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Successful application of photonic crystals has led recently to a rapidly growing interest in the analogous
acoustic effects in periodic elastic structures called phononic crystals. This study is aimed at developing a
theory for two-dimensional phononic crystal consisting of materials with general anisotropy. Explicit formu-
lations of the plane harmonic bulk wave and the surface wave dispersion relations in such a general phononic
structure are derived based on the plane wave expansion method. Two-dimensional phononic structures with
either the square or the hexagonal lattice are considered in the numerical examples. Band gap characteristics of
the phononic structures with different anisotropic background materials !isotropic, cubic, hexagonal, and ortho-
rhombic" are calculated and discussed.
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I. INTRODUCTION

The existence of complete band gaps of electromagnetic
waves in photonic structures extending throughout the Bril-
louin zone has demonstrated a variety of fundamental and
practical interests.1,2 This has led to a rapidly growing inter-
est in the analogous acoustic effects in periodic elastic struc-
tures called the phononic crystals. Surface wave propagation
on layered superlattices with traction free surface parallel to
the layers has been explored extensively in the past.3 How-
ever, investigations on surface wave properties of solids in
which the periodic modulation occurs on the traction free
surface has not started until recently.4–8 Vinces et al.4,5 stud-
ied experimentally the surface waves generated by a line-
focus acoustic lens at the water-loaded surfaces of a number
of two-dimensional superlattices that intersect the surface
normally. Propagation of Scholte-like acoustic waves at the
liquid-loaded surfaces of period structures has also been
studied.6
The superlattices considered in Refs. 4–6, 8 are made of

isotropic materials. As for superlattices consist of anisotropic
materials, Tanaka and Tamura7 reported detail calculations
for surface waves on a square superlattice consisting of cubic
materials !AlAs/GaAs" and many salient features of surface
waves in two-dimensional superlattices have been described.
In addition, Tanaka and Tamura8 also reported detail calcu-
lations for surface waves on a hexagonal superlattice consist-
ing of isotropic materials !Al/polymer".
Analyses of bulk acoustic waves in phononic structures

consisted of isotropic materials have been conducted and re-
ported in literatures.9–15 Three different schemes were usu-
ally adopted in the calculation, i.e., the plane wave expansion
method, the multiple scattering method, and the finite differ-
ence time domain method. Kushwaha et al.9,10 utilized the
plane wave expansion method to calculate the first full band
structure of the transverse polarization mode for periodic,
elastic composite and further, calculated the band structures
for the transverse polarization modes of nickel alloy cylin-
ders in aluminum alloy host. In Refs. 11–14, the multiple
scattering theory was applied to study the band gaps of three-

dimensional periodic acoustic composites and the band struc-
ture of a phononic crystal consisting of complex and
frequency-dependent Lamé coefficients. Garcia-Pablos
et al.15 used the finite difference time domain method to in-
terpret the experimental data of two-dimensional systems
consisting of cylinders of fluids !Hg, air, and oil" inserted
periodically in a finite slab of Al host.
In this paper, we extend Tanaka and Tamura’s work7 to

study phononic band gaps of surface waves in two-
dimensional phononic structures consist of general aniso-
tropic materials. The explicit formulations of the plane har-
monic bulk wave and the surface wave dispersion relations
in such a general phononic structure are derived based on the
plane wave expansion method. Two-dimensional phononic
structures with either the square or the hexagonal lattice are
considered in the numerical examples. Band gap characteris-
tics of the phononic structures with different anisotropic
background materials !isotropic, cubic, hexagonal, and
orthorhombic" are calculated and discussed.

II. EQUATIONS OF MOTION OF 2D PHONONIC
CRYSTALS

In an inhomogeneous linear elastic anisotropic medium
with no body force, the equation of motion for the displace-
ment vector u(r,t) can be written as

#!r"ü i!r,t ""$ j%Ci jmn!r"$num!r,t "& , !1"

where r"(x,z)"(x ,y ,z) is the position vector, #!r",
Ci jmn(r) are the position-dependent mass density and elastic
stiffness tensor, respectively. In the following, we consider a
phononic crystal composed of a two dimensional periodic
array (x-y plane" of material A embedded in a background
material B . Both materials A and B are crystals with the
lowest symmetry, i.e., belonging to the triclinic symmetry.
Due to the spatial periodicity, the material constants, #!x",
Ci jmn(x) can be expanded in the Fourier series with respect
to the two-dimensional reciprocal lattice vectors !RLV", G
"(G1 ,G2), as
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#!x""'
G

eiG•x#G , !2"

