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Overview

•
 

Introduction to ARL
•

 
System Engineering and Architectures

•
 

Diagnostic and Prognostic Processing
•

 
Structural Monitoring Examples

•
 

Closing Thoughts
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ARL - University Affiliated 
Research Center
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•

 

Chartered by the US Navy to serve as a trusted 
agent of the government and to provide a 
laboratory base for science and technology

•

 

1000+ PSU faculty and Staff
•

 

Partner with Government, Universities and 
Industry

•

 

Work from TRL 1 to TRL8-9
•

 

Core competencies:
Acoustics
Guidance and control
Thermal energy systems
Hydrodynamics, hydroacoustics, and 
propulsor design 
Materials and manufacturing
Navigation and GPS
Communications and information
Graduate education

GARFIELD THOMAS WATER TUNNEL

SSGN LAUNCH OF SEAHORSE

VEHICLE FIELD EXERCISE



Integrated Systems Health 
Management Engineering
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System Architectures for 
Information Management
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Diagnostic and Prognostic 
System Development
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Knowing the gearbox 
configuration, we 
monitor vibration and 
apply techniques to  
detect, isolate, and 
track fault 
progression.
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Physics-based Processing

0 0.01 0.02 0.03 0.04 0.05

Time Record of Band-passed Signal

Time

0 0.01 0.02 0.03 0.04 0.05

Amplitude Envelope of Band-passed Signal

Time

-20

0

20

40

0 10k 20k 30k 40k 50k
frequency

Power Spectrum of Helicopter Transmission Vibration

Band-pass filter

0 250 500 750 1000

Spectrum of Envelope

frequency

260 Hz 2x
3x

4x
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Wavelet-Based Residual 
Signal Analysis
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associated with structural defect in 
gear tooth
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signal indicates onset of 
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Dynamic Prognostic Models
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•

 

Data-driven prognostic techniques depend on the dynamic characteristics of 
the fault propagation process

•

 

Prediction accuracy depends on prediction horizon and statistical 
characteristics of uncertainty in calculated feature



Neural Network
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Key to Prognostics: 
Failure Mode Identification
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Same type of battery
Same operating conditions
Different failure modes
Different end-of-life points

More than double the cycles!

Bottom Line: Sometimes it’s not enough just to say system is starting 
to fail (“Does that mean you have 80 cycles or 170 cycles 
remaining?”)

Other scenario: 
Same type of battery
Same failure mode
Different operating conditions
Different end-of-life points
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Structural Intensity Based SHM

•

 

Build on experimental & modeling experience
–

 

Vibration control / Structural Intensity FE applications
–

 

Machinery CBM Surface Structural Intensity (SSI) 
experimental applications

–

 

Traditional vibration based SHM methods

Computational (FEM) 
Prediction of Energy Flow in 
Complex Structures for 
Vibration Control

Measurement of (Power) 
Energy Flow of Beam 
Structures for Damage 
Detection

Measurement of Structural 
Surface Intensity on Machinery 
Gear Box  for Detecting 
Internal Damage
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Structural Intensity Based SHM
•

 
Simulation using FE based models

Support / 
energy 
sink

Damage / 
notch

Drive / 
power 
input

Net energy 
flow

SI Small Notch

SI Large Notch

Structural Intensity Plots of Damaged Beam Section

• Unit vectors indicating intensity direction

• Color bar indicating intensity magnitude

• Note: Scales not the same on two plots

• Net energy flow right to left

• Pure Bending vibration for these two cases
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Structural Intensity Based SHM

Simplified Structure Experiments: Signal Processing Techniques 
Development

•

 

Each band type reflects significant power flow changes
•

 

Semi-Narrow, 1/3 Oct, and Peak Tracking band trends typically develop

 

at lower severities than 
Broadband trends

•

 

Broadband results dominated by high powers at low frequencies → masking of high frequency, low 
power effects

•

 

Typical healthy to fully damaged power ratio changes ~ 20 –

 

70%
Typical healthy to fully damaged resonance frequency shift ~ 1 –

 

7%Karl M. Reichard -

 

PSU Center for Excellence in SHM 14



Shaft Crack Monitoring

Crack 
Location

•

 

Unable to detect the low amplitude shaft modes which exhibit the

 
highest crack sensitivity as seen by Finite Element Modeling. -

 
(Example: Mode 4) 

•

 

May be located in the noise floor content.
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General Approach

Transducer

Encoder Gear or
Striped Tape

Signal Processing Signal Processing 
AlgorithmsAlgorithms

Solid Shaft
10% Fatigue Crack
20% Fatigue Crack
40% Fatigue Crack

Shaft Natural Frequency Shaft Natural Frequency 
DeterminationDetermination

Timer Timer 
BoardBoard

Signal DigitizerSignal DigitizerSignal ConditionerSignal Conditioner Shaft HealthShaft Health
PrognosisPrognosis

Rotating     Rotating     
ShaftShaft

200 toothed encoder 
gear, evenly spaced 
teeth, 13/64” tooth/gap 
width, ¼” depth

TVA Installation Specifics

Detects signal zero crossings for analog square wave (TTL 0-5 VDC) 
conversion of sensor waveform for use in timer board.  Also a line driver 
ensures signal travels required distance to sensing computer (~1000 ft).

Monarch Instrument      
MT-190W Magnetic Sensor

NI PCI-6602 Timer Board 
(80 MHz clock rate)

Records the number of timer board cycles between 
each zero crossing.  This data can be transformed 
into each individual tooth/gap crossing time.

Karl M. Reichard

 

-

 

PSU Center for Excellence in SHM 16



Drivers for System 
Health Management

Karl M. Reichard

 

-

 

PSU Center for Excellence in SHM 17

•
 

Safety –
 

early work in helicopter HUMS
•

 
Maintenance –

 
use HUMS to enable condition based 

maintenance (CBM)
•

 
Manning –

 
reduce manning through CBM and PHM

•
 

Life Cycle Cost –
 

reduce total life cycle cost through 
savings in maintenance, manning, and sustainment

•
 

Logistics –
 

extend savings through the enterprise by 
leveraging CBM and PHM across fleets of assets

•
 

Asset Capability Management –
 

manage asset health 
by matching mission requirements to capability

•
 

Intelligent Systems –
 

enable autonomous and 
automated response to changing external and internal 
operating conditions
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