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Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus, typically with periodic, high fre-

quency pulse trains, has proven to be an effective treatment for the motor symptoms of Parkin-

son’s disease. Here, we use a biophysically-based model of spiking cells in the basal ganglia (Ter-

man et al., 2002) to provide computational evidence that alternative temporal patterns of DBS

inputs might be equally effective as the standard high-frequency waveforms, but require lower

amplitudes. Within this model, DBS performance is assessed in two ways. First, we determine

the extent to which DBS causes Gpi synaptic outputs, which are burstlike and synchronized

in the unstimulated Parkinsonian state, to cease their pathological modulation of simulated

thalamocortical cells. Second, we evaluate how DBS affects the GPi cells’ auto- and cross-

correlograms. In both cases, a nonlinear closed-loop learning algorithm identifies effective DBS

inputs that are optimized to have minimal strength. The network dynamics that result differ

from the regular, entrained firing which some previous studies have associated with conven-

tional high-frequency DBS. This type of optimized solution is also found with heterogeneity in

both the intrinsic network dynamics and the strength of DBS inputs received at various cells.

Such alternative DBS inputs could potentially be identified, guided by the model-free learning

algorithm, in experimental or eventual clinical settings.

Introduction

During high-frequency deep brain stimulation (DBS) therapy for Parkinson’s disease (PD),

rhythmic (> 100 Hz) pulsatile voltage transients are typically applied to the subthalamic

nucleus of the basal ganglia. The therapeutic effects are often dramatic, alleviating motor

symptoms and decreasing dependence on dopaminergic drugs (Krack et al., 2003; Kleiner-

Fisman et al., 2003; Rodriguez-Oroz et al., 2004; Rodriguez-Oroz et al., 2005; Deep Brain

Stimulation for Parkinson’s disease study group, 2001; Benabid, 2003), and the corresponding
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physiological effects are under intensive study – specifically, how DBS modulates activity in the

target areas.

One possible answer is suggested by the similar effects of GPi lesions and DBS of the STN:

that DBS suppresses firing (STN excites Gpi; see Fig. 1) (Benabid, 2003; Olanow, Brin, and

Obeso, 2000; Benabid et al., 2001; Benazzouz et al., 2000; Boraud et al., 1996; Beurrier et

al., 2001; Benabid, 2003). However, some experiments indicate that high-frequency DBS can

enhance output of the stimulated areas (Windels et al., 2000; Hashimoto et al., 2003; Maurice

et al., 2003). This discrepancy is addressed by the computational modeling of (McIntyre et

al., 2004), which indicates that DBS can suppress firing of cell bodies while exciting axons at

approximately the frequency of the DBS drive.

If high frequency DBS enhances synaptic output, its therapeutic effect cannot be due to its

mimicking a lesion. An alternative hypothesis, and that adopted here, is that DBS otherwise

modulates the activity of the BG network to “mask” the pathological firing patterns that

characterize the Parkinsonian state (Benabid, 2003; McIntyre et al., 2004; Hashimoto et al.,

2003; Montgomery and Baker, 2000; Rubin and Terman, 2004). Specifically, GPi neurons in the

Parkinsonian vs. normal state are more synchronized, rhythmic, and burstlike ((Terman et al.,

2002; Bergman et al., 1998; Magnin, Morel, and Jeanmonod, 2000; Nini et al., 1995)). Using

a conductance-based network model, (Rubin and Terman, 2004) demonstrate that periodic,

high-frequency DBS can elicit similarly periodic, high-frequency firing of STN and GPi cells,

thereby replacing Parkinsonian firing with a mask of tonic activity (cf. (Hahn et al., 2005)).

These authors show that this tonic Gpi activity restores the simulated function of downstream

(thalamocortical) cells.

Other computational studies (see the Discussion Section) seek DBS inputs that achieve

similar “masking” effects but have alternative temporal patterns, often requiring lower am-

plitudes than high-frequency DBS (Tass, 1999; Tass, 2001; Rosenblum and Pikovsky, 2004;

Popovych, Hauptmann, and Tass, 2005; Hauptmann, Popovych, and Tass, 2005). As these

authors emphasize, considering alternatives to high-frequency DBS is important for several

reasons. If clinically effective lower-amplitude DBS inputs were identified, their use would pre-
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serve stimulator batteries (which require surgical replacement), and might also lessen DBS side

effects. Additionally, an open question is whether alternative patterns would be effective in

patients who do not respond effectively to high-frequency DBS (Okun et al., 2005), or whose

symptoms nevertheless worsen over time (Krack et al., 2003).

We propose and computationally test a new approach to identifying such alternatives to

high-frequency DBS: using a nonlinear closed-loop learning algorithm to search for DBS inputs

that optimally alleviate Parkinsonian firing patterns with the minimal possible amplitudes. The

proposed algorithm conducts a global search to identify optimal DBS inputs drawn from any

user-specified class of possible waveforms, and hence has the capability to identify highly novel

solutions. We apply the algorithm to the computational subthalamopallidal model of (Terman

et al., 2002). Our goals are twofold: to determine whether alternative DBS patterns exist within

this model that have comparable or superior performance to high-frequency inputs, and whether

closed-loop learning algorithms can effectively search the space of possibilities to identify these

optimal DBS inputs. We find positive answers on both accounts.

The balance of the paper proceeds as follows. We first review the model of (Terman et al.,

2002), and then undertake a systematic study of the influence of standard DBS parameters (cf.

(Rubin and Terman, 2004; Rizzone et al., 2001)). Surprisingly, we find that certain DBS

currents with relatively low frequency and amplitude desynchronize GPi neurons, disrupting

rhythmic patterns characteristic of PD and restoring function in stimulated thalamocortical

cells. Subsequent closed-loop optimization identifies DBS currents which simultaneously achieve

this effect and minimize average levels of DBS currents. Next, to relax assumptions about

thalamocortical function, a general statistical measure of the GPi cells’ firing pattern is devised

as the criterion to distinguish normal and Parkinsonian states. This measure is then utilized in

the closed-loop learning algorithm to directly identify DBS currents that optimally transform

the synchronized, burstlike firing dynamics of the Parkinsonian cells into firing patterns whose

statistics match those of normal cells. In this process, we consider both standard periodic

DBS inputs and more general DBS currents whose pulse timings are defined by either an

optimally determined 12-parameter probability distribution function, or by a 16-parameter
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discrete, periodic (Haar) basis. The effectiveness of these latter types of DBS input is of interest,

because it suggests evaluating a greater variety of DBS patterns in experimental settings. We

also demonstrate that optimal solutions can be found in the presence of heterogeneity in both

the intrinsic network dynamics and the strength of DBS inputs received at various cells.

