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Abstract. This study was aimed at using the theory for two-dimensional phononic crystal consisting 
of materials with general anisotropy to calculate the band gaps phenomena in Aluminum/Barium 
sodium niobate (Y-cut) with hexagonal lattice and Quartz/Epoxy with square lattice phononic 
structures. Wave propagation properties of solids in which the periodic modulation occurs along the 
bounding surface has been discussed in this paper. Especially surface and bulk acoustic wave 
properties of solids were studied in both square and hexagonal lattices consisting of isotropic, trigonal, 
and orthorhombic symmetry materials. From the previous laboratory study, we confirmed that the 
widths of the frequency band gap were strongly affected by the filling ratio, density, and elastic 
constants matching ratios. In this study, the results have shown that surface wave band gaps could be 
found along a specific direction. In the materials we investigated in this paper, we found that there is 
no full band gap for surface waves. Instead, full band gap for bulk acoustic wave can be obtained for 
transverse polarization mode. Results of this paper can serve as a basis for both numerical and 
experimental investigations of phononic crystal related structures. 

Introduction 

The existence of complete band gaps of electromagnetic waves in photonic structures extending 
throughout the Brillouin zone has demonstrated a variety of fundamental and practical interests.[1,2] 
This has led to a rapid growing interests in the analogous acoustic effects in periodic elastic structures 
called the phononic crystals.  Surface wave propagation on layered superlattices with traction free 
surface parallel to the layers has been explored extensively in the past.[3] However, investigations on 
surface wave properties of solids in which the periodic modulation occurs on the traction free surface 
has not started until recently.[4-8] Vinces et al.[4,5] studied experimentally the surface waves 
generated by a line-focus acoustic lens at the water-loaded surfaces of a number of two-dimensional 
superlattices that intersect the surface normally. Propagation of Scholte-like acoustic waves at the 
liquid-loaded surfaces of period structures has also been studied.[6] 

The superlattices considered in Refs.[4-6,8] are of isotropic materials. As for superlattices consist 
of anisotropic materials, Tanaka and Tamura [7] reported detail calculations for surface waves on a 
square superlattice consisting of cubic materials (AlAs/GaAs) and many salient features of surface 
waves in two-dimensional superlattices have been described. In addition, Tanaka and Tamura[8] also 
reported detail calculations for surface waves on a hexagonal superlattice consisting of isotropic 
materials (Al/polymer). 

For the analysis of bulk acoustic waves [9-15], Kushwaha et al.[9] reported the first full 
band-structure calculations of the transverse polarization mode for periodic, elastic composite. In the 
Ref.[10], Kushwaha et al. calculated the band structures for the transverse polarization modes of 
nickel alloy cylinders in aluminum alloy host, and vice versa. They also investigate the dependence of 
spectral gap on the filling fraction and on the material parameters. Kafesaki et al.[11] reported the 
multiple-scattering theory (MST method) for three-dimensional periodic acoustic composites. 
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Garcia-Pablos et al.[12] used the FDTD method to interpret experimental data for two-dimensional 
systems consisting of cylinders of fluids (Hg, air, and oil) inserted periodically in a finite slab of Al 
host. Psarobas and Stefanou[13] calculated the band structure of a phononic crystal consisting of 
complex and frequency dependent Lame’ coefficients. Zhengyou Liu et al.[14] extended the 
multiple-scattering theory for elastic waves by taking into account the full vector character, and 
presented a comparison between theory and ultrasound experiment for a hexagonal-close-packed 
array of steel balls immersed in water. Jun Mei et al.[15] reported the same method in Ref.[16] to 
extend the method in the case of cylinders. However, the bulk waves analysis in phononic structures 
among the Refs.[9-15] are of isotropic materials only. 

In this paper, we extended Ref.[7] to study phononic band gaps of elastic/acoustic waves in 
two-dimensional Aluminum/Barium sodium niobate (Y-cut) (Ba2NaNb5O15) with hexagonal lattice 
and Quartz/Epoxy with square lattice phononic structures. The explicit formulations of the plane 
harmonic bulk wave and the surface wave dispersion relations in such a general phononic structure 
are discussed based on the plane wave expansion method.  

