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Bending: Design for Strength, Stiffness and Stress Concentrations

This overview of the theory for design for bending of beams is meant to supplement that given in
your textbook. It is based upon the Bernoulli Euler theory which is applicable to most common 
engineering applications. First we cover design for strength because for safety reasons str
integrity is engineering’s first priority. Second we cover design for stiffness, but doing so in
order does not mean that strength always controls the design (see the example). After comm
on stress concentrations and limitations at this level of knowledge, we close with an examp
problems.

Design for Strength
Once the loading scenarios are determined, we can draw shear and moment load diagram
beam under each scenario. For example, if we know the load for a beam, but its location is unce
tain, then for one scenario we would locate the load to achieve a maximum moment; for the
we would locate it to achieve maximum shear. Let’s say a simply-supported beam is to car
concentrated force P, then for scenario 1 locate P at midspan and for scenario 2, locate P 
inside either support. Further, if the cross section is rectangular of area A, then the maximum 
shear stress equals P/A (by simple shear!) for Scenario 2 rather than 3P/4A (by flexural she
Scenario 1. Can you show both of these results? And by doing so, thereby convince yourself that 
consideration of critical load scenarios is important.

In beam design the normal stress obtained from maximum moment Mmax usually dominates 
over shear stress obtained from maximum shear Vmax (but for exceptions, see limitations below).
Therefore, our first choice to obtain the section geometry is to use

(1)

where S is the so-called section modulus, c is the maximum value of y and the allowable stress 
would be known. For example, if the cross section is rectangular of dimensions b × h so that I = 
bh3/12 and c = h/2, then S = bh2/6. Hence knowing either b or h, we can use (1) to get the othe
Next for this geometry, we must check the shear stress using either or both of the following

(2)

and then demonstrate that  where the allowable shear stress would be known. If 

check fails, then one must determine the geometry from (2) and check that  . Other-

wise we could compute geometry for each case and compare dimensions to reach a decis
this approach provides a less evident argument and should be a second choice. 

A change in cross section geometry along the beam presents a further consideration. For t
see the section on stress concentrations in bending below.

Design for Stiffness
To design for stiffness, an allowable kinematic condition must be specified. For beam bending,

σ
My
I--------

M
I y⁄--------= = S⇒

I
c--

Mmax

σall
-------------= =

τmax VmaxQmax( ) Itmin( )⁄=  ,  if the shear is due to flexure 

τmax Vmax A⁄=  ,  if the shear is not due to flexure (simple shear case)

τmax τall≤

σmax σall≤
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this would normally be a bound upon deflection v like . Although less likely, a maxi-

mum slope could be specified instead. Once a model with appropriate boundary conditions has 
been established, the maximum deflection or slope would be obtained using either double 
tion of the moment equation or a table for the solution. The relevant equations in sequence

(3)

where value is obtained by substituting the location of maximum deflection x into the deflec
equation obtained from the differential equation in (3). This is illustrated in the example belo

Stress Concentration Equations
Stress concentrations in bending arise when uniformity of geometry is disrupted. In this case, a 
design problem may become iterative if initially we do not know the beam geometry require
determine the stress concentration factor. Then the design algorithm is: 1) solve the proble
dimensions of a uniform prismatic beam, 2) determine the stress concentration factor for th
ruption in the uniform beam and use it to check if allowables are violated, and 3) repeat un
mal dimensions which satisfy all requirements are found. 

Hibbeler (1997) provides stress concentration factors for symmetric fillets and grooves in the 
top and bottom of beams. Factors for geometries including holes and both one-sided and c
ferential grooves under bending, torsion and axial deformation are given using Neuber’s di
by Ugural and Fenster (1979). But a more general and very reliable source is Roark and Young 
(1975). When applying formulas from any source, it is important to note the definition of the
nominal or reference stress and the stress concentration factor itself.