Model and Methods

The network model

The subthalamopallidal network model we use was developed and compared with experimental

firing patterns in (Terman et al., 2002) and applied to a study of high-frequency DBS in (Rubin

and Terman, 2004). It consists of model neurons belonging to three basal ganglia nuclei: the

STN, GPe (external segment of globus pallidus), and GPi, as well as thalamocortical relay (TC)

cells. We adopt the “sparsely connected, structured” architecture (Fig. 1) to reproduce both

tonic and bursting firing modes, as in (Terman et al., 2002). There are eight STN cells and

eight GPe cells: each STN cell receives inhibition from two GPe cells as well as the external

DBS current, and each GPe cell receives excitatory input from one STN, an input from the

(unmodelled) striatum, and inhibition from two adjacent GPe neurons. There are also eight

GPi neurons, each receiving inhibition from one GPe and excitatory input from one STN (Rubin

and Terman, 2004). Finally, two TC cells are included in the model, each receiving synaptic

inhibition from four GPi cells and an excitatory input representing sensorimotor signals (Rubin

and Terman, 2004).

The details of network connectivity are described in (Terman et al., 2002; Rubin and Terman,

2004) and Fig. 1. All of the network simulations presented here are run for 2500ms (to allow

the effects of transients and initial conditions to decay) before plots are produced (over the

following 800 ms) and statistics are computed over the following 6500 ms.
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Conductance-based neuron equations

As in (Terman et al., 2002; Rubin and Terman, 2004), all four cell types are described by single-

compartment conductance-based neuron models motivated by the underlying physiology. STN,

GPe, GPi, and TC are used as subscripts to denote variables and functions corresponding

to the various cell types. The synaptic current from cell type α to β is denoted as Iα→β.

The parameter settings, including initial conditions, are as described in (Terman et al., 2002;

Rubin and Terman, 2004).

The voltage of the STN neurons is modelled via

Cm
dvSTN

dt
= −IL − IK − INa − IT − ICa − IAHP − IGPe→STN + ISTN + IDBS, (1)

where IL is the leak current, IK is the potassium current, INa is the sodium current, IT is a

low-threshold T-type Ca2+ current, ICa is the high-threshold Ca2+ current, IAHP is a Ca2+-

activated, voltage-independent afterhyperpolarization K+ current, IGPe→STN is the synaptic

input from GPe to STN, ISTN is a constant depolarizing current, and IDBS is the DBS current

input. Most of these currents (and those below) are determined by the standard auxiliary

differential equations; see (Terman et al., 2002) for details.

The voltage of the GPe neurons follow

Cm
dvGPe

dt
= −IL − IK − INa − IT − ICa − IAHP − IGPe→GPe − ISTN→GPe + IGPe, (2)

where IGPe→GPe represents the interpallidal inhibition between GPe cells, ISTN→GPe is the

synaptic excitation from STN to GPe, and IGPe is a constant depolarizing current. The voltage

dynamics of the GPi cells is similar:

Cm
dvGPi

dt
= −IL − IK − INa − IT − ICa − IAHP − IGPe→GPi − ISTN→GPi + IGPi, (3)

where IGPe→GPi and ISTN→GPi denote the synaptic input from GPe and STN to GPi, respec-

tively, and IGPi is a constant depolarizing current. The TC cells are modelled via

Cm
dvTC

dt
= −IL − IK − INa − IT − IGPi→TC + ISM , (4)
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where IGPi→TC is the synaptic input from GPi cells to TC, and ISM represents the sensorimotor

input to the thalamus and is modeled as

ISM = iSMH(sin(2πt/ρSM))× [1−H(sin(2π(t + δSM)/ρSM))], (5)

where H is the Heaviside step function; that is, H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0 (Rubin

and Terman, 2004). Here, ρSM is the period of ISM and iSM is its amplitude. In the simulations,

the parameter values for ISM are iSM = 10.0pA/µm2, ρSM = 50.0ms and δSM = 5.0ms.

Although we use overlapping notation above, the membrane currents (e.g. IT ) differ as

appropriate for the distinct types of neurons. Their voltage and time dependence is as described

in (Terman et al., 2002; Rubin and Terman, 2004); the code used here, containing all parameter

settings and equations, is available upon request.

Parameterizing DBS waveforms

Standard DBS waveforms

The periodic DBS waveforms typically used in clinical settings are modeled, as in (Rubin and

Terman, 2004), by applying to STN cells a square-wave pulse train described by

IDBS = iDH(sin(2πt/ρD))× [1−H(sin(2π(t + σD)/ρD))] . (6)

Here there are three parameters: iD is the stimulation amplitude, ρD is the stimulation period,

and σD is the duration of each impulse.

Stochastic DBS waveforms

We also consider DBS waveforms consisting of pulse trains with random inter-pulse delays.

Specifically, we specify a probability density function (PDF) P (d) (satisfying
∫

P (d) dd = 1)

which defines the probability for two adjacent DBS pulses to be spaced by a time delay d.

A piecewise constant PDF P (i), i = 1, 2, . . . , I is used, where the i-th piece P (i) defines the

probability for two adjacent DBS pulses to be separated by a time in the range [(i − 1)∆, i∆]

(within which a time delay d is randomly selected), and
∑I

i=1 P (i) = 1. Here, P is defined
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by I = 10 constants, with ∆ = 5ms (so that the maximum pulse delay is 50ms). Such DBS

waveforms are described by 12 parameters: ten P (i) values, the pulse amplitude iD, and the

pulse width σD.

Nonpulsatile DBS waveforms

We also consider more general(periodic) DBS waveforms represented by a Haar basis. First,

a parameter τ is used to define the period of summed basis functions so that for iτ ≤ t <

(i + 1)τ ≤ T (i = 0, 1, . . .), x = (t− iτ)/τ . Within each period, the DBS current is

IDBS(x) =
P∑

j=0

2j−1∑

k=0

cjkψjk(x), (7)

where ψjk(x) ≡ ψ(2jx− k) and

ψ(x) =





1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

0 otherwise

To define the j − th order Haar basis, 2j parameters are needed. Haar bases up to the third

order (i.e., P = 3) are used in our simulations, thereby the total number of GA parameters is

1 + 2 + 4 + 8 + 1 = 16, where one parameter determines the period τ .

The closed-loop optimization algorithm

We use a Genetic Algorithm (GA) (Goldberg, 1989), a type of global optimization method, to

iteratively search for periodic or aperiodic DBS currents that alleviate the simulated Parkin-

sonian condition in the network model, where we consider different criteria that assess the

extent to which this objective has been achieved. In the first step of the GA, N different

trial DBS currents I i
DBS(t), i = 1, 2, . . . , N are applied to the STN cells, and a quantitative

measure xi ≥ 0 characterizing PD symptoms in response to each I i
DBS(t) is computed from

the simulated neural dynamics. Two different measures are used here. The first measure, Rel,

represents the reliability of TC cells in transmitting sensorimotor signals (as in (Rubin and

8



Terman, 2004)); the second measure, Cor, compares statistical properties of GPi cells in the

presence of DBS stimulation with those in the normal state. The details will be described in

the Results Section. The possible currents I i
DBS are usually described by vectors of parameters

ai, so that optimizing the criterion x over all possible DBS currents corresponds to optimizing

with respect to a.