Equations of Motion of 2-D Phononic Crystals 

In an inhomogeneous linear elastic anisotropic medium with no body force, the equation of motion for 
the displacement vector ( ), tu r  can be written as 

)],()([),()( tuCtu mnijmnji rrrr ∂∂=ρ  (1) 

where ),,(),( zyxz == xr is the position vector, ( )ρ r , (r)ijmnC are the position-dependent mass 

density and elastic stiffness tensor, respectively. In the following, we consider a phononic crystal 
composed of a two dimensional periodic array (x-y plane) of material A embedded in a background 

material B. Due to the spatial periodicity, the material constants, ( )ρ x , ( )ijmnC x  can be expanded in 

the Fourier series with respect to the two-dimensional reciprocal lattice vectors (RLV), 1 2( , )G G=G , 

as 

G

G

xGx ρρ  ⋅= ie)(                                                                                                                        (2) 

ijmni
ijmn CeC G

G

xGx  ⋅=)(                                                                                                            (3) 

where Gρ and ijmnCG  are the corresponding Fourier coefficients. 

On utilizing the Bloch theorem and expanding the displacement vector ( , )tu r  in Fourier series for 

bulk wave analysis, we have 

)(),(  ⋅−⋅=
G

G
xGxk Aru zikitii zeeet ω  (4) 

where ),( 21 kk=k  is the Bloch wave vector, ω is the circular frequency and zk  is the wave number 

along the z-direction, AG is the amplitude of the displacement vector. We note that as the component 

of the wave vector zk  equals to zero, Eq. (6) degenerates into the displacement vector of a bulk 

acoustic wave. 
Substituting Eqs. (2), (3) and (4) into Eq. (1), and after collecting terms systematically, we obtain 

the generalized eigenvalue problem 

0)( 2 =++ UCBA zz kk             (5) 

where A, B and C are 3 3n n×  matrices and are functions of the Bloch wave vector k , components of 

the two-dimensional RLV, circular frequency ω, the Fourier coefficients of mass density Gρ  and 

components of elastic stiffness tensor ijmnCG . n is the total number of RLV used in the Fourier 

expansion and TAAA ][ 321
''' GGG

U = is the displacement vector. The expressions of the matrices are 

listed in Ref.[18, 19]. 
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Eq. (5) is more complicated than that of the two-dimensional phononic crystal with cubic 
symmetry given by Tanaka and Tamura [7] in such a way that the coefficient matrix B is not vanished.  

However, it can be solved by introducing UV zk=  and rewritten in the form as[9] 









=
















−− −− V

U

V

U

BACA

I0
zk

11
                                                                                                  (6) 

Bulk and Surface Waves in 2-D Phononic Crystals 

It is worth noting that the case of bulk wave is a special case of Eq. (5). When zk  in Eq. (5) is equal to 

zero, the equation degenerates into the eigenvalue problem of bulk waves as 
0CU =                   (7) 

The dispersion relations of bulk waves propagating in two-dimensional phononic crystals with both 
the filling material and the background material belong to the triclinic system; can be obtained by 
setting the determinant of matrix C equal to zero. 

For material with symmetry higher (and equal to) than orthorhombic symmetry, the matrix C can 
be decoupled into two different polarization modes as 

(1) 2 (1) (1) 1

(2) (2) 2 (2) 2
0

M R L A

L M R A

ω

ω
′ ′ ′ ′

′ ′ ′ ′

 −  
=   

−   

G,G G,G G,G G

G,G G,G G,G G

            (8) 

for mixed polarization modes (i.e., longitudinal (L) and shear horizontal (SH)) and 
(3) 2 (3) 3 0M R Aω′ ′ ′   − =   G,G G,G G

             (9) 

for shear vertical (SV) modes with polarization of the displacement along the z direction (i.e., the 
filler’s length direction). The expressions of the components in Eqs.(8) and (9) are listed in Ref.[18, 
19]. 

It is worth noting that for material with symmetry lower than orthorhombic symmetry, the matrix C 
can’t be decoupled into two different polarization modes. The full matrix C must be considered and 
distinguish different modes as quasi shear vertical modes, quasi shear horizontal modes and quasi 
longitudinal modes. 