Limitations
Although Bernoulli-Euler theory is very good, its application above is for elementary design of 
straight beams; we neither considered curved beams (Hibbeler, 1997, § 6.8) nor accounte

1. Situations in which the shear stress in the beam is the same order of magnitude as the n
stress. This occurs if large shear loads are applied or the beam is short. Principle stress
obtained using transformation equations or Mohr’s circle (see Hibbeler, § 11.2), become 
important, particularly in concentrations at flange-to-web junctions. Short beams do not f
much and their deflection is due mainly to shear, not moment. A beam is said to be shor
length is less than 10 times its section depth1. This situation is covered in advanced courses

2. Local buckling and rotational instability of beams which involves three cases: global buc
of the structure (it buckles as a unit) which is covered subsequently in these notes; local
ling which is localized failure of a compression region in a beam (e.g., waviness in a web
local kinking); and torsional or twisting instability in thin-walled members related to shea
flow (Hibbeler, § 7.4, 75).

Nonetheless, this methodology will carry the day in many situations, but the engineer must
always be aware of hazardous or special situations and alert all involved parties.

1. Definition of a short beam is due to Zhuravskii, 1821-1891, and is discussed in Gere and Timoshenko 
(1997).

vmax vall≤

EI
x

2

2

d

d v
M x( )= EIvmax⇒ value= I

value
Evmax
--------------≥⇒
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Example
BD1. Design a round chinning bar to fit between a jamb 
32 in wide and support a 270 lb person. Client specifica-
tions are: (1) minimize weight, (2) set grip spread to 18 
in as shown in the figure, (3) diameter of bar to be about 
1 in, (4) minimize deflection and limit it to 1/2 in and
(5) use a factor of safety FS = 1.2. 

Solution:

1. For minimum weight, spec #1, choose 6061-T6 aluminum tube or pipe. Properties from 
beler (1997): E = 10 × 106 psi, σ Y = 37 ksi, τY = 19 ksi. Divide yield stresses by factor of 
safety FS to get allowables ⇒ σ all = 37/1.2 = 30.83 ksi, τall = 19/1.2 = 15.83 ksi. 

(NOTE: Ryerson (1987-89) gives σ Y = 37 ksi for Alclad Al 6061-T61 and σ Y = 40 ksi for 
Al 6061-T6. Our use of the lower value for this material is conservative and therefore sa

2. Prescribe the loading scenarios. The most critical load will occur if the person hangs from
bar with one hand. This is an obvious possibility and will cover the client’s spec #2. Rank
order from the most critical (Students should show this!), the loading scenarios are:

Scenario 1: Central concentrated load. Maximum moment occurs if the entire load is 
placed in the center of the bar. This will also generate a maximum deflection.

Scenario 2: One-sided concentrated load. Significant (but unknown) simple shear oc
the load is placed very near to either support, say the left.

3. Prescribe the models for each scenario. 

Scenario 1:  Scenario 2: 

4. Freebody diagram and statics for Scenario 1 
Clearly FA = FB = Vmax = 135 lb
Mmax @ center = (135)(16) = 2160 in lb
(Note: Students should draw V-M diagrams to 
verify these “max” values.)

5. Strength design for Scenario 1:
Client spec #3 ⇒ Set r0 = 1.0/2 = 0.5 in 
and solve for ri where these are the outer and inner radii, respectively. Using Eq. 1, 

Check catalog (Ryerson, 1987-89) for aluminum tube with nominal size nearest to 1" OD× 
.134" wall. There the largest wall thickness for 1" tube is 0.125. Too small. Looking furthe

1. Alclad denotes a special aluminum alloy coating on both sides of a standard aluminum substrate (see
Ryerson).
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σall

Mmaxro

π r0
4

r i
4–( ) 4⁄

-------------------------------= r i⇒ r0
4 4Mmaxr0

πσall
---------------------–

1 4⁄
0.365 in= = twall⇒ r0 r i– 0.134 in= =
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next size tube with commensurate wall size is 1 1/2 in OD which greatly exceeds spec #
However, 3/4 in pipe has dimensions: 1.05" OD × 0.113" wall. Try this. Substituting 
r0 = 1.05/2 = 0.525 in into the above formula and solve for ri and wall thickness; we get:

Excellent! Choose 6061-T6 aluminum pipe: 3/4 in O.D. × 0.113 in wall (0.824 in I.D.).