The overall quality of each I i
DBS is determined by a cost function J i which guides the GA

optimization. In the simplest case, J i = xi. In real applications, the algorithm also needs to

take into account the practical constraints and requirements, such as the desirable property

of minimizing the average and/or peak magnitude of DBS current to alleviate side effects and

reduce battery usage. An extra term R ≥ 0 representing such factors to be minimized can be

added to the cost function, so that J i = xi + wR, where w ≥ 0 is a weight parameter. The GA

then compares J i for all trial DBS currents and selects a certain percentage with the best effects

(i.e., the minimal J i values) to generate the next set of N trial DBS currents by “crossover”

and “mutation” operations (Goldberg, 1989). This iterative optimization process continues

until one or a few DBS currents are found that achieve satisfactory outcomes. Because of the

computational demands of numerically solving the differential equations introduced above, the

GA is implemented on a parallel computer cluster with 26 nodes. The GA used here has a

population size (N) of 25, replacement rate of 40%, crossover rate of 70%, and mutation rate

of 30%. The advantages of the GA relative to grid-sampling or local search algorithms will be

discussed in the Results Section.

Results

Normal and Parkinsonian states, and the effect of high-frequency
DBS

It was demonstrated in (Terman et al., 2002; Rubin and Terman, 2004) that the model de-

scribed above can produce several different firing patterns, depending on parameter settings

representing normal vs. Parkinsonian states (see below). Fig. 2 and Fig. 3 (a) and (b) illustrate
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the behavior of the full network in the normal state. The voltage traces of the first and second

(according to the indexing in Fig. 1) neuron of each cell type are plotted. STN, GPe, and GPi

cells all display irregular firing times that are only weakly correlated (Fig. 2), and TC cells

respond faithfully to the excitatory sensorimotor input (Fig. 3 (b)), meaning, as in (Rubin and

Terman, 2004), that only one TC voltage spike appears “immediately” after each ISM impulse,

and that there are no extraneous TC voltage spikes (i.e., those not triggered by an ISM im-

pulse). As in (Rubin and Terman, 2004), this reliability is quantified by Rel, the ratio of ISM

pulses that lead to one spike in a TC cell only within 0.25ms after the end of the pulse; for the

normal state, Rel = 0.99. This desynchronized and irregular normal state is also illustrated by

the spike time raster plot of all eight GPi cells in Fig. 3(a). Similar plots will be used below to

represent and distinguish different states of the network’s dynamics.

As in (Rubin and Terman, 2004), a physiologically motivated increase in the constant bias

current IGPe and a decrease in lateral synaptic strengths IGPe→GPe switches the network from

the normal to the Parkinsonian state. Fig. 3(c) shows that GPi cells demonstrate bursting spike

patterns with a characteristic clustering (see (Terman et al., 2002) and references therein); STN

and GPe cells display similar clustering and bursting. These groups are organized as follows

(see Fig. 1): cells {1, 5}, {2, 6}, {3, 7}, {4, 8} are almost exactly synchronized, and the first and

second (and third and fourth) of these pairs themselves fire periodically with only a small phase

lag. This pairing may be understood directly from the network architecture: each cell within a

pair of STN cells (STN cells {1, 5}, etc.) receives the same input from other cells in the network,

no matter how desynchronized these other cells might be (although the grouping is preserved

upon introducing mild network heterogeneity, a case we also consider below). Therefore, if

the pair of STN cells tends to entrain to this input, the pair will become synchronized; the

simulations show that this is what occurs in the simulated Parkinsonian state (while entrainment

does not occur in the normal condition). The resulting partially synchronized, burstlike output

of GPi cells compromises the faithful relay of the sensorimotor input by model TC neurons, as

bursts of incoming inhibition suppress TC cells’ membrane voltage, leading (via thalamic IT

currents) to rebound bursts of TC spikes which follow offset of this inhibition but which are
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not related to the ISM signal (see (Rubin and Terman, 2004), and the present Fig. 3(d)). The

resulting reduced reliability of TC cell firing is Rel = 0.43.

High-frequency DBS of the STN cells, as is typically clinically, is modeled via Eqn. (6).

Three parameters characterize such square-wave, periodic wavefroms: the amplitude iD, period

ρD, and impulse duration σD. Fig. 3(e) shows the dynamics of the GPi neurons during high-

frequency DBS. Despite the high frequency inhibition from the GPi, the TC cells completely

recover the ability to reliably transmit sensorimotor signals (Fig. 3(f)): the corresponding Rel

value is ∼ 1.0. As explained in (Rubin and Terman, 2004), this reliable transmission is restored

because the intrinsic dynamics of the model network is essentially entrained by the strong, high

frequency DBS input, which elicits regular, high-frequency firing in STN and hence in Gpe and

Gpi cells. We note that DBS induces similar neural dynamics in the network model of (Hahn

et al., 2005). This entrainment eliminates (or, in the words of (McIntyre et al., 2004), “masks”)

the Parkinsonian bursts of inhibition to TC cells that, as explained above, compromise their

transmission of model sensorimotor inputs.

Influence of standard DBS parameters: from entrained to desynchro-
nized network dynamics

Rubin et al. (Rubin and Terman, 2004) studied how the transmission of sensorimotor signals

ISM in their model depends on the parameters of simulated DBS currents. We start with

a similar analysis, but over increased dynamic ranges for the standard DBS parameters and

while covarying the stimulation period ρD and amplitude iD (while pulse duration σD remains

fixed). Fig. 4 illustrates the dependence of TC cell transmission reliability on the DBS pulse

period ρD and amplitude iD, via the measure Rel described above. It can be seen that reliable

signal transmission of the TC cells mostly occurs in the high frequency (low period), high

amplitude region of the parameter space, which is consistent with the results in (Rubin and

Terman, 2004). However, high reliability values are also found in a small region corresponding

to low impulse frequencies and moderate amplitudes: this is the “peak” around ρD ≈ 80 ms,

iD ≈ 80 pA/µm2 in Fig. 4. The network dynamics in response to DBS with these parameters is
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shown in Figs. 5 (a) to (c). Note that, unlike the high-frequency DBS of Fig. 3(e-f), Gpi spike

times are not entrained to the DBS inputs. Rather, the lower-frequency DBS input results in a

more subtle declustering of the GPi cells, relative to the unstimulated Parkinsonian state. Note

that the cell pairs synchronized in the Parkinsonian condition (cells {1, 5}, {2, 6}, {3, 7}, {4, 8})
remain essentially synchronized following the application of the DBS current, but these pairs

become largely desynchronized relative to one another. This restores the transmission reliability

Rel to a value of 0.95, as the summed inputs to the TC cells are more smoothly distributed

over time. Furthermore, the average DBS current 〈IDBS〉 (i.e., the time average of the IDBS

shown in Fig. 5(a)) that achieves this desynchronization and attendant reliability is 〈IDBS〉 =

0.6pA/(µm2ms), substantially lower than the value 〈IDBS〉 = 20pA/(µm2ms) of the high-

frequency current in Fig. 3 (e-f).

