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¢ ARL

Overview

* Introduction to ARL

» System Engineering and Architectures
* Diagnostic and Prognostic Processing
 Structural Monitoring Examples

» Closing Thoughts



AR ARL - University Affiliated

Research Center

« Chartered by the US Navy to serve as a trusted
agent of the government and to provide a
laboratory base for science and technology

* 1000+ PSU faculty and Staff

* Partner with Government, Universities and
Industry

« Work from TRL 1 to TRL8-9

» Core competencies:

Acoustics

Guidance and control

Thermal energy systems
Hydrodynamics, hydroacoustics, and
propulsor design

Materials and manufacturing
Navigation and GPS
Communications and information
Graduate education
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@ ARL Integrated Systems Health
Management Engineering

Systems Engineering
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% ARL System Architectures for
Information Management
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¢ ARL
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Knowing the gearbox
configuration, we
monitor vibration and
apply techniques to
detect, isolate, and
track fault
progression.
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$ARL Pphysics-based Processing

Frequency-Band Enveloping — used in bearing fault detection
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% ARL Wavelet-Based Residual
Signal Analysis

Residual Error Signal Kurtosis
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% ARL Dynamic Prognostic Models
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« Data-driven prognostic techniques depend on the dynamic characteristics of
the fault propagation process

* Prediction accuracy depends on prediction horizon and statistical
characteristics of uncertainty in calculated feature
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¢ ARL
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remaining cycles

% ARL ~ Keyto Prognostics:
Failure Mode Identification
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Bottom Line: Sometimes it's not enough just to say system is starting
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$ARLSqrctural Intensity Based SHM

« Build on experimental & modeling experience
— Vibration control / Structural Intensity FE applications

— Machinery CBM Surface Structural Intensity (SSI)
experimental applications

— Traditional vibration based SHM methods

Computational (FEM) Measurement of (Power) Measurement of Structural
Prediction of Energy Flow in Energy Flow of Beam Surface Intensity on Machinery
Complex Structures for Structures for Damage Gear Box for Detecting
Vibration Control Detection Internal Damage
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$ARLSqrctural Intensity Based SHM

« Simulation using FE based model

/

Net energy
flow

Support /
energy v
sink /
Damage / Drive / SI Small Notch
notch power

input

Structural Intensity Plots of Damaged Beam Section

* Unit vectors indicating intensity direction
» Color bar indicating intensity magnitude
* Note: Scales not the same on two plots

* Net energy flow right to left

* Pure Bending vibration for these two cases Sl Large Notch
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$ARLSqrctural Intensity Based SHM

Simplified Structure Experiments: Signal Processing Techniques
Percentage Change in Farfield Power RatiDﬂé&th:p-im&i&Ih, L = 1500 mm, Damage 264 mm from Clamp
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« Each band type reflects significant power flow changes

« Semi-Narrow, 1/3 Oct, and Peak Tracking band trends typically develop at lower severities than
Broadband trends

« Broadband results dominated by high powers at low frequencies — masking of high frequency, low
power effects

« Typical healthy to fully damaged power ratio changes ~ 20 — 70%
Typical healthy to fully damaged resenarice frequeney 'shiftceelencz %




PENNSTATE

¢ ARL Shaft Crack Monitoring

» Unable to detect the low amplitude shaft modes which exhibit the
highest crack sensitivity as seen by Finite Element Modeling. -
(Example: Mode 4)

 May be located in the noise floor content.
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“ARL General Approach

= TVA Installation Specifics
Monarch Instrument

MT-190W Magnetic Sensor Detects signal zero crossings for analog square wave (TTL 0-5 VDC)
conversion of sensor waveform for use in timer board. Also aline driver
-ﬁ-oy \ ensures signal travels required distance to sensing computer (~1000 ft).

/

Transducer

Solid Shaft
10% Fatigue Crack
20% Fatigue Crack

fii:] 40% Fatigue Crack ‘ '

: \ /
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Rostitlrfltg » Board » R \ v,
a
< Signal Conditioner Signal Digitizer Signal Processing Shaft Natural Frequency Shaft Health
Algorithms Determination Prognosis

\Encoder Gear or

Striped Tape

\

/ NI PCI-6602 Timer Board

(80 MHz clock rate)

-
Records the number of timer board cycles between
each zero crossing. This data can be transformed
into each individual tooth/gap crossing time.

200 toothed encoder
gear, evenly spaced
teeth, 13/64” tooth/gap
width, %" depth
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@ ARL Drivers for System

Health Management
« Safety — early work in helicopter HUMS

 Maintenance — use HUMS to enable condition based
maintenance (CBM)

* Manning — reduce manning through CBM and PHM

« Life Cycle Cost — reduce total life cycle cost through
savings in maintenance, manning, and sustainment

» Logistics — extend savings through the enterprise by
leveraging CBM and PHM across fleets of assets

* Asset Capability Management — manage asset health
by matching mission requirements to capability

* Intelligent Systems — enable autonomous and
automated response to changing external and internal
operating conditions
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