For the case of surface wave, the 6n eigenvalues )(l
zk  of Eq. (6) are the apparent wave numbers of 

the plane waves in the z direction. According to the exponential dependence of z in Eq. (4), the real 

part of )(l
zk  denotes the plane wave propagation in the z direction, and a positive nonvanishing 

imaginary part represents attenuation in the z direction. For surface waves propagate in a half space (z 

> 0), only 3n eigenvalues, which attenuate in the positive z direction are chosen, i.e., Im ( )(l
zk ) > 0. 

Accordingly, the surface wave displacement can be expressed as 
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where )(l

G  is the associated eigenvector of the eigenvalue )(l
zk . The prime of the summation denotes 

that the sum over G is truncated up to n. lX  is the undetermined weighting coefficient which can be 

determined from the traction free boundary conditions on the surface z = 0, i.e., 

)3,2,1(0|| 0303 ==∂≡ == iC zmnmnizi uT    (11) 

Substituting Eq. (10) into (11), we have 
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where H
~

is a 3n×3n matrix and its components are listed in Ref.[18, 19]. 

For the existence of a nontrivial solution of lX , the following condition must be satisfied, i.e., 

0)
~

det( =H               (13) 

Eq. (13) is the dispersion relation for surface waves propagating in two-dimensional phononic 
crystals with both the filling material and the background material belong to the triclinic system. The 

relative magnitude of the eigenvectors lX can be obtained by substituting zk  and ω,  which satisfy Eq. 

(13), into Eq. (12). 

Numerical Examples 

The Fourier coefficients, Gρ  and 
ijmnCG  in Eqs. (2) and (3), can be expressed as 





≠−

=−+
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where ),( ijmnCρα = ,  f  is the filling fraction that defines the cross-sectional area of a cylinder relative 

to a unit-cell area, and FG  is called the structure function defined as 

0

01 )(2

Gr

GrfJ
F =G              (15) 

with )(1 xJ  a first order Bessel function. 

In this paper, phononic structures with square lattice and hexagonal lattice are considered. These 
lattices are consisting of circular cylinders (A) embedded in a background material (B) forming 
two-dimensional lattices with lattice spacing a as shown in Fig. 1a (square lattice) and Fig. 1b 
(hexagonal lattice). Figs. 2a and 2b are the Brillouin regions of the square lattice and the hexagonal 

lattice, respectively. In the square lattice, the reciprocal lattice vector is ( )aNaN /2,/2 21 ππ=G , 

where ,2,1,0, 21 ±±=NN and filling fraction is ( ) 22
0 / arf π= . For anisotropic materials, the 

irreducible part of the Brillouin zone of a square lattice is shown in Fig. 2a, which is a square with 

vertexes Γ, X, M, Y. The reciprocal lattice vector of a hexagonal lattice is 

( )aNNaN 3/)2(2,/2 121 −= ππG , where ,2,1,0, 21 ±±=NN  and filling fraction is 

( ) 22
0 3/2 arf π= . The irreducible part of the Brillouin zone of a hexagonal lattice is shown in Fig. 2b, 

which is a quadrangle with vertexes Γ, K, L, Y. The elastic properties of the materials utilized in the 
following examples are adopted from Ref.[17]. 

In this paper, we consider a phononic structure consisting of circular cylinders of Al embedded 
in a background material of Y-cut barium sodium niobate forming a two-dimensional hexagonal 
lattice. The material of the filling cylinders is isotropic aluminum and the base material is barium 
sodium niobate with orthorhombic symmetry. In the following calculations, the x-z plane is parallel to 
the (001) plane and the x-axis is parallel to the [100] direction of barium sodium niobate. The filling 
fraction is f = 0.6. 

Shown in Figure 3 are the dispersion curves of the bulk modes and surface acoustic modes of the 
Al/Barium sodium niobate (Y-cut) phononic structure with hexagonal lattice. The vertical axis is the 

normalized frequency tCa /* ωω =  and the horizontal axis is the reduced wave number π/* kak = . 