The mechanism for this network desynchronization is not immediately evident. However,

an expansion (Fig. 6 (a)) of the temporal scale of the voltage profiles for two STN cells in

the Parkinsonian state indicates that, although the two cells demonstrate very similar bursting

patterns, there is still a small time lag (phase shift) between their spikes. The standard high-

frequency DBS technique employs strong, high frequency current inputs, which force the STN

neurons to be phase-locked with the high-frequency DBS current (Fig. 6 (b) and (c)). In

contrast, the low frequency DBS impulses in Fig. 5 (a) do not always trigger voltage spikes at

their onset. Instead, such DBS input regulates the subthreshold dynamics of distinct neurons in

a slightly different way due to the time lag, and this difference propagates over time in a complex,

nonlinear fashion, resulting in the desynchrony among cell pairs seen in (Fig. 6 (d) and (e)).

Again, we note that the cells within a given pair (the pairs being {1, 5}, {2, 6}, {3, 7}, {4, 8},
as above) remain synchronized, as the STN cells within each pair are entrained to identical

synaptic inputs (being connected to the same other cells in the network) and identical IDBS

currents. Overall, we emphasize that the present modelling result should not be interpreted as a

suggestion that these same low-frequency DBS currents will be effective in clinical applications,

but as illustrating the general possibility of DBS inputs that produce desynchronized dynamics

differing substantially from entrained network responses to high-frequency DBS.
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In the laboratory setting, the currents induced in different neurons by DBS depend not just

on stimulator parameters but also on factors including properties of the extracellular medium

and the orientation of target cells (e.g. (McIntyre and Grill, 2002; McIntyre et al., 2004)). To

test the robustness of DBS effects against such factors, we first smooth the DBS pulse train by

applying a Gaussian filter with standard deviation of 2ms to the square waveform considered

above. We then include heterogeneity in the DBS input by differentially and randomly scaling

the current impulse iD received by each STN neuron. Fig. 7 (a) to (c) shows that these factors do

not alter the entraining effect of high-frequency DBS currents. Similarly, the network’s response

to the low-frequency DBS input of Fig. 5 (a) is robust to the smoothing and heterogeneity: the

input disrupts the regular alternating, clustered Gpi firing patterns of the DBS state (Fig. 7 (d)

to (f)), yielding Rel = 0.94, although cells do drift in and out of different types of overlapping-in-

time clusters on longer timescales. Note that this heterogeneity is insufficient to substantially

desynchronize neurons within cell pairs (i.e. cells {1, 5}, etc. are still synchronized, due to

common synaptic inputs); further simulations (not shown) with additional heterogeneity at a

level of 50 − 80 percent do begin to desynchronize the cells within these pairs, a result that

may be roughly explained by considering the relative orders of magnitude of DBS and synaptic

currents.

Optimization of periodic DBS currents

The observation that DBS inputs can interact with intrinsic network dynamics to desynchronize

and make more irregular firing in the simulated Parkinsonian state suggests that PD symptoms

might be treated by introducing carefully tuned DBS currents that evoke firing patterns re-

sembling the normal state (hence restoring, for example, normal functioning of thalamocortical

relay cells). This is in contrast to the present model of the standard high-frequency DBS pro-

cedure, which also restores normal functioning of thalamocortical relay cells, but via entraining

the subthalamopallidal network to rapid and regular firing that differs substantially from its

normal-state activity.

Despite the fact that a fairly coarse grid sampling of DBS frequency and amplitude identified
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novel, lower-frequency parameter settings that give satisfactory TC cell transmission reliability

Rel for the computational model of Terman et al. used here, it is not known whether such a

sampling strategy, or even a local optimization algorithm such as gradient descent, would be

effective in identifying novel patterns of DBS inputs in experimental or clinical applications.

This is because the efficacy of such strategies would depend upon a relatively simple relation-

ship between levels of clinical PD symptoms and the full range of possible DBS parameter

settings. To demonstrate how such a problem might eventually be overcome, and to identify

further DBS patterns that are effective within the present computational model, we employ

the Genetic Algorithm (GA) as a closed-loop learning technique to identify optimal DBS pa-

rameter settings that best achieve simulated physiological outcomes. The GA’s global search

capability is especially important in this application, as Fig. 4 indicates that multiple local

minima/maxima can exist even in a simple two-parameter case, so that local search algorithms

can be easily trapped without finding the best solutions. Another overriding advantage of the

GA in a clinical setting is its model-free operation. The GA operation requires only knowledge

of the trial DBS parameter settings and measurement of the corresponding neurophysiological

properties, thus it can be directly integrated with the instrument capabilities in clinical appli-

cations. Issues related to GA’s practical applications are addressed elsewhere (Feng et al., in

preparation).

We first illustrate the GA based closed-loop search over the three standard DBS parameters

of pulse period ρD, amplitude iD, and duration σD to identify values that maximize TC relia-

bility Rel (note that all three of the standard DBS parameters are covaried, in contrast to the

two-parameter grid search of Fig. 4). A current cost is subtracted to reduce the energy usage

of the DBS input. Consequently, the function which the GA seeks to maximize is

J = Rel − w

∫ T

t=0

IDBSdt, (8)

where
∫ T

t=0
IDBSdt is the total DBS current over the duration of the DBS stimulation (T =

6500ms) and the weight parameter w ≈ 0.001. The GA quickly finds several DBS parameter

settings with high J values. Fig. 5 (d) shows one solution that achieves both reliable TC

cell signal transmission and substantial current reduction. Specifically, while the reliability
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Rel is slightly worse in comparison with the DBS current of Fig. 5 (a) identified from the

two-parameter grid search above (Rel = 0.95 vs Rel = 0.90), the averaged current 〈IDBS〉 in

Fig. 5 (c) is about three times lower than that in Fig. 5 (a) and 100 times lower than that for

high-frequency DBS in Fig. 3 (e). This suggests that the two terms in J can have significant

competing effects. It is also notable that in both cases with low-frequency DBS, the cells remain

in the four pairs discussed above, with spiking of each pair being relatively irregular in time

and the different pairs being desynchronized. This pairing is a common characteristic of DBS

solutions found by the GA.

Statistical measure of Gpi spiking patterns

In addition to the desynchronizing DBS currents such as that shown in Fig. 5 (c), the GA utilized

in optimizing the periodic DBS also identifies multiple currents that give reliable transmission

(i.e., Rel ≈ 1), but where the GPi cells are mostly synchronized (data not shown), similar to

the effects of high frequency currents discussed above. This shows that, when Rel is used as the

cost function, the GA is not selective for tonic and regular, more synchronized vs. irregular,

less synchronized Gpi firing patterns. To allow for such selectivity, we introduce a new measure

of the network dynamics based directly on the statistical properties of these firing patterns.