Ci jmn!x""'
G

eiG•xCGi jmn , !3"

where #G and CG
i jmn are the corresponding Fourier coeffi-

cients and are defined as

#G"Ac
#1! d2x#!x"e#iG•x, !4"

CG
i jmn"Ac

#1! d2xCi jmn!x"e#iG•x . !5"

In the above equations, Ac is the area of the primitive unit
cell of a two-dimensional phononic structure. On utilizing
the Bloch theorem and expanding the displacement vector
u(r,t) in Fourier series, we have

u!r,t ""'
G

eik•x#i(t!eiG•xAGeikzz", !6"

where k"(k1 ,k2) is the Bloch wave vector, ( is the circular
frequency, kz is the wave number along the z direction, and
AG is the amplitude of the displacement vector. We note that
as the component of the wave vector kz equals to zero, Eq.
!6" degenerates into the displacement vector of a bulk acous-
tic wave.
Substituting Eqs. !2", !3" and !6" into Eq. !1", and after

collecting terms systematically, we obtain

"
# MG,G!

(1)

!kzSG,G!
(1)

!kz
2NG,G!

(1)
$ # LG,G!

(1)

!kzOG,G!
(1)

!kz
2TG,G!

(1)
$ # UG,G!

(1)

!kzKG,G!
(1)

!kz
2VG,G!

(1)
$

# LG,G!
(2)

!kzOG,G!
(2)

!kz
2TG,G!

(2)
$ # MG,G!

(2)

!kzSG,G!
(2)

!kz
2NG,G!

(2)
$ # UG,G!

(2)

!kzKG,G!
(2)

!kz
2VG,G!

(2)
$

# WG,G!
(1)

!kzJG,G!
(1)

!kz
2XG,G!

(1)
$ # WG,G!

(2)

!kzJG,G!
(2)

!kz
2XG,G!

(2)
$ # MG,G!

(3)

!kzSG,G!
(3)

!kz
2NG,G!

(3)
$ %

•& AG!
1

AG!
2

AG!
3
'"0, !7"

where the n$n matrices MG,G!
(1) , MG,G!

(2) , MG,G!
(3) , SG,G!

(1) ,
etc. are functions of the Bloch wave vector k, components of
the two-dimensional RLV, circular frequency (, the Fourier
coefficients of mass density #G and components of elastic
stiffness tensor CG

i jmn . n is the total number of RLV used in
the Fourier expansion. The expressions of the 27 matrices,
MG,G!
(1) , MG,G!

(2) , MG,G!
(3) , SG,G!

(1) , etc., in Eq. !7" are listed in
the Appendix.

The form of Eq. !7" can be rewritten in the form of a
generalized eigenvalue problem with respect to kz as

!Akz
2!Bkz!C"•U"0, !8"

where

A"& NG,G!
(1) TG,G!

(1) VG,G!
(1)

TG,G!
(2) NG,G!

(2) VG,G!
(2)

XG,G!
(1) XG,G!

(2) NG,G!
(3)

' , !9"

B"& SG,G!
(1) OG,G!

(1) KG,G!
(1)

OG,G!
(2) SG,G!

(2) KG,G!
(2)

JG,G!
(1) JG,G!

(2) SG,G!
(3)

' , !10"

C"& MG,G!
(1) LG,G!

(1) UG,G!
(1)

LG,G!
(2) MG,G!

(2) UG,G!
(2)

WG,G!
(1) WG,G!

