OSA-CBM: An Open System Architecture for Machinery Monitoring

Contact at ARL
Mitchell Lebold
814.865.8958 (voice)
814.863.0673 (Fax)
Lebold@psu.edu
http://www.arl.psu.edu

Structural Health Monitoring COE Inaugural Meeting
– April 13th 2007 –
• Condition Based Maintenance (CBM) Systems
• OSA-CBM Development Team
• OSA-CBM Architecture
 – Data and Control
 – Data Models
 • UML
 • AIDL
 – Middleware Technologies
 • CORBA
 • COM/DCOM
 • XML over HTTP
 – Design Flexibility and Examples
• OSA-CBM Website
Typical Condition Based Maintenance System Design
Typical CBM System Design:

- **Data Acquisition**
 - Passive/Smart Sensor
 - S1
 - S2
 - ...
 - SN

- **Data Manipulation**
 - Pre-processing
 - Feature Extraction
 - Signal Characterization

- **Condition Monitor**
 - Thresholds
 - Fuzzy Logic

- **Health Assessment**
 - Component Specific Feature Extraction
 - Anomaly & Diagnostic Reasoners

- **Prognostics**
 - Feature-Based Prognostics
 - Model-Based Prognostics

- **Automatic Decision Reasoning**
 - Data Fusion
 - Classifier
 - Response Generator

- **Physical Models**

- **Human - Computer Interface**

- **Mission Plans**
CBM Systems

General Concerns:
- Complex design
- Propriety algorithms
- Large amounts of data
- Inflexible designs
Resulting in “Black Box” and “Stove Pipe” Solutions:

- **Data Acquisition**
 - Passive/Smart Sensor
 - S1
 - S2
 - ...
 - SN

- **Data Manipulation**
 - Pre-processing
 - Feature Extraction
 - Signal Characterization

- **Prognostics**
 - Feature-Based Prognostics
 - Model-Based Prognostics

- **Automatic Decision Reasoning**
 - Data Fusion
 - Classifier
 - Response Generator

- **Physical Models**

- **Human - Computer Interface**

- **Mission Plans**
OSA-CBM Development Team
2001 - 2 year DUST program sponsored by ONR and PEO Carriers:
- The Office of Naval Research under research grant number: N00014-00-1-0155 OSA-CBM Boeing DUST

Numerous team members and contributors:
Boeing, Caterpillar, Rockwell Automation, Penn State/ARL, Newport News, Oceana Sensor Technologies, Rockwell Scientific, MIMOSA, RLW, ...
Open System Architecture for Condition Based Maintenance

• Goals of the OSA-CBM program:
 – Define and Development open standards for distributed Condition Based Maintenance
 – Define an open architecture not exclusive to any specific hardware implementations, operating systems, or software technology

• Software Architecture Description
 – Define classical CBM functions and behavior
 – Define module interfaces
 – Developed multiple middleware implementations
Why OSA-CBM?

System

Developer/Engineer:
- Only one non-priority interface to learn
- Standardized information exchange methods

Project Manager:
- Reduce integration issues
- Increased security
- Remote module instantiation
- Broad choose of technologies

OEM / Company:
- Reduce time-to-market
- Increase profit margins

Customer:
- Scalability, upgradability, and interchangeability
- Broader supplier community
- Increased market competition resulting in decreased prices
OSA-CBM Architecture
Open System Architecture for Condition Based Maintenance

- Standardized architecture for health and condition monitoring systems
- Breaks monitoring system into functional layers
- OSA-CBM standard defines I/O for each processing layer
- Promotes scalability and upgradability
- Modules not confined to one locale
- Middleware technology independent

www.osacbm.org
Components of the OSA-CBM Framework

Existing or Emerging Standards
- AI-ESTATE
- MIMOSA CRIS
- IEEE 1451.2

Abstract IDL Interface Specification

OSA-CBM Data Model

Common Data Flow Policies

Functional Description of OSA-CBM
- Presentation
- Decision Support
- Prognostics
- Health Assessment
- Condition Monitor
- Data Manipulation
- Data Acquisition