The TC cells are therefore not included in the simulations upon which these implementations

of the GA are based.

Fig. 8 (a) shows the synaptic (conductance) output from GPi cells one and two in the normal

state (see (Rubin and Terman, 2004) for details). To calculate the new measure, which we call

Cor (see Methods), the synaptic pulse time tai (defined as when the i-th pulse in conductance of

the a-th GPi cell’s synapse reaches its maximum) is numerically determined. Then, we compute

the pulse delay da
ij = taj − tai (i < j) between all pairs of these pulse times for the same GPi cell,

and quantify the number ka
m of da

ij values located in each of a set of discrete “interspike interval

bins” [tm, tm + ∆], where tm represents the m-th (m = 1, 2, . . . , M) bin with width ∆ = 10ms,

and the full set of bins cover the period over which the network is simulated (following an

initial transient, as described above). A plot of ka
m counts against the corresponding time tm
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gives a discrete measure of the autocorrelation for the a-th GPi cell’s spike train (Fig. 8(b)). A

Gaussian filter of width 10ms is then applied to smooth this autocorrelation function, resulting

in k∗,am for each bin. The same procedure is then executed to calculate the crosscorrelation k∗,a,b
m

of the synaptic spike time delay between two different GPi cells a and b (Fig. 8(c)). Cor is then

represented as

Cor = α1
1

N

N∑
a=1

[

∑M
m=1(k

∗,a
m − k̄∗,am )2

M
]1/2+α2

2

N(N − 1)

∑

1≤a<b≤N

[

∑M
m=1(k

∗,a,b
m − k̄a,b

m )2

M
]1/2+α3k̄

a,b
0 ,

(9)

where k̄∗,am and k̄∗,a,b
m are the mean values of k∗,am and k∗,a,b

m , respectively. The first and second

terms in Eq. (9) represent the standard deviation of the bin counts for the auto- and cross-

correlations, repectively, normalized over all GPi cells. That is, the first term measures the

extent to which firing of the Gpi cells deviates from a uniform (Poisson) process, while the

second measures the extent to which pairs of Gpi cells are synchronized, or display preferred

phase shifts in their firing times. A third term k̄a,b
0 is added as a separate measure of purely

synchronized Gpi firing. This third term serves to make the GPi firing statistics more similar to

those of the normal state, as normal cells have fewer counts in this first bin (Fig. 8(c)). α1, α2,

and α3 are the positive weighing paramters for the three terms, respectively, and their values

in the simulations are α1 = 2.0, α2 = 1.0, and α3 = 2.0× 10−5.

Fig. 8 reveals the expected substantial differences in these statistical measures of GPi firing

patterns between normal and Parkinsonian states. In the normal state, the auto- and cross-

correlation values are roughly similar for most spike delays, indicating that spike times are

approximately uniformly distributed both within and across GPi cells (although a moderately

preferred interspike interval is apparent). For the normal state, k̄a,b
0 is also low in magnitude,

showing an anticorrelation in synaptic pulse times among GPi cells. In contrast, in the Parkin-

sonian state both the auto- and cross-correlation curves show strong periodic oscillations due

to the synchronized bursting dynamics of GPi cells; the relatively high value of k̄a,b
0 also follows

from the synchrony. Evidently, the normal state has lower values for all three terms in Eq. (9)

than the Parkinsonian state, so that Cor is a good indicator to distinguish between the two

states; below, the GA will be used to find DBS currents that minimize Cor. Other measures
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of network dynamics, including those based more directly on the power spectrum of the GPi

spike pattern, have been tested. We find that the correlation measure Cor is better suited to

extract statistical properties of Gpi synaptic output that distinguish normal and Parkinsonian

firing, while filtering out the less important details related to spike shape and amplitude, and,

additionally, that Cor produces a stable characterization of network dynamics with a limited

amount of data in the form of conductance spikes.

Fig. 9 illustrates the dependence of the measure Cor on changes in the standard DBS

parameters of pulse period ρD and amplitude iD, with (as Fig. 9) fixed pulse duration σD. Very

high Cor values are observed in the high frequency, high amplitude region of the parameter

space, resulting from the largely synchronized GPi spikes induced by standard high-frequency

DBS. Other settings of the parameters generally lead to lower Cor values, and in general the

‘landscape’ of Cor as a function of parameters ρD and iD alone is highly complex, suggesting

that, especially when additional parameters such as pulse duration σD are introduced, it will

be difficult to identify optimal parameter settings (giving the lowest possible values of Cor)

without the guidance of a global search algorithm.

Based on the observation mentioned above that the normal state has lower Cor value than

the Parkinsonian state, we next apply the GA to search for periodic DBS parameter settings

(period, amplitude, and duration) that minimize J = Cor in the Parkinsonian network. Note

that, in contrast to the case of maximizing reliability Rel, a current cost is no longer necessary

in minimizing Cor, because the GA search a priori avoids the high frequency region, which is

usually associated with high Cor values (Fig. 9). Fig. 10 (left panel) shows an optimal solution

found by the GA. Both the auto- and cross-correlation curves are roughly similar to the normal

state, although Gpi firing is more burstlike. Similar to Fig. 5, the eight GPi neurons fire in four

pairs that are desynchronized with respect to one another.

Optimization of stochastic DBS currents

We next explore stochastic DBS currents to study whether additional effective inputs can be

found by enlarging the space of possible currents. The primary motivation resides in the argu-
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ment that random DBS inputs might be better suited than periodic ones for inducing irregular

firing patterns. Beyond insights for this model, it is intuitively reasonable that stochastically

defined inputs could provide a useful alternative in cases where patients are unresponsive to

standard, periodic DBS currents or the effects of periodic DBS decay as the disease progresses

(cf. (Lyons et al., 2001; Hariz et al., 1999)), although this question clearly must be adjudicated

experimentally.

The GA is employed to identify random DBS currents that optimally return Gpi firing

patterns to their normal state, as measured by minimal values of the measure Cor. In general,

such a random current can be represented in many different ways. Here the procedure consists

of generating each DBS pulse train from a probability density function (PDF) which determines

the probability of interpulse delays (see Methods). To enable an efficient GA search, we use a 10-

parameter, piecewise-constant PDF. The GA then optimizes 12 parameters: the 10 constants

defining the PDF, the pulse amplitude iD, and the pulse width σD. Comparing with the

three-parameter case of purely periodic square wave DBS currents, the advantages the GA are

clear in the present case because the high dimensionality makes grid search methods unfeasible

(cf. (Rizzone et al., 2001)).

GA optimization of stochastic DBS currents is performed both with and without the addition

of a current cost, as considered above. Due to the randomness in generating the DBS pulse

train from realization-to-realization and the fact that J is measured from finite-length (6500 ms)

simulations, the minimum J values fluctuate throughout the GA optimization (see Fig. 10 (e)).

