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Chapter 2. Numerical Integration

2.1. Taylor Series


Function 
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 can be expanded over a small interval t using the Taylor series from a start or reference point 
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(2.1.1)

This forms an approximation to 
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 in t which runs, say, from 
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 to 
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, and can be used to integrate 
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. For example, if we keep the first four terms on the r.h.s. of the above series in an integration, we get
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(2.1.2)

 where 
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 = h, a constant.  Alternatively, by setting 
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 to 
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 in the Taylor series, we may also approximate the first derivative
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(2.1.3)

The last expression, a first forward finite difference, will be used to complete the trapezoid rule below.  Note that it is only first order accurate.

The famous, second-order accurate central difference approximations for derivatives are obtained by writing a backward Taylor expansion y(x-t) and letting t = h.  Then subtracting it from y(x+t) yields
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(2.1.4)

Adding it to y(x+t) yields
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(2.1.5)
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Fig. 2.1 Finite difference techniques to calculate first order derivative at xi
2.2 Trapezoid Rule


The concept of the trapezoidal rule comes from approximating 
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 at any point
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 in an interval using the Taylor’s series. Then integrate the approximation. If the approximation is a linear function, the resulting integration is called the trapezoidal rule.

For the data interval 
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(2.2.1)

which is the trapezoidal rule for one interval. If we use it over a range of intervals running from a to b, 
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(2.2.2)

which is the composite trapezoidal rule.

Example 2.2.1. Use the trapezoidal rule to calculate the following integral
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which has an exact answer of 1.

In a MATLAB code “trapezoid_example_1.m”, we use the MATLAB function “trapz” for this calculation. The code is very short and looks like this with comments attached

function trapezoid_example_1

% TRAPEZOID_EXAMPLE_1 is an example for integration

%using the trapezoidal rule;

%

%the integral has an exact value of 1;

xa=0; xb=1; % range of x for the integration;

exact_i=1; % exact solution;

for i=1:6;

   n=10^i; % number of subintervals;

   x=linspace(xa,xb,n+1); % data set x;

   ai_trap(i)=trapz(x,fuser(x)); % trap. integ. with intrinsic fctn;

end;

format short e;

ai_trap - exact_i % show error

function f=fuser(x)

% user defines function

f=pi/2*sin(pi*x);

The results are tabulated below

	# of subintervals
	101
	102
	103
	104
	105
	106

	Error
	-8.2382e-3
	-8.2248e-5
	-8.2247e-7
	-8.2247e-9
	-8.2243e-11
	-8.3489e-13




As we can see, the convergence is rather slow. To reach an accuracy of 10-13, roughly 106 intervals are needed.

2.3 Romberg Integration


Denote 
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(2.3.1)

which gives
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(2.3.2)

By substituting it into either of the above equations, we would get a better approximation to 
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. This idea of using multiple subinterval lengths to “extrapolate” better approximations is generally called the Richardson extrapolation. It will be discussed in more detail after the following example.

Example 2.3.1. Calculate the integral in Example 2.2.1 with 
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 and 
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. Then use the Richardson extrapolation to get a better approximation.

A MATLAB code “trapezoid_example_2.m” is used to solve this example. We have
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where the integration values shown are the error terms compared with the exact solution of 1. Then
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which gives
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which is clearly an improvement over 
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 without going through an extensive integration process.  We can improve upon this even further.


Generally the Richardson extrapolation rule assumes 
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where 
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(2.3.4)

Solving for 
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 from the two equations above and then substituting it back into the first equation, we get
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which gives an improved version of the approximation. We can repeat this process and get better and better approximations. This is the Richardson approximation.


The Romberg integration uses the Richardson extrapolation on the composite trapezoidal rule. The detailed proof of related theorems can be found in many numerical analysis books such as Gautschi (1997) and Buchanan and Turner (1992). Only the schemes are given here.


For the trapezoidal rule, the usual interval subdivision is 2, so let 
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. Moreover, if we recast the approximation (r.h.s. above) as a sequence in n = 1, 2, 3, …, then A(0) can be written as
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where p = 2n, 
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n

4

2

2

=

 and the subscript on 
[image: image52.wmf]A

 denotes its value at each recursive step, the sequence of which is discussed next.