Implementation Standards
- Data Type Mapping
- Technology Specific Interface Descriptions
- Implementation Specific Data Flow Policies
OSA-CBM Software Components

... implement the functionality of individual layers of the architecture

... communicate in a client/server relationship

... have EntryPoints that serve the information needs of specific clients

... provide access to synchronized data channel sets and to background information through their interfaces
Interface Descriptions

Request Data: prompts a measurement or calculation update

Get Data: returns dynamic measurement data or a calculated result to the client

Get Explanation: returns a data structure which describes the input data and data transformation processes used in the calculation of the associated output data set

Get Config.: returns static information about the monitoring system and the monitored system configuration
OSA-CBM Implementation

OSA-CBM data model supports:
Synchronous, Asynchronous, Service, and Subscription transfers
OSA-CBM Models
OSA-CBM UML Models

Top Level UML Model

Organized in general, utility, and layer packages

- **RED** - Associated classes are exposed by the data interface
- **GREEN** - Associated classes are exposed by the explanation interface
- **BLUE** - Associated classes are exposed by the configuration interface
- **BLACK** - Associations which are utilized by all interfaces (common concepts)
- **VIOLET** - Represents a relationship between data elements which is not represented by the OSACBM interfaces.
OSA-CBM UML Models

UML Modules

- **top** – Top Module, Common Classes
- **da** – Data Acquisition Module
- **dm** – Data Manipulation Module
- **sd** – State Detection Module
- **ha** – Health Assessment Module
- **pa** – Prognostics Assessment Module
- **ag** – Advisory Generation Module
- **measEv** – Measurement Event Module
- **propEv** – Proposed Event Module
- **data** – Data Module
- **util** – Utility Module
Abstract Interface Document Language

Tags:
- Interface
 - [data][config]
 - [expl][org]
- Class Type
 - [abstract]
- Multiplicity
 - [sequence]
 - [optional]

<table>
<thead>
<tr>
<th>UML syntax</th>
<th>AIDL Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no optional tag, no sequence</td>
</tr>
<tr>
<td>0..1</td>
<td>optional tag, no sequence</td>
</tr>
<tr>
<td>1..*</td>
<td>no optional tag, sequence</td>
</tr>
<tr>
<td>0..*</td>
<td>optional tag, sequence</td>
</tr>
</tbody>
</table>
AIDL provides the mechanism for porting to any Middleware Technologies

COM/DCOM

CORBA

Web Services

UML

AIDL

```java
enum EntryPointType {
  da, dm, cm, ha, pa, ds, other
};

/* Entry point. */
interface EntryPoint {
  /* Identification of OSA/CBM layer. */
  EntryPointType entryPtType;
  /* The set of ports served by this entry point. */
  [data] [config] [expl] [async]
  OutPortSet outPortSet;
  /* Explanation of what sources were used by this module for its output. */
  [expl]
  [optional] Explanation expl;
};
```
Middleware Technologies
Middleware Technology

Applications
- Data Acquisition
- Data Manipulation
- Condition Monitor
- Health Assessment
- Prognostic Assessment

Middleware
- Domain-Specific Services
- Common Services
- Distribution Middleware
- Infrastructure Middleware

Operating System

Endsystem

Wired/Wireless Networks

Benefits
- Hide underlying complexity,
- Share common services,
- Synchronize program execution,
- Balance system load,
- Real-time solutions,
- Cross-language, and
- Cross-platform support

COM/DCOM, CORBA, SOAP, JAVA-RMI,…

Distributed Computing ‘Glue’
Software layer between application and communication networking layer
CORBA

- Common Object Request Broker Architecture (CORBA) is the Object Management Group's answer to the need for interoperability among the rapidly proliferating number of hardware and software products available today.
- Introduced CORBA 1.1 in 1991
- The OMG's CORBA is a specification, not a software implementation of a middleware.
- Real-time version available
COM/DCOM

– Component Object Model (COM)/ Distributed Component Object Model (DCOM) is a Microsoft Technology to replace Object Linking and Embedding (OLE) and Dynamic Data Exchange (DDE).