However, the GA is still able to quickly converge to DBS parameter settings that desynchronize

the GPi cells (both with and without the current cost), confirming that stochastically defined

DBS inputs can be effective in this manner if their parameters are properly chosen. Nevertheless,

stochastic DBS inputs still produce Gpi firing that is more burstlike than in the normal state,

as clusters of transiently (nearly) synchronized cell pairs continuously and irregularly form

and dissipate over timescales of 100ms. Fig. 10 (right panel) shows the case including the

current cost (i.e., J = Cor + w
∫ T

t=0
IDBSdt), which also minimizes the DBS current amplitude

(data for similar results without current cost not shown). Similar to the left panel of Fig. 10,
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clustering and bursting lead to periodic oscillations evident in the correlograms, but which

are nevertheless more moderate than those observed in the unstimulated PD state (Fig. 8,

right panel). Additionally, the optimal DBS currents obtained via GA optimization of the

Cor-based cost function also produce highly reliable signal relay by the TC cells (Rel > 0.9),

further confirming the utility of this measure for seeking optimal DBS currents. (We note that

work in progress (D. Terman, et al., unpublished observations) studies the relation between

Gpi firing patterns and TC reliability in greater detail.)

DBS currents with alternative waveforms

As emphasized in (Tass, 2001), it is possible that currents deviating from the standard ‘pulsatile’

form traditionally used in DBS may be more effective in realizing clinical objectives. Here we

choose a discrete, periodic (Haar) basis to represent general DBS waveforms (see Methods), and

we explore computationally whether the GA can identify such general waveforms that achieve

the objectives quantified above.

Fig. 11(left, right) shows optimal solutions identified using the Rel (with current cost w =

10−5) and Cor cost functions, respectively. The left panel of Fig. 11 demonstrates a substantial

improvement in TC cell signal transmission reliability compared with the unstimulated PD

state (Rel = 0.98 vs. Rel = 0.43). This follows even though Gpi cells are mostly synchronized

under this DBS input, because their firing pattern is more tonic than burstlike. The right

panel, for the Cor cost, shows that the synchronized, periodic bursts of the PD state have been

reshaped to be more irregular in duration, although they are still largely coordinated across

cells. These results indicate that DBS waveforms other than sparse pulses can modulate the

otherwise bursting and clustered firing patterns of the network in diverse ways depending on

the optimization objective specified. Nevertheless, the net current used in the present DBS

patterns is much greater than for the standard pulsatile inputs (〈IDBS〉 = 24pA/(µm2ms) and

〈IDBS〉 = 90pA/(µm2ms) for the Rel and Cor cost, respectively), indicating that sustained

input currents may not be as efficient in achieving a given type of network state.
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Optimal DBS in heterogeneous networks

Here, we add heterogeneity to the intrinsic dynamics of the STN-Gpe network, and explore how

this affects the form and quality of the optimal DBS solutions found by the GA. Specifically,

we first introduced a 1% multiplicative heterogeneity (that is, independent, random prefactors

with mean 1 and standard deviation 0.01) to each intrinsic current in each STN and GPe cell,

as well as to all synaptic currents among STN and GPe neurons (i.e., IGPe→GPe, IGPe→STN , and

ISTN→GPe). We also included prefactors for the DBS currents to STN cells, with 10% random

heterogeneity in cell-to-cell values, as in Fig. 7. Additionally, the values of the synaptic and

intrinsic currents IGPe→GPe and ISTN were adjusted to ensure that (i) the intrinsic dynamics

of the network is Parkinsonian in character (i.e., the cells burst in synchronized clusters, as in

Fig. 3(c)) and (ii) high frequency DBS (as in Fig. 3(e)) restores the faithful transmission of

ISM signals.

The GA was then used, as above, to search for periodic, stochastic, and alternative (defined

via the Haar basis) DBS currents that optimize either the Rel or the Cor cost function. Fig. 12

shows one DBS optimal input of each type, for the case where Cor is optimized (as above, with

no extra term penalizing total current); data for Rel is not shown here. For all three types of

DBS, optimized inputs modified the the highly rhythmic auto- and cross-correlation statistics

of the unstimulated Parkinsonian state, producing lower values of Cor. For the periodic and

alternative DBS inputs, firing times are largely synchronized across Gpi cells (evidenced by

the similarity between auto- and cross-correlograms in panels A and C), although they are not

directly entrained to the inputs. In comparing with analogous optimal DBS currents found

without network heterogeneity (Fig. 10 and Fig. 11), the most substantial enhancement of

DBS effects due to the presence of heterogeneity is for the case of stochastic DBS (panel B of

Fig. 12); auto- and cross-correlograms in this case also most closely resemble those of the normal

state. This raises the possibility that a stochastic class of input may also be the best equipped

to exploit the far more complex forms of neuronal heterogeneity that will be encountered in

experimental or clinical settings, and in any case illustrates that the efficacy of the GA in

identifying novel DBS patterns without relying on a purely homogeneous network structure.
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Discussion

Summary

In the present paper, we test a novel strategy for identifying optimal DBS waveforms for the

treatment of Parkinson’s Disease, using a computational network model for the basal ganglia

previously developed by Terman and collaborators (Terman et al., 2002; Rubin and Terman,

2004). We employ two statistical measures that gauge the effect of the DBS inputs on the

network: Rel (following (Rubin and Terman, 2004)), which assesses the impact of Gpi firing

on the reliability of simulated thalamocortical transmission, and Cor, based on the auto- and

crosscorrelation of simulated Gpi cell firing times. A Genetic Algorithm (GA) global opti-

mization method searches the multidimensional parameter space describing DBS inputs to seek

parameter settings that desynchronize firing times between clusters of Gpi cells and cause firing

within these clusters to become more irregular, while also minimizing total DBS current flux

〈IDBS〉. These optimal DBS inputs differ substantially from standard DBS inputs in both their

waveform (e.g., being stochastic or of lower frequency) and their impact on the network (often

desynchronizing rather than entraining cells).

Three types of DBS waveforms are tested: three-parameter periodic square pulses with con-

stant spacing (of the square wave form used clinically), 12-parameter stochastic inputs gener-

ated from a piecewise constant probability distribution function, and 16-parameter nonpulsatile

waveforms generated from a discrete, periodic Haar basis. The GA converges to optimal pa-

rameter settings for all three types of waveforms, which achieve satisfactory desynchronization

and regularization of Gpi firing times. This corresponds to minimized values of Cor. Moreover,

the optimized square wave and stochastic waveforms are sparse in time, and therefore require

average IDBS amplitudes substantially lower than those used in models of high-frequency DBS.

In all three cases, we observe that the DBS inputs that minimize Cor also maximize the re-

liability measure Rel. The converse is not true: DBS waveforms yielding high Rel values do

not necessarily desynchronize the Gpi cells, and hence do not necessarily give low values of

Cor. Finally, when heterogeneity was introduced into both network and DBS parameters, we
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found that the stochastic waveforms were most effective in minimizing Cor. This illustrates

a potential advantage of this novel class of DBS waveform, which bears further exploration in

more sophisticated models and in experimental settings.