(2) MG,G!
(3)

' , !11"

and

U"& AG!
1

AG!
2

AG!
3
' . !12"

Equation !8" is more complicated than that of the two-
dimensional phononic crystal with cubic symmetry given by
Tanaka and Tamura7 in such a way that the coefficient matrix
B is not vanished. However, it can be solved by introducing
V"kzU and rewritten in the form as16

& 0 I
#A#1C #A#1B' &UV'"kz&UV' . !13"

III. BULK AND SURFACE WAVES IN 2D PHONONIC
CRYSTALS

It is worth noting that the case of bulk wave is a special
case of Eq. !8". When kz in Eq. !8" is equal to zero, the
equation degenerates into the eigenvalue problem of bulk
waves as

C•U"0. !14"

The dispersion relations of bulk waves propagating in two-
dimensional phononic crystals with both the filling material
and the background material belong to the triclinic system,
can be obtained by setting the determinant of matrix C equal
to zero.
For material with symmetry higher !and equal to" than

orthorhombic symmetry, the components UG,G!
(1) , UG,G!

(2) ,
WG,G!
(1) , WG,G!

(2) in matrix C are zero and Eq. !14" can be
decoupled into two different polarization modes as
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&MG,G!
(1) LG,G!

(1)

LG,G!
(2) MG,G!

(2) ' &AG!
1

AG!
2 '"0 !15"

for mixed polarization modes %i.e., longitudinal !L" and shear
horizontal !SH"& and

%MG,G!
(3) &%AG!

3 &"0 !16"

for shear vertical !SV" modes with polarization of the dis-
placement along the z direction !i.e., the filler’s length direc-
tion".
For the case of surface wave, the 6n eigenvalues kz

(l) of
Eq. !13" are the apparent wave numbers of the plane waves
in the z direction. According to the exponential dependence
of z in Eq. !6", the real part of kz

(l) denotes the plane wave
propagation in the z direction, and a positive nonvanishing
imaginary part represents attenuation in the z direction. For
surface waves propagate in a half space (z%0), only 3n
eigenvalues, which attenuate in the positive z direction are
chosen, i.e., Im(kz

(l))%0. Accordingly, the surface wave dis-
placement can be expressed as

u!r,t ""' !
G

ei(k!G)•x#i(t# '
l"1

3n

AGeikz
(l)z$

"' !
G

ei(k!G)•x#i(t# '
l"1

3n

Xl!G
(l)eikz

(l)z$ , !17"

where !G
(l) is the associated eigenvector of the eigenvalue

kz
(l) . The prime of the summation denotes that the sum over
G is truncated up to n . Xl is the undetermined weighting
coefficient which can be determined from the traction free
boundary conditions on the surface z"0, i.e.,

Ti3(z"0)Ci3mn$num(z"0"0 ! i"1,2,3 ". !18"

Substituting Eq. !17" into Eq. !18", we have

& H1,G
(1) H1,G

(2) ¯ H1,G
(3n)

H2,G
(1) H2,G

(2) ¯ H2,G
(3n)

H3,G
(1) H3,G

(2) ¯ H3,G
(3n)

'& X1
X2
]
X3n

')H̃X"0, !19"

where H̃ is a 3n$3n matrix and its components are

H1,G
(l) "& !CG–G!

35 !CG–G!
45 !CG–G!

55 "!k1!G1!"!G!
3(l)!

!CG–G!
35 !CG–G!

45 !CG–G!
55 "!kz

(l)"!G!
1(l) ' ,

!20"

H2,G
(l) "& !CG–G!

34 !CG–G!
44 !CG–G!

54 "!k2!G2!"!G!
3(l)!

!CG–G!
34 !CG–G!

44 !CG–G!
54 "!kz

(l)"!G!
2(l) ' ,

!21"

H3,G
(l) "& !CG–G!

31 !CG–G!
41 !CG–G!

51 "!k1!G1!!G!
1(l)!

!CG–G!
32 !CG–G!

42 !CG–G!
52 "!k2!G2!!G!

2(l)!

!CG–G!
33 !CG–G!

43 !CG–G!
53 "!kz

(l)"!G!
3(l)!

!CG–G!
36 !CG–G!

46 !CG–G!
56 "!k1!G1!!G!

2(l)!

!CG–G!
36 !CG–G!

46 !CG–G!
56 "!k2!G2!!G!

1(l)

' .
!22"

For the existence of a nontrivial solution of Xl , the fol-
lowing condition must be satisfied, i.e.,

det!H̃ ""0. !23"

Equation !23" is the dispersion relation for surface waves
propagating in two-dimensional phononic crystals with both
the filling material and the background material belong to the
triclinic system. The relative magnitude of the eigenvectors
Xl can be obtained by substituting kz and (, which satisfy
Eq. !23", into Eq. !19".

