Impact Technologies PHM and Structural Health Management

Carl Byington, P.E.

Director, Impact Technologies, LLC <u>carl.byington@impact-tek.com</u>

© 2007 Impact Technologies, LLC. All Rights Reserved.

IMPACT

Who is Impact?

- Founded in 1999, currently ~90 employees, experienced Mechanical, Electrical and Software Engineers and Scientists dedicated to Predictive Equipment Health Management Technologies
- Customers include: U.S. Navy, Air Force, Army, DARPA, DOE, EPRI, Boeing, Honeywell Engines, General Dynamics, Northrop Grumman, GE, Rolls Royce, P&W, UTC, NASA, Lockheed Martin, Dresser-Rand, etc.
- Top DOD Small Business contractor in the U.S. for Automated Health Management technologies
- Typical Roles: Technology Research and Development, Software Development and Licensing, System Design and Integration, Engineering Support
- 3 offices:
 Rochester, NY;
 State College, PA
 & Atlanta, GA

IMPACT

Impact Portfolio

Automated Equipment Health Monitoring SW

Advanced Sensor & Embedded Monitoring

Integrated Vehicle System Specific Health Management Diagnostics/Prognostics 0 IMPACT **Decision Aids, Maintenance & Logistics Tools Electronics/Avionics PHM** T IMPACT

Some SHM Developments

 >AFRL Composite Damage Localization
 >JSF Gearbox Corrosion Modeling
 >NAVAIR Gear Prognosis
 >DARPA Structural Integrity Prognosis Systems

AFRL Damage Detection, Isolation and Prediction

Neural Network Training Results (Total 24 (4*6) sensors)

Training Processing of the Neural Network for Uni-Directional Composite

Relationship Between Damage Size and RMS of Residuals for Uni-Directional Composite

IMPACT

RMS of Residuals (Input of The Neural Network)	0	0.2839	0.8411	1.4679	2.2659	4.375 9
Size of Damage (Output of the Neural Network)	0.0142	0.4634	1.0454	1.4758	1.9142	3.001 9
Truth Size of Damage	0	0.5	1	1.5	2	3

Results for Determination of Damage Size via Neural Network for Uni-Directional Composite Damage

Determination of the Damage Geometry

The circle is the truth damage.

Other blue lines denote the largest residuals in direction of 0, 30, 45, 60, 90, 120, 135, and 150 degrees. The right line shows the estimated damage geometry by the operator using the information from the left figure © 2007 Impact Technologies, LLC. All Rights Reserved.

Uni-directional Composite Results

Truth Data			Diagnosis Results			
Size of truth damage	Location Of Damage	Geometry Of Damage	Size of Damage From Neural Network	Location and Geometry (red area) Using Triangulation + Knowledge about size Of damage		
0.5 inch		circle	0.4634 inch			
1 inch		circle	1.0454 inch			
1.5 inch		circle	1.4758 inch			
2 inch		circle	1.9142 inch			
3 inch		circle mpact Technolo	3.0019 inch ies, LLC. All Rig	hte		

Accelerometer-Based Feature Extraction and Analysis

Flexural Wave Propagation in a Laminate Composite Plate

MPACT

Secon impact Technologies

Feature Extraction Using Wavelet Packets and Higher-Order-Statistics

Energy & Arrival Time Feature Analysis

NN Outputs and Triangulation for Seven Training Cases

Test Case 1

- Estimated impact location
- Truth impact location

Sensor 3

Test Case 2

- Estimated impact location
- Truth impact location

Composite Effort Summary

- Integrated Approach for Determining Damage Location and Severity for Composite Structures
- Structural Features Resistivity, Acceleration
- Models Finite Element Approach for Determining the Impact Location
- Evaluation of Independent Approaches to Structural Health Monitoring
- Continuing Work GEAE Engine Half-Case

Gearbox Corrosion PHM via Oil Condition Sensing and Model Fusion

Phase I

- Collect oil quality and vibration data from healthy & corroded gearbox
- > Implement PHM algorithms and model fusion to predict corrosion
- Validate algorithms with experimental data