Relationship to previous computational studies

Previous studies (Tass, 1999; Tass, 2001; Rosenblum and Pikovsky, 2004; Popovych, Haupt-

mann, and Tass, 2005; Hauptmann, Popovych, and Tass, 2005) have also used computational

models to explore alternative DBS patterns, with similar overall objectives of identifying effec-

tive currents with lower total amplitude. In these studies, the basal ganglia is approximated by

a large ensemble of simplified oscillators that is often (but not always (Hauptmann, Popovych,

and Tass, 2005)) globally coupled so as to produce synchronized dynamics representing the

Parkinsonian state. Techniques of “demand controlled” stochastic phase-resetting (Tass, 1999;

Tass, 2001; Tass, 2003), and linear (Rosenblum and Pikovsky, 2004) or nonlinear (Popovych,

Hauptmann, and Tass, 2005; Hauptmann, Popovych, and Tass, 2005) delayed feedback of aver-

aged oscillator states are used to identify DBS currents that desynchronize the model oscillators

and differ in form from traditional high-frequency inputs. The models indicate that these al-

ternative DBS currents may indeed be comparably effective, or even more so, in achieving

desynchrony with respect to their high-frequency counterparts, while requiring a substantially

lower current integral. Our study, therefore, adds to this previous computational evidence that

alternatives to high-frequency DBS might exist in the Parkinsonian brain itself. However, dif-

ferences in the underlying computational models among these previous studies and the present

one preclude a direct comparison of the various types of currents they suggest.

Limitations and interpretation of the computational model

Our results are found using the computational subthalamopallidal network model developed

in (Terman et al., 2002) and applied to studies of standard high-frequency DBS waveforms in

(Rubin and Terman, 2004). While it is physiologically detailed and carefully fit to experiments,

like any model it has limitations in describing the Parkinsonian basal ganglia in vivo. First,
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the model was originally parameterized to match activity in slice experiments (Terman et al.,

2002); while parameter adjustments to bring model dynamics closer to the in vivo range were

explicitly made and described in (Rubin and Terman, 2004), some differences may be expected

to remain. Moreover, the simulated nuclei represent only the indirect pathway from striatum

to Gpi: backprojections from Gpe to striatum as well as the general closed loop structure of

the cortico-striatal-thalamic network are neglectged. Within the indirect pathway, the model

necessarily includes only a representative subnetwork of cells, with equal numbers belonging to

each nucleus. Finally, following, e.g., (Rubin and Terman, 2004; Popovych, Hauptmann, and

Tass, 2005), we study only the effects of DBS waveforms applied directly as (homogeneous or

heterogeneous) intracellular currents. Thus, we neglect the important stage by which voltage

transients at the DBS electrode are transduced to transmembrane currents, a process explicitly

modeled in, e.g., (Hahn et al., 2005; McIntyre and Grill, 2002).

Nevertheless, the computational model of (Terman et al., 2002; Rubin and Terman, 2004)

exhibits key features that make it an ideal for our study of the effects of novel DBS waveforms,

and how closed-loop learning algorithms might identify and optimize such waveforms. The

conductance-based equations for the individual neurons contain membrane currents which were

matched in (Terman et al., 2002) to the distinct physiology of the different basal ganglia nuclei,

producing, e.g., post-inhibitory rebound bursts. Moreover, these model neurons, when coupled

(via experimentally-motivated synaptic dynamics) in the present sparse, regular network archi-

tecture, have been shown to display both archetypal normal-state and Parkinsonian modes of

activity, according to the level of two network parameters whose values are known to change

with neurodegeneration in PD (Terman et al., 2002). Thus, we believe that the computational

model has the critical components of cellular physiology, network connectivity, and normal and

Parkinsonian dynamics to serve as a first testing ground for the impact of qualitatively novel

classes of DBS waveforms and algorithms.

This said, we do not expect that the DBS patterns found to be effective or optimal for the

computational model of (Terman et al., 2002; Rubin and Terman, 2004) to be likewise optimal

for more detailed models or in experimental or clinical settings. Indeed, given the model’s
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structure as highlighted above, such a quantitative match is extremely unlikely. However,

the point of this paper is not to suggest specific DBS waveforms that could be applied, for

example, clinically, but rather to provide computational evidence that (1) different types of

DBS waveforms exist that could be equally or more effective than the standard high-frequency

patterns, and (2) these novel waveforms can be identified by standard, model-independent

learning algorithms.

Conclusion

The objective of this study is to test, using a biophysically-based model of the basal ganglia,

whether closed-loop nonlinear learning optimization techniques can identify DBS waveforms

that differ from standard high-frequency patterns and nonetheless modulate network dynamics

according to various criteria. The learning algorithm we use requires no knowledge about the

dynamics of the underlying system, so that it can in principle be used with models or even

experimental or clinical systems of arbitrary biological scale, complexity, and detail. We hope

that the positive findings here will inspire experimental tests of the present optimization strategy

as a first step toward possible clinical implementation feasibility of an alternative strategy for

alleviating the motor symptoms associated with PD and related neurodegenerative diseases.

Further issues relevant to experimental or eventual clinical applications are discussed in an

upcoming paper (Feng et al., in preparation).
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Figure 1: The “structured, sparsely-connected” network architecture adapted from (Terman
et al., 2002; Rubin and Terman, 2004). Lines ending with arrows and open circles indicate
excitatory and inhibitory synaptic connections, respectively. Each GPe neuron inhibits two
immediate GPe neighbors as well as two STN neurons, skipping the three STN cells located
nearest to it in the ‘arrays’ of cells. Each STN cell sends excitation to the nearest GPe cell
in the array. In addition, GPe neurons receive simulated striatal inhibition, and excitatory
DBS inputs are applied to STN neurons in some cases. Each GPi cell receives inhibition from
the nearest GPe cell and excitation from the nearest STN cell. Each of two TC cells receives
inhibitory input from the four GPi neurons shown, and the TC cells also (uniformly) receive
model excitatory sensorimotor input. As in (Terman et al., 2002; Rubin and Terman, 2004), our
network architecture has a periodic structure, so that cells 1 and 8 in each array are neighbors,
etc.
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Figure 2: Voltage profiles for STN, GPe, and GPi neurons in the normal state. Two cells of
each type are plotted. The firing patterns of each type of cells are irregular and uncorrelated.