IV. NUMERICAL EXAMPLES

The Fourier coefficients, #G and CG
i jmn , in Eqs. !4" and

!5", can be expressed as

*G") *A f!*B!1# f " for G"0,
!*A#*B"FG for G+0,

!24"

where *"(# ,Ci jmn), f is the filling fraction that defines the
cross-sectional area of a cylinder relative to a unit-cell area,
and FG is called the structure function defined as

FG"Ac
#1!

Ac
d2xe#iG•x . !25"

FIG. 1. Phononic structures with the square lattice !a" and the
hexagonal lattice !b".
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In the above equation, Ac is the cross section area of the
filling structure. The structure function is then reduced to

FG"
2 f J1!Gr0"

Gr0
!26"

with J1(x) a first order Bessel function.
In this paper, phononic structures with square lattice and

hexagonal lattice are considered. These lattices consist of
circular cylinders (A) embedded in a background material
(B) forming two-dimensional lattices with lattice spacing a
as shown in Fig. 1!a" !square lattice" and Fig. 1!b" !hexago-
nal lattice". Figures 2!a" and 2!b" are the Brillouin regions of
the square lattice and the hexagonal lattice, respectively. In

the square lattice, the reciprocal lattice vector is G
"(2,N1 /a ,2,N2 /a), where N1 ,N2"0,&1,&2,.. . and the
filling fraction is f"(,r0

2)/a2. The irreducible part of the
Brillouin zone of a square lattice is shown in Fig. 2!a", which
is a triangle with vertices -, X , M . The reciprocal lattice
vector of a hexagonal lattice is G"„2,N1 /a ,2,(2N2
#N1)/)a…, where N1 ,N2"0,&1,&2,.. . and the filling
fraction is f"(2,r0

2)/)a2. The irreducible part of the Bril-
louin zone of a hexagonal lattice is shown in Fig. 2!b", which
is a triangle with vertices -, K , M . The elastic properties of
the materials utilized in the following examples are adopted
from Ref. 17 and listed in Table I and Table II.

A. Isotropic materials: AlÕNi square lattice

Consider a phononic structure consisting of aluminum
!Al" circular cylinders embedded in a background material of
Ni forming a two-dimensional square lattice with lattice
spacing a . Figure 3 shows the dispersion relations along the
boundaries of the irreducible part of the Brillouin zone with
filling ratio f"0.6. The vertical axis is the normalized fre-
quency (*"(a/Ct and the horizontal axis is the reduced
wave number k*"ka/, . As the elastic waves propagate
along the x axis, the nonvanishing displacement of the shear
horizontal mode, shear vertical mode and longitudinal mode
are uy , uz , and ux respectively. For the sequence modes
appear, we denominate the same type mode as the fundamen-
tal, the first and the second modes et al. For example, in Fig.
3, the thin solid lines represent the SV bulk acoustic modes
!the fundamental mode is SV0 and the first mode is SV1),
and the square symbols are those for the longitudinal acous-
tic mode !L". The thin dashed line represents the fundamen-
tal shear horizontal mode SH0 , while the lines with ‘‘!’’
symbols represent the first shear horizontal mode SH1 . In
Fig. 3, for bulk mode propagation along the x direction
(--X), there are clear band gaps exist for the SV ((*

FIG. 2. Brillouin zone of the square lattice !a" and the hexagonal
lattice !b".

TABLE I. The elastic properties of the materials utilized in the
examples !I".

Material Symmetry
Density
(kg/m3)

Elastic constants ($1010 N/m2)

C11 C12 C13 C33 C44

Ni Isotropic 8905 32.4 16.4 8
Al Isotropic 2695 11.1 6.1 2.5
AlAs Cubic 3760 12.02 5.70 5.89
GaAs Cubic 5360 11.88 5.38 5.94
ZnO Hexagonal 5680 20.97 12.11 10.51 21.09 4.247

TABLE II. The elastic properties of the materials utilized in the examples !II".

