that for normal stress, but
usually does not.

If both normal and shear stresses act on the component being designed it is
necessary to compute the areas from (1) and (2), compare them, and choose the larger of
the two. Typically finding area A  reduces to a single calculation such as length of a side
or diameter of a rod.  Next, round that number up (or down depending on the application)
to the closest nominal size as dictated by commercial suppliers and standards
organizations. Usual nominal dimensions in U.S. Customary units are given to the closest
inch: 1, 1/8, 1/16, 1/32, etc.  In S.I. units, they are usually given to the closest meter:
centimeter, millimeter, etc.

Design for Stiffness
Stiffness, in the case of uniaxial loading, is associated with an allowable deformation:
extension or contraction.  This allowable value will either be provided in the problem
statement, specified in a technical standard or code, or it may have to be deduced from
the information provided.  Under an axial load a member in tension lengthens, a member
in compression shortens and deformation due to shear is usually not significant for design
purposes.  So here we need only be concerned with normal forces.  The deformation is
related to the internal normal load P, the length of the member L, the modulus of
elasticity E, and the cross-sectional area A in the following way:

As one can see in (3), more information is needed with each successive equation.
In design, this is helpful to us because it allows us to juggle multiple variables or to find
more information by applying other design criteria.

You may encounter a member with several loads applied throughout the length, or
one that has several different materials or cross sectional areas.  The deformation of such
a member is calculated by using the same formula but by applying vector addition to each
section to obtain the total deformation.
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In this case the design is more open-ended.

Design for Stress Concentrations
Unlike the situation in the Design for Strength section, what happens if you encounter a
non-uniform cross-section? If the nonuniformity is gradual, then the change in stress is
smooth and a stress concentration may not occur.  However, if the nonuniformity is
abrupt then the stress changes sharply forming a stress concentration.    The maximum
stress σmax created by the nonuniformity may often be determined by multiplying the
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nominal stress σnom, which occurs in the same section, by a stress concentration factor K.
In general the definitions are:
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For common geometries K is tabulated in references.  For instance, Pilkey (1997)
provides an updated version of Peterson's (1974) graphical data and Roark and Young
(1989) provides formulas.  Uncommon geometries can be investigated using finite
element analysis (an upper level numerical method).  A key definition is A reduced which
varies not only with geometry, but also between references, hence one must be careful to
use it correctly.  For a circular hole it is usually the width minus the diameter of the hole.
Notably the thickness of a member containing a stress concentration does not enter into
its value.

K values for a circular hole centered in an axially loaded plate can be calculated
using the formula (Roark and Young (1989))
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or found in graphs like the one below (simply a plot of the above formula)

Here r is the radius of the hole and W is the width of the plate, not the thickness.  It is
interesting to note that the maximum K is 3.0, hence in the absence of data, one can
design conservatively using this value.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K

2r/W



For design, we set maximum stress σmax equal to allowable stress σall and invert
the stress concentration expression:
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Since Areduced is necessary to find K which is yet unknown, we have a dilemma.  The
solution is to apply an iterative approach as shown in the design of the upper section of
the bracket of example AD1.

Example  AD1

Design the A-36 steel hanging bracket so that it will carry a load of 1000 lb and not
generate significant stresses in the transition from region of load application to location
of the 1/4 inch diameter hole.  The bracket has a thickness of 1/16 inch and is welded on
both sides a depth c into the fixture.  The bracket cannot deform while loaded more than
0.005 in.  Use a factor of safety of 1.3.

Strength Design of Bracket
1. Make a list of everything you know about the problem.

You know:
•  It has to hold a weight of 1000 lbs.
•  That it has a 1/4 in. diameter hole in the top
•  That it has a fillet in it.
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•  It is to be made of A-36 steel (σyield for A-36 steel is 36000 psi, E for A-36 steel is
29000 ksi  (Hibbler (1997)).

•  A factor of safety of 1.3 will be used.
•  It has a thickness of 1/16 of an inch.
•  The maximum deformation is 0.005 in.
•  It is welded on both sides a depth c into fixture
•  The length above the fillet is 1 in., the length where the fillet occurs is 0.5 in, and the

length below the fillet is 0.5 in.
•  The model for this problem is the given figure since it clearly shows the boundary

conditions and the load.

2. What are we trying to find?

We are tying to find the dimensions of the bracket:
•  the top width (W1)
•  the bottom width (W2)
•  the radius (R) of the fillet
•  the depth (c) of the weld.

3. Think about how to go about starting the problem.  A list of steps necessary to
complete design of the bracket are:

•  First, we will deal with the lower section of the bracket, neglecting the fillet.
•  Second, we will move to the hole in the upper bracket.
•  Third, we will deal with the fillet of the bracket.
•  Fourth, we will determine the depth of the weld to prevent shear tearout.
•  Last, we will check all of our dimensions by using the allowable deformation.