As the elastic waves propagate along the x axis, the nonvanishing displacement of the shear 
horizontal mode, shear vertical mode and longitudinal mode are uy, uz, and ux respectively. For the  
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Fig. 1. Phononic structures with square lattice (1a) and hexagonal lattice (1b) 

 
 
 

 
Fig. 2. Brillouin zone of the square lattice (2a) and the hexagonal lattice (2b) 
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Fig. 2b 
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Fig. 3. Dispersion Relations of BAW & SAW modes (Al/Barium sodium niobate 
(Y-cut), f = 0.6, Hex.) 

 
 

 
 

Fig. 4. Dispersion Relations of BAW modes (Quartz/Epoxy, f = 0.426, Sq.) 
 

sequence modes appear, we distinguish the same type mode as the fundamental, the first and the 
second modes et al. For example in Figure 3, the thin solid lines represent the SV bulk acoustic modes 
(the fundamental mode is SV0 and the first mode is SV1), and the square symbols are those for the 
longitudinal mode (L). The thin dashed line represents the fundamental shear horizontal mode SH0, 
while the lines with “+” symbols represent the first shear horizontal mode SH1. The longitudinal 
modes L are shown as square symbols. It is seen that the dispersion relations in K-L section are almost 
symmetric respect to the center of the section (M point in Fig.2(b)). It is worth noting that in the L-Y 
section, sharp bends of the dispersion curves occur between SH1 and L modes (T1 point) and between 
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L and SH0 modes (T2 point). Therefore, there are mode conversions (SH and L) exist in this phononic 
structure with hexagonal lattice. 

From Figure 3, the solid circles represent the dispersion relations of the surface wave modes 
(SAW) and the open circles are those for the pseudo-surface wave (PSAW) modes. For the 
convenience in discussing the interaction of the surface wave and bulk wave, the dispersion of the 
surface and bulk modes are shown in the same figure. Result showed that as the normalized frequency 
of the surface wave mode lies between the SH0 and SH1 modes, the surface wave degenerates into the 
pseudo-surface wave mode. Unlike the normal surface wave mode, the displacement of the 
pseudo-surface wave mode does not decay to zero at large depth. In the present case, one finds that at 
K point, there is no surface wave band gap existed. However, along the Γ -Y boundary, a 
PSAW-PSAW band gap exists at the boundary point Y. The phenomenon showed the characteristics 
of an anisotropic material. 

In the second example, we consider a phononic structure consisting of quartz circular cylinders 
embedded in a background epoxy material of forming a two-dimensional square lattice with lattice 
spacing a . Figure 4 shows the dispersion relations of all bulk waves along the boundaries of the 
irreducible part of the Brillouin zone with filling ratio f = 0.426. For the quartz cylinders, the matrix C 
in Eq. (7) can’t be decoupled into mixed polarization modes and transverse polarization modes. The 
similar modes for the different polarizations in this phononic structure are distinguished as quasi 
shear vertical modes, quasi shear horizontal modes and quasi longitudinal mode. In Figure 4, the 
vertical axis is the normalized frequency and the horizontal axis is the reduced wave number 
propagating along full Brillouin zone of a square lattice shown in Figure 2(a). The square symbols 
represent the quasi longitudinal modes and quasi shear horizontal modes. The solid circles represent 
the dispersion relations of quasi shear vertical modes. We can find that there are three total band gaps 
between quasi SV0 and quasi SV1, between quasi SV2 and quasi SV3, and between quasi SV4 and 

quasi SV5 in the normalized frequency range * 0 ~ 40ω = . 

Conclusion 

In this paper, we studied the phononic band gaps of surface waves and bulk waves in two-dimensional 
phononic structures consisted of general anisotropic materials. The explicit formulations of the plane 
harmonic bulk wave and the surface wave dispersion relations in such a general phononic structure 
are derived based on the plane wave expansion method. Al/Barium sodium niobate (Y-cut) phononic 
structure with hexagonal lattice and Quartz/Epoxy phononic structure with square lattice are 
considered in the numerical examples. Total band gap characteristics of the phononic structures with 
anisotropic materials are calculated and discussed. It is worth noting that some of the crossing over of 
the dispersion curves (apparently) is indeed sharp bends of the dispersion curves. Around this sharp 
bend area, the mode exchange suddenly. Results of this paper can serve as a basis for both numerical 
and experimental investigations of phononic crystal structures consisted of general anisotropic 
materials. 
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