Material Symmetry
Density
(kg/m3)

Elastic constants ($1010 N/m2)

C11 C12 C13 C23 C22

Ba2NaNb5O15 Orthorhombic 5300 23.9 10.4 5.0 5.2 24.4
C33 C44 C55 C66
13.5 6.5 6.6 7.6
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"1.36) and SH ((*"1.22) bulk modes and the phase ve-
locities of the SV mode !thin solid line" are larger than those
of the SH mode. The boundary of the Brillouin zone X-M of
Fig. 3 represents the dispersion of the bulk waves with
propagating direction varied 0° –45° counterclockwise away
from x direction. At a first glance, it seems that the disper-
sion curves of the fundamental and the first shear horizontal
modes, SH0 and SH1, make a cross at point T . However,
detail calculation around the point T !Fig. 4" shows that the
fundamental and the first shear horizontal modes do not cross
over, instead, these two modes bend away from each other.
The corresponding wave propagating direction of point T is
about 28.44°.
To understand further the peculiar behavior of the shear

horizontal modes at point T , we calculated the displacement
fields of the SH0 and SH1 modes along all the boundaries of
the Brillouin zone as those shown in Figs. 5 and 6. In the
--X section, the nonvanishing displacement of the shear
horizontal mode is uy as expected and it vanishes at the band
gap point X . As the propagating direction move away from
the X point, one finds that uy remains very small; however,
ux increases gradually until the point T . At this particular
propagating direction, ux suddenly jumps to a very small

value, instead, uy jumps from a small value to a finite value
and then decays to zero at the band gap point M . Figure 6
shows the similar calculated result of the displacement field
of the SH1 mode. In contrast to the SH0 , at point X , uy
decreases from a finite value gradually until the point T , then
a sudden jump to a very small value. At point T , ux jump up
suddenly from a very small value to a finite value. With Figs.
5 and 6, we find clearly the mode interchange appears at the
sharp bend of the dispersion curve !point T in Fig. 4". It is
worth noting that in both of the SH0 and SH1 modes !Figs. 5
and 6", the magnitudes of the displacements ux and uy on the
--M section are equal due to the symmetry of the lattice
arrangements.
Figure 7 shows the dispersion relation of the surface wave

modes in the phononic structure with Al/Ni square lattice.
The solid circles represent the dispersion relations of the sur-
face wave modes !SAW" and the open circles are those for
the pseudosurface wave !PSAW" modes. For later conve-
nience in discussing the interaction of the surface wave and
bulk wave, the dispersion of the bulk modes are also shown
in the figure. Result showed that as the normalized frequency
of the surface wave mode lies between the SH0 and SH1

FIG. 3. Dispersion relations of all bulk modes !Al/Ni, f"0.6,
sq.".

FIG. 4. Detail calculation around the point T .

FIG. 5. Displacement fields of the SH0 modes along all the
boundaries of the Brillouin zone !Al/Ni, f"0.6, sq.".

FIG. 6. Displacement fields of the SH1 modes along all the
boundaries of the Brillouin zone !Al/Ni, f"0.6, sq.".
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modes, the surface wave degenerates into the pseudosurface
wave mode. Unlike the normal surface wave mode, the dis-
placement of the pseudosurface wave mode does not decay
to zero at large depth. In the present case, one finds that at
point X , instead of the SAW-SAW band gap, there only ex-
ists SAW-PSAW band gap. It is worth noting that in Fig. 7,
from X to M , the higher SAW mode ceased approximately at
the T point where the sharp bend of the bulk SH mode oc-
curs.
To test the convergence of the plane wave expansion

method, we chose the fundamental shear vertical mode SV0
as an example and calculated the dispersion curves with dif-
ferent number of the reciprocal lattice vectors. The testing
results showed that as the reciprocal lattice vector number
increases to a specific value, the normalized frequency of the
SV0 mode almost converges to a constant value. For ex-
ample, the difference between the results using 49 RLV and
those using 169 RLV is about 0.5%. The convergence test for
the SAW mode also showed a similar trend as that of the
bulk acoustic wave. For computing time consideration, we
used 49 RLV in all the calculations conducted in this paper.