If we start from 
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. The scheme can be arranged in a form very similar to the table of divided differences (see Section 3.2) :
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(2.3.7)

The 
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 column is found from the composite trapezoidal rule. The algorithm for the implementation of this scheme is as follows

(1) Set the desired level of approximation, 
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, e.g., 
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 in Equation (2.3.7);

(2) Define the integrated function and set the interval 
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 over which the integration is to be done, and the initial number of intervals, 
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;

(3) Declare the table in (2.3.7) as a matrix r of dimension (nl, nl);

(4) Calculate the first column of 
[image: image67.wmf]r

 using the composite trapezoidal rule (Equations 2.3.8 and 2.3.9 given below);

(5) Calculate the rest of the matrix using Equation (2.3.6).

In step 4, we start with the first element using the composite trapezoidal rule:
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(2.3.8)

where the sum goes to n because we have n+1 points.  For subsequent 
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, the calculation will be done step-by-step in a do loop down column 1 where each interval length is half of the previous step. Since half of the data points and their function values are calculated already, we take advantage of this by revising the composite trapezoidal rule:
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where 
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Example 2.3.2. Calculate the integral in Example 2.2.1 using the Romberg integration for five levels.


The MATLAB code “romberg_example.m” is generated for this example. The resulting error matrix is

 -8.2382e-3

 -2.0570e-3  3.3922e-6 

 -5.1409e-4  2.1155e-7   -4.9836e-10 

 -1.2851e-4  1.3214e-8   -7.7686e-12  1.8652e-14 

 -3.2128e-5  8.2579e-10 -1.2057e-13  8.8818e-16  8.8818e-16


In Example 2.2.1, the error for the composite trapezoidal rule with 106 intervals is about 10-13. We achieved 10-14 in just four levels of Romberg approximation. This scheme certainly saves a lot of computational time.

2.4 Guass Quadrature


We will first illustrate the Gauss quadrature through two examples, and then a general description is given. Before we do that, let’s scale the interval 
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Thus
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So in general, we will assume the interval is 
[image: image80.wmf]]

1

,

1

[

-

 and, if it is not, transform it to that as shown above.

Example 2.4.1. For a linear function 
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so we can say
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where 
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 is called the weight which multiplies the function evaluated at the Gauss point x = 0.  Importantly, this means the exact integral of any linear function can be found by 2 times the function value at 
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. If we denote NGP as the number of Gauss points, NGP = 1 for this case.

Example 2.4.2. For a cubic function 
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(2.4.5)


Regardless of the values of the coefficients c0, c1, c2, and c3, let’s try to find a two-point approximation with two weights:
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(2.4.6)

Thus
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(2.4.7)

Since the coefficients c0, c1, c2, and c3 are arbitrary, the terms in parentheses ( ) must all be zero. That is
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(2.4.8)

Thus if NGP = 2, a polynomial of degree no greater than 3 can be solved through 
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 exactly with two weights of unit value and y evaluated at x1, x2.


Through these two examples, it is clear that our intention here is to convert the integration of polynomials to a sum of weighted function values taken at several specific, optimally chosen points, the Gauss points. That is
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(2.4.9)


In general, for
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-point Gauss quadrature, if the 
[image: image93.wmf]i

x

 are the zeros of the Legendre polynomial 
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(2.4.10)

then the Gauss quadrature calculates polynomials of degree no greater than 
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 exactly.  Considering the two examples above, the respective Legendre polynomials are 
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A more thorough treatment of Legendre polynomials can be found in the references, but this is adequate for most applications, e.g., finite element methods.  Weights and Gauss point locations for higher order quadrature can also be found in the references.

Example 2.4.3. Calculate the integral in Example 2.2.1 using the Gauss quadrature.


This example is solved through a MATLAB file “gauss_example.m”. The results are tabulated below

	n
	2
	3
	4
	5

	error
	-3.2090e-2
	6.9446e-4
	-7.8858e-6  
	5.5142e-8


Gauss Quadrature in Two Dimensions


Gauss quadrature can be applied over the unit square by applying the one-dimensional method shown above in each direction.  For example, 
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(2.4.11)

The number of Gauss points in each direction can be different.  Clearly a rectangle can be transformed into a square using (2.4.1) in each direction.  Furthermore, a triangle can also be treated, but this requires further development which can be found in the references; notably, the weights and Gauss points will differ.
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