6. Comments on Step 5:
a) For this choice of pipe: 

Here we used radii for the pipe so that .

b) Warning: Ryerson (1987-89) does NOT indicate a heat treatment (T-value like T6) wh
important to yield strength. Heat treatment should be settled upon prior to purchase.
c) Interestingly, adequately thick tubing is standard stock in steel, but not in aluminum.

7. Check deflection; client spec. #4:

where the formula for vmax comes from double integration of the differential equation in (3) for 
a simply supported beam under a concentrated load P applied at midspan, i.e., 

NOTE: Alternatively we could have used the rightmost equation in (3) to arrive at the tub
pipe dimensions and in turn used the leftmost equation in (1) as a check on strength.

8. Check the flexural shear stress:

For a solid semi-circular section, . Then

where τall = 15.8 ksi. Students should verify this equation, especially the result for Q. 

9. Scenario 2. Only a strength check for simple shear is necessary. The deflection and rea
B are negligible (Can you show this?), hence a freebody diagram is obvious (see illustra

Scenario 2 above). 

10. Decision. Choose 6061-T6 aluminum pipe: 3/4 in O.D. × 0.113 in wall. The 
design is tight, both max stress and deflection are more than 99% of the allow-
ables, but the margin of safety may be increased by using 6061-T6 rather than 
Alclad 6061-T6 (see note in step 1). 
Warnings: (1) Make certain the T6 heat treatment is applied to the aluminum.

(2) Both ends of the pipe should be plugged with stiff plastic or 
metal to prevent local buckling of the pipe wall by distributing concentrated 
support reactions throughout the pipe wall at each end of the bar (see the figure). 

σall

Mmaxro

π r0
4

r i
4–( ) 4⁄

-------------------------------= r i⇒ r0
4 4Mmaxr0

πσall
---------------------–

1 4⁄
0.413 in= = twall⇒ r0 r i– 0.112 in= =

σmax Mmaxr0 I⁄ 30.6 ksi 30.8 ksi σall Check O.K.⇒≡<= =

I π r0
4

r i
4–( ) 4⁄ 0.037 in4= =

vmax
PL

3

48EI------------
270 32( )3

48 10 6×10( ) 0.037( )
----------------------------------------------- 0.498 in 0.5 in<= = =  Spec. #4 satisfied.⇒

E∫ I
x

2

2

d

d v∫ P
2---∫ x∫ Px

48------ 3L2 4x2–( )– , 0 x
L
2---≤ ≤ 

  EIvmax⇒
PL

3

48--------- @ x
L
2---= = = =

Q πr
2 2⁄( ) 4r 3π⁄( ) 2r

2 3⁄= =

Q Qwhole Qhole–
2
3--- r0

3
r i

3
–( ) 0.0498 in

3 τmax⇒
VmaxQ

It---------------- 173 psi τall O.K.⇒<= = = = =

τmax V A⁄ 270 π 1.052 0.8242–( ) 4⁄⁄ 2550 psi τall O.K.⇒<= = =

Plug

Support
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Problems
BD2. Redo problem BD1, but use 1018 cold drawn steel tube which has a minimum yield 
strength of 65 ksi. Compute the final weight of your design and compare it with that for Exa
BD1.

BD2. Design a scaffold plank to span 10 ft between simple supports such that it is 12 in wid
1/4 in dressed) softwood and supports three 200 lb men who each occupy 18 in length of b
and together cause no more than 1/16 in deflection. Given: σall in bending is 900 psi, E = 1.0 × 106 
psi and τall parallel to the grain is 250 psi.
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