Phase II

- Mature PHM approach & develop software package for test cell use
- Implement on JSF Test Stand(s) to validate near-real time prediction

Phase III

Rolls-Royce

Develop autonomous test stand package or transition to on-board implementation

IMPACT

Transition to additional applications

Carl Byington, Ryan Brewer, Sanket Amin, Vijit Nair, Adam Mott Impact Technologies, LLC

Corrosion PHM Framework and Elements

Corrosion-based Fault-to-Failure Prognostic Horizon

Corrosion Reduces Fatigue Life

Phase I Corrosion Failure Progression

- Corrosion was induced by incrementally adding water contamination to the oil
- The test rig was operated under accelerated loading conditions to produce initiation and some progression

Tooth Flank Corrosion

IMPACT

Corrosion life demonstrated was consistent with model predictions but accelerated testing extrapolation needs to be addressed

Seeded Corrosion Fault

A more severe level of damage was created by subjecting gear teeth on a separate gearbox to FeCl₃ acid

> Corroded Tooth

Damage clearly detectable with vibration and verified with visible determination

© 2007 Impact Technologies, LLC. All Rights Reserved.

IMPACT

Corrosion Effort Summary

- Identified gearbox contamination sources, root causes of critical corrosion failure modes, and prognostics framework
- Demonstrated SOS ability to detect water in Aeroshell gearbox oil
- Implemented vibro-acoustic algorithms for gearbox failure testing
- Evaluate and selected corrosion model for Phase I feasibility demonstration
- Implemented PHM addresses on-demand prognostics for gearbox mechanical components

IMPACT

Gear Prognostics Module Example

Solid Model Development **FEA and Fracture Mechanics** Correlation IMPACT

Avinash Sarlashkar, Joel Berg, Eric Schenk - Impact

Adaptation Iteratively Improves Prognosis

Test 1 & 2 - Failure Progression Results

Clack Initiation and and Propagation to 0.15 mills								
Test #	Torque	Predicted Initiation Time (hrs)	Standard Deviation	Predicted Initiation Time (Cycles)	Estimated Time to Initiation (hrs)	Estimated Time to Initiation (Cycles)	Difference (# Stdevs)	Percentile
1	2000	11.09	1.64	2738786.40	15.00	3704400	2.38	98.00
2	2340	2.38	0.36	587764.80	2.50	617400	0.33	63.00
Crack pro	pagation t	o Critical Crack Le	ngth (0.825" o	r approx. 2 cm)				
		Predicted		Predicted				
		Propagation	Standard	Initiation Time	Observed Time to	Observed Time to	Difference	
Test #	Torque	Time (hrs)	Deviation	(Cycles)	Failure (hrs)	Failure (hrs)	(#Stdevs)	Percentile
1	2340	4.85	1.13	1197190.00	6.00	1481760	1.02	82.00
2	2340	4.85	1.13	1197190.00	3.00	740880	-1.64	4.20

Benefits of Predictive Model Updating

DARPA Structural Prognosis Approach

Characterize component material
 microstructure, residual stresses, manufacturing defects, etc.

Use physics of failure models with anticipated usage to predict component damage and damage accumulation

Employ state awareness tools (system operating sensors, specialized, and virtual sensors) in real or near real time to monitor operating environment and detect extent of damage

□ temperature, stress, vibratory modes, etc.

Integrate model predictions and sensor data through reasoners to make a <u>probabilistic assessment of future capability</u> given intended mission Parameters

David Muench, Liang Tang, Brian Walsh, Avinash Sarlashkar, Joel Berg, Mike Koelemay, Greg Kacprzynski - Impact Technologies
Steve Engel, et al. – Northrop Grumman

Імраст

Applied to Aircraft Panel

Summary

- Impact is involved in a range of PHM and SHM programs dealing with understanding of failure modes, symptom/effects, sensing capability, failure physics modeling, and predictive tools
- PHM/SHM needs span across services and DARPA has recognized need for structural prognosis capability
- Good collaborative interests with Penn State Center
 - Projects and Research Faculty
 - □ Engineering Co-op and Graduate Students

➤ Thank you!