– DCOM emerged to address COM's shortcomings in supporting remote components. DCOM is an extension to COM that allows networked interaction between two programs even if they are written in different programming languages.
Benefits of COM/DCOM
- Increased Security
- Remote Module Instantiation
- Standardized Information Exchange
- Client Control (lifetime, termination, Reference,...)
- Internal Pinging Mechanism

COM/DCOM Interfaces:
- requestOutPortSet(id, sink)
- notifyOutPortSet(id, data)
- getTaskStatus(Seconds)
- getExpl(expl)

Use of ID’s:
- Allow flexible/tailored design
- Control how data is updated
- Control how data is processed

Sink and Data Pointers:
- Allows asynchronous communication between modules
- Contains relevant information about the data: Time, Eng. Units, Confid., asset and organizational info…
COM/DCOM

Modules Developed:

- DA
- DM
- CM
- PA
- HA
- PL

Gearbox Prognostic Application
XML over HTTP

- XML (eXtensible Markup Language) is not a middleware technology, it is simply a user-definable data format
- However, XML may be used with any networking technology for data transfer.
- Tag structure format similar to HTML
- XML started in 1996 and has been a World Wide Web Consortium (W3C) recommendation since February 1998
- Use SOAP or Web Services to transfer data
XML over SOAP

SOAP Interfaces:
- requestData(request)
- forceNewData(request)
- getAvailableData(request)

Benefits of using SOAP
- Platform Independence
- Language Independence
- Reduced Network Restrictions (uses port 80)
- Standardized Information Exchange
OSA-CBM Design Flexibility
OSA-CBM Design Examples

Local MIB Architecture for LCAC

Overall Craft Platform

Advisory Generation

Prognostics Assessment

Health Assessment

Craft Sub-Systems

Prognostics Assessment

Health Assessment

State Detection

Data Manipulation

Data Acquisition

Sensors and Sensor Data

Gearbox

Craft Prognostics Module

Off Platform Interface for Remote Monitoring

Gearbox Diagnostics Module

Engine Diagnostics Module

Engine Prognostics Module

Engine Limit Trips

General Gearbox Feature Processing Algorithms

General Processing Algorithms

Gearbox Data

Gas Turbine Data

Gearbox Vibration Data

Gas Turbine FADEC MSGs and Sensors

Gearbox

Main Turbine
Maintenance Information Backbone (MIB) Example

MIB Demonstration System

Engine Monitoring Hardware
OSA-CBM Design Examples

Local MIB Architecture for LCAC

Advisory Generation

Prognostics Assessment

Health Assessment

State Detection

Data Manipulation

Data Acquisition

Sensor Data

Gearbox Vibration Data

Gas Turbine Data

Battery Data
MIMOSA (OSA-CBM) Website
OSA-CBM Website

- Documents and Presentations
- OSA-CBM Models
 - UML
 - AIDL
 - COM/DCOM IDL
 - CORBA IDL
 - XML Schema
- Training Material
- Developer’s Tools and Example Code
- Real-time Demo
- Glossary
- Useful References
Acknowledgements

• This work was supported by:
 - The Office of Naval Research under research grant number: N00014-00-1-0155 OSA-CBM Boeing DUST

• OSA/CBM team members and contributors include: Boeing, Caterpillar, Rockwell Automation, Penn State, Newport News, Oceana Sensor Technologies, Rockwell Scientific, MIMOSA…
OSA-CBM: An Open System Architecture for Machinery Monitoring

Contact at ARL
Mitchell Lebold
814.865.8958 (voice)
814.863.0673 (Fax)
Lebold@psu.edu
http://www.arl.psu.edu
Backup Slides
MIMOSA is a standard for data exchange between Asset Management systems.

OSA-CBM is a specification for transactions between components within a Condition-Based Maintenance system.

- The core of the OSA-CBM standard is the Object Oriented data model, defined using UML (Unified Modeling Language) syntax.
- The OSA-CBM UML data model is a mapping of key concepts from the MIMOSA CRIS with extensions for diagnostics, prognostics and data transactions.