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Column Buckling: Design using Euler Theory

Our use of Euler’s buckling formula here is NOT intended for actual design work, but ONLY
vehicle to illustrate design concepts and process which will carry over to a more sophistica
approach. With this limitation in mind, the treatment here supplements sections on Euler bu
of columns given in your textbook. More practical formulas are given in Hibbeler (1997), sec
13.6, 13.7. We cover design for buckling, physical insight on feasible designs and the conce
design space and limitations of the method. We close with an example and problems.

Design for Buckling
Buckling is of concern whenever a slender member is under compression and in this case w
to it as a column problem even if it is neither vertical nor an architectural column. If its phys
length L is known and the compressive load has been set, then the design for buckling of a c
reduces to three issues: (1) settle on the end or boundary conditions and determine its effe
lengthLeff (KL in Hibbeler, 1997), (2) determine the material, second moment of area produEI
that is sufficient to prevent buckling and (3) insure that this cross section has sufficient areaA so
that the compressive stress is less than the allowable stress (also known).

The easiest concept to grasp is that the design loadPdes must be less than the critical buckling
loadPcr which, of course, is given by a formula. For our purposes this formula is Euler’s and
write

(1)

but we can easily replace the rightmost formula by another more accurate one. It is importa
realize that the effective length of a column is that which deflects into the shape of a half si
wave and thatPcr is not an actual load, but a load-independent number which is a characteris
the geometry and material of the column. (Mathematically it is associated with the eigenval
the system.) Moreover, since the design load is fixed, yet must be less than this number, it 
number that must be increased by appropriate choice of material and geometry. But by how
much? This is set by the safety factor for buckling.

The safety factorFS for buckling (usually greater than other safety factors) dictates the ra
betweenPdes andPcr. So building upon (1),

(2)

The expression on the right is the design equation where everything on its right-hand side 
known or set for the time being.FS is generally prescribed by a code or specification. Therefo
the left-hand side can be solved for either E or I, that is, either material or cross section geo
Usually the material is already known for other reasons and we use (2) to solve forI.

For example, if the material is known and a round cross section is desired,

Then we can solve for eitherr0 or ri according to the following:
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But we are not quite done.
We must insure that our geometry has large enough cross section area so that

(4)

Now we are done.

Feasible Designs and Design Space
Physically, what are we doing to design for buckling? Clearly feasible designs feature both
ciently largeI to resist bending andA to decrease compressive stress. The load is fixed a prio
that even stress is adjusted not by changing load, but rather by adjustingA in Pdes/A. Furthermore,
we can change the boundary conditions to adjust the effective length. If the situation defies
normal approach given by the equations above, we can radically adjust effective length by 
ducing braces, e.g., divide the column into two or more shorter lengths. We have complete
turned the analysis problem on its head.

The solution for geometric variables, likeI andA,
lead to the concept of design space. Simply put, we are
searching for a nominal or stocked ‘column’ to satisfy
load and stress requirements. Many solutions exist. We
seek the optimum. This means we may have to iterate
or search a few times to get a good design (see the fig-
ure). Whereas today we may search catalogs, tomorrow
in advanced work we can learn to build mathematical
search engines to optimize the design.

Limitations
Instability of columns involves three cases: global buckling of the column (it buckles as a un
which is covered above; local buckling which is localized failure of a compression region in 
umn (e.g., waviness in a web or local kinking in a tube wall); and torsional or twisting instab
in thin-walled members related to shear flow (shear flow but not torsional instability is cover
Hibbeler § 7.4, 7.5). CAUTION: Global buckling predicted by Euler’s formula severely over 
mates the response and under estimates designs. The latter two modes of buckling are co
advanced courses.

Example
BuD1. Design a round lightweight push rod, 12 in long and pinned at its ends, to carry 500 lb
factors of safety are 1.2 for material and 2.0 for buckling.

Solution:
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1. For minimum weight, choose 6061-T6 aluminum bar. Properties from Hibbeler (1997):
E = 10× 106 psi,σ Y = 37 ksi,τY = 19 ksi. Divide yield stresses by factor of safety FS to ge
allowables⇒ σ all = 37/1.2 = 30.83 ksi,τall = 19/1.2 = 15.83 ksi.

2.

3.

4. Search of nominal sizes yields: Choose 3/8 in diameter bar.

5.

6. Final check:

7. The extreme overdesign indicated by the check in step 5 means that a round bar is not t
cross sectional shape. Perhaps a tube or pipe would be optimal. Why? Nonetheless, ste
yields an overdesign of (665 - 500)/500→ 33% which is more reasonable, but still high
because the next larger stock bar size was 3/8 and 23/64 in (0.359 in) is not stocked.
Decision: Choose 3/8 in dia. Al 6061-T6 bar.

Problems
BuD2. Redo problem BuD1 to seek a more optimal design, i.e., reduce the cross sectional 
that the stress check is closer to the allowable. Explain why your design works (or does no

References
Hibbeler, R.C. (1997) Mechanics of Materials, 3rd ed., Prentice Hall, Englewood Cliffs.
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