31



8
6
4
2

 0  100  200  300  400  500  600  700  800

G
P

i n
or

m
al

(a)

50
0

-50
-100

 0  100  200  300  400  500  600  700  800

v(
m

V
) 

no
rm

al

(b)

8
6
4
2

 0  100  200  300  400  500  600  700  800

G
P

i P
D

(c)

50
0

-50
-100

 0  100  200  300  400  500  600  700  800

v(
m

V
) 

P
D

(d)

8
6
4
2

 0  100  200  300  400  500  600  700  800

G
P

i D
B

S

(e)

50
0

-50
-100

 0  100  200  300  400  500  600  700  800

v(
m

V
) 

D
B

S

(f)

t (ms)

T
C

T
C

T
C

Figure 3: (a) Raster plot of the spike times for all eight GPi cells in the normal state. (b)
Voltage traces of the two TC neurons in the normal state with ISM displayed beneath the
voltage traces; solid line is cell 1 of Fig. 1, dashed line is cell 2, shifted up by 50mV for clarity.
Note that ISM input is faithfully relayed. (c) Raster plot of GPi cells in the Parkinsonian state,
showing clustered, synchronous bursting. (d) Voltage of TC cells in the Parkinsonian state,
where the TC cells fail to relay the ISM input faithfully. (e) Raster plot of the Parkinsonian
GPi cells with high frequency DBS current applied (iD = 200pA/µm2, ρD = 6ms, σD = 0.6ms,
and average 〈IDBS〉 = 20pA/(µm2ms)). The Gpi neurons are entrained to the DBS input, firing
at half the DBS frequency (STN cells fire at the DBS frequency, see Fig 6(c)). (f) Voltage of
TC cells shows that high frequency DBS has restored the faithful transmission of ISM signals,
as in (Rubin and Terman, 2004).
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Figure 4: The dependence of TC transmission reliability Rel on DBS pulse period ρD and
amplitude iD. The impulse duration σD is fixed at 0.6ms. 100% reliability corresponds to
Rel = 1.
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Figure 5: (a) A low frequency, periodic DBS current with parameters ρD = 80ms, iD =
80pA/µm2, σD = 0.6ms, giving time-average 〈IDBS〉 = 0.6pA/(µm2ms). (b) Raster plot
for the Parkinsonian GPi cells during application of the DBS current in (a), which largely
desynchronizes them. (c) Faithful TC cell signal transmission is restored by the current in (a).
(d) A GA-optimized periodic DBS current (ρD = 93ms, iD = 60pA/µm2, σD = 0.3ms, and
< IDBS >= 0.19pA/(µm2ms)). (e) Raster plot of the Parkinsonian GPi cells with the DBS
current in (d). (f) TC voltage profile with the DBS current in (d).
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Figure 6: (a) A zoomed plot of the voltage traces for STN cell 1 (solid line) and 2 (dashed line)
in the Parkinsonian state, showing subthreshold dynamics. Note that both the spike times and
subthreshold fluctuations have a small time lag. (b) The high-frequency DBS applied to the
PD cells as in Fig. 3 (e). (c) The voltage profiles of two Parkinsonian STN cells with the DBS
current in (b). (d) The low-frequency DBS applied to the PD cells as in Fig. 5 (a). (e) The
subthreshold voltage profiles of two Parkinsonian STN cells with the DBS current in (d).
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Figure 7: Robustness of DBS effects. A Gaussian filter of standard deviation 2ms is first applied
to the DBS current to smooth the edges of the square pulses; iD is increased to compensate for
the loss in DBS amplitude due to filtering. The DBS currents received by each STN cell are then
multiplied by an independent, random factor with mean 1 and standard deviation 0.1 (over the
full extent of the DBS input), to model a 10% heterogeneity in DBS effects. (a) Voltage profiles
of two STN cells following the filtered, heterogenous high-frequency DBS input in Fig. 3. (b)
Raster plot of the Parkinsonian GPi cells with the high-frequency DBS current. (c) Voltage
traces for the TC cells, demonstrating that faithful transmission of model sensorimotor inputs
is maintained. (d) Voltage profiles of two STN cells following the heterogeneous, filtered lower-
frequency DBS input of Fig. 5(a), showing that desynchronized GPi spiking persists among cell
pairs. (e) Raster plot of the Parkinsonian GPi cells with the low-frequency DBS current. (f)
Voltage profiles of TC cells show that transmission remains largely reliable.
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Figure 8: Left panel: normal cells; right panel: Parkinsonian cells. (a) and (d): the synaptic
(conductance) output from two GPi cells; (b) and (e): the autocorrelation of GPi1’s synaptic
output; (c) and (f): the autocorrelation between GPi1 and GPi2’s synaptic outputs. The
calculation of the auto- and cross-correlation is described in Section “Statistical measure of Gpi
spiking patterns.”
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Figure 9: The dependence of Cor, the statistical measure of GPi cells’ spike patterns, on DBS
pulse period ρD and amplitude iD. As in Fig. 4, the impulse duration σD is fixed at 0.6ms. The
region where Cor > 1.0 is truncated to show the complex landscape at lower frequencies.
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Figure 10: GA optimization of the statistical measure Cor. Left panel: periodic DBS, opti-
mization with the GA cost function value J = Cor. Right panel: stochastic DBS, optimization
with J = Cor + w

∫ T

t=0
IDBSdt. (a) and (e): the evolution of J over generations of the GA;

minimum and mean J values are given for the parameter settings tested at each generation.
(b) and (f): the optimal currents found by the GA. DBS current parameters are ρD = 100ms,
iD = 40pA/µm2, σD = 0.6ms, giving < IDBS >= 0.24pA/(µm2ms) for the periodic current
and iD = 20pA/µm2, σD = 0.4ms, < IDBS >= 0.21 for the stochastic current. (c) and (g):
raster plot of GPi spike times. (d) and (h): GPi1’s (filtered) spike time autocorrelation and
GPi1-GPi2 (filtered) spike time crosscorrelation.
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Figure 11: Optimization of IDBS represented by discrete Haar basis (Eq. 7). Left panel: using
the Rel cost function with current weight w = 10−5. Plots from the top are: one optimal DBS
current found by the GA, the corresponding GPi raster plot, spike pattterns of TC1 and TC2.
Right panel: using the Cor cost function with no current cost. Plots from the top are: an
optimal DBS current found by the GA, the corresponding GPi raster plot, GPi1 spike time
autocorrelation, and GPi1−GPi2 crosscorrelation.
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Figure 12: Optimized IDBS currents in the case of 1% random heterogeneity in the intrinsic
network currents of STN and GPe cells, as well as their synaptic interactions (see text). 10%
heterogeneity was also included in the DBS input into different STN neurons. The Cor cost
function with no current weight was used in all cases shown. Panel A) periodic DBS; panel
B), stochastic DBS; panel C); DBS currents defined via the Haar basis. For each panel, plots
from the top are: optimal DBS current found by the GA, the corresponding GPi raster plot,
and autocorrelation of the first Gpi cell plotted with the crosscorrelation between spike times
of Gpi cells 1 and 2. DBS current parameters are ρD = 89ms, iD = 60pA/µm2, σD = 2.2ms,
giving < IDBS >= 1.5pA/(µm2ms) for the periodic current and iD = 20pA/µm2, σD = 3.5ms,
< IDBS >= 2.0pA/(µm2ms) for the stochastic current.
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