Lower Section

FBD:
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•  First, perform a summation of forces to solve for P.
Σ FY : P P− = ⇒ =1000 0 1000

•  Next  consider the normal stress associated with the cut section.
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Upper Section
This section needs more thought because we do not have all the necessary information to
insert into an equation.  We must:
•  Guess at a value for the width of the upper section
•  Substitute it into a formula or use a graph to find K, the stress concentration factor
•  Calculate σtrial

•  Check σtrial  against an allowable stress to see if our guess was accurate within a
reasonable tolerance or not.

FBD: Stress Distribution:

D=0.25 in

W1

σmax

σfar from1000

P



NOTE:
1. In this case, we must design for σmax  =σall

2. σnom applies to the reduced cross sectional area (i.e., the width minus the diameter of
the hole)
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•  We must first choose a W1 to start with and find the K value corresponding to it.  The
following formula is found in Roark and Young (1989); it defines the value of K for a
hole based on geometric properties.
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Lets start with W1=1 inch.  For W1=1 inch, K=2.422.  Also check graph of K values.

For this case,
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σtrial > σall so our guess of 1 inch was too low; choose a greater W1.

•  Our next try will be two inches.  For W1=2 inches, K= 2.663
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This time, σtrial <σall  by a significant amount, which means if we use this value we will be
wasting material.  We want to find a value between one and two inches that will be
perfect for our needs.  We can graph these two values to help us visualize where we want
our value of w to
be (Note: the actual graph will not be linear).
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From the graph, you can see that 1.75<W1<2 inches is a good place to hit our target range
of 27692 psi.  We shall perform a linear interpolation in order to find a satisfactory value
for W1.
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For W=1.88, K=2.644

σ σtrial K
P

W
psi psi=

−
=

−
= ≤ ⇒16

0 25
2 644

16 1000
1 8768 0 25

26000 27700 6
1 .

. *
*

. .
% within yield

where we round σyield to 27700 psi.  So if we accept σmax within 6.1% of σall , then choose
W1=1.875= 1 7/8 in a good nominal dimension.  But lets check W1=1.75in:

For W1=1.75, K= 2.623
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1.75 and 1.88 give us values between our desired value, so we will try to average them
with W1=1.815in

W1=1.815in, K=2.634
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W1=1.815in is the closest value we have come upon and seems to be in the right range for
our work.  When we round 1.815 up to the closest nominal size we get 1 7/8 in.

Fillet
Here we will compute a value for the radius of the fillet.   For a fillet, the K value
depends on three geometric properties: W1, W2, and R, the radius of the fillet as seen is
Hibbeler (1997) figure 4-23.  We have found two out of the three problem requirements.
However,
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will set our value for r greater than h.  But we must check to make sure that our fillet does
not overcome the allowable stress.  So, for our check:
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So our value for W2 is unacceptable and we must choose another one considering the
stress concentration at the fillet.
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For a nominal value we will choose 7/8 in or 0.875in

For our new value of W2 our value of K will be slightly affected, but will still have a
value of approximately 1.3, it will be slightly lower, but that will only ensure our safe
design.

Shear Stress
Now we must turn our attention to the shear stress associated with the weld of the
bracket.  We must determine the dimension c so that we do not experience shear tear out.
Our first step is to determine the shear yield stress for A-36 steel.  That information is not
provided in your text so we must make an assumption.

Assume that A-36 steel behaves like aluminum for which the data is given. For
2014-T6 aluminum, σyield in compression and tension is 60 ksi.  τyield  is 25 ksi (Hibbeler
1997).  This is approximately 42% of the yield stress for compression/tension.  For 6061-
T6 aluminum σyield is 37 ksi in compression and tension and τyield is 19 ksi .  This is
approximately 52% of the strength for compression and tension.  In assuming that A-36
steel behaves like aluminum we will pick the smaller of these two values, namely 42%,
and use that percentage as our shear strength for A-36 steel.  In doing so we use 42% of
36 ksi, or 15.1 ksi.  Applying a factor of safety, we find that τall = 11.61 ksi.  To find the
depth, c, we will apply the shear stress formulas.
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First, we will do summation of forces:
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For a nominal value we will choose 1/32 or 0.03125.

Deformation
To determine the deformation of the bracket, we will break it into three sections and
perform vector addition to each section to determine whether or not our dimensions are
large enough to prevent an unacceptable deformation.  We will break it up as follows: the
section above the fillet , the average of the section of the fillet, and the section below the
fillet.
•  Start with the section above the fillet and apply formulas.  We will use the reduced

area for the area.
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•  Next, find the average area of the fillet section by approximating with a straight line.
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1. Third, the area below the fillet.
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4. Last, add all the sections together.

 δ = = + + =∑ PL

EA
0 00035 0 00022 0 00036 0 00093. . . .  which is well below our allowed

value of 0.005 in.  So, for this problem, our dimensions satisfy the stiffness requirement.

Decision:

For our final dimensions we have:
•  W1=1.875in
•  W2=0.8125=13/16 in
•  R=1in
•  C=1/32in
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