B. Cubic materials: AlAsÕGaAs square lattice

In Ref. 7, the dispersion curves of the surface waves
propagate in a two-dimensional square lattice consisting of
circular cylinders of AlAs embedded in a background mate-
rial of GaAs with filling fraction f"0.564 have been re-
ported. Shown in Fig. 8 is dispersion curves reproduced from
this study, one finds that the result is exactly the same as that
in Ref. 7. Details of the discussions of bulk and surface wave
dispersions in this phononic structure can be found therein.

C. Hexagonal materials:
AlÕZnO square lattice and hexagonal lattice

In this subsection, we consider a phononic structure con-
sisting of circular cylinders of Al embedded in a background
material of ZnO forming a two-dimensional square lattice.
The material of the filling cylinders is isotropic aluminum
and the base material ZnO is in hexagonal symmetry. In the
following calculations, the x-y plane is parallel to the !001"
plane and the x axis is parallel to the %100& direction of ZnO
and the filling ratio is 0.6. Shown in Fig. 9 are the dispersion
curves for both of the bulk modes and surface acoustic
modes. Similar to the case of the isotropic material shown in
Fig. 3, the thin solid lines represent the SV bulk acoustic
modes (SV0 and SV1), and the square symbols are those for
the longitudinal acoustic mode (L). The thin dashed line

FIG. 7. Dispersion relations of BAW and SAW modes !Al/Ni,
f"0.6, sq.".

FIG. 8. Dispersion relations of BAW and SAW modes !AlAs/
GaAs, f"0.564, sq.".

FIG. 9. Dispersion relations of BAW and SAW modes !Al/ZnO,
f"0.6, sq.".

FIG. 10. An enlarged plot of Fig. 9 around the sharp bends.
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represents the fundamental shear horizontal mode SH0 ,
while the lines with ‘‘!’’ symbols represent the first shear
horizontal mode SH1 . The dispersion of the bulk modes
shows similar characteristics as that of the isotropic Al/Ni
case. Except that in the --X section, the higher and lower
SV and SH modes are almost overlapped, and therefore the
band gap widths of these two modes are similar at the Bril-
louin boundary point X . In the X-M section, the dispersion
curves of the SH0 and SH1 modes still approaching to each
other, however, the bends at the closest point are of not so
sharp as those in the Al/Ni case.
In Fig. 9, unlike the Al/Ni phononic square lattice shown

in Fig. 8, we found that the lower SAW mode exists through
all the boundaries of the Brillouin zone. No PSAW exists in
this branch for in this case, all the SAW velocities are
smaller than the bulk shear and longitudinal wave velocities.
We note that in the --X section, the higher SAW mode be-
comes PSAW, while in the X-M section, it preserves the
SAW characteristics and extends from X to approximately
the sharp bend position, and then, degenerates into the
PSAW for a small section as shown in the figure. On the
other hand, the higher surface acoustic wave extends from
the M point belongs to the PSAW as shown in Fig. 9. It ends
at approximately the sharp bends of the SH1 mode. An en-
larged plot of Fig. 9 around the sharp bends is shown in Fig.
10. One finds clearly that the PSAW mode extends from the
X point is tangentially merged into the SH0 mode and ceased
at the intersection point. On the other hand, the PSAW mode
extends from the M point is tangentially merged into the SH1
mode and ceased at the intersection point.
Shown in Fig. 11 are the dispersion curves of the bulk

modes and surface acoustic modes of the Al/ZnO phononic
structure with hexagonal lattice. For the shear horizontal
modes SH0 !thin dashed line" and SH1 !! symbols", unlike
that of the square lattice, we find no sharp bend occurs in the
K-M section. Therefore, there is no SH mode interchange
exists in this phononic structure with hexagonal lattice. From
Fig. 11, we found that at K point, there is no surface wave
band gap existed. However, along the --M boundary, a
SAW-PSAW band gap exists at the boundary point M .

D. Orthorhombic materials: AlÕBa2NaNb5O15 square lattice
and hexagonal lattice

In this subsection, we consider a phononic structure con-
sisting of circular cylinders of Al embedded in a background
material of barium sodium niobate (Ba2NaNb5O15) forming
a two-dimensional square lattice. The material of the filling
cylinders is isotropic aluminum and the base material is
barium sodium niobate with orthorhombic symmetry. In the
following calculations, the x-y plane is parallel to the !001"
plane and the x axis is parallel to the %100& direction of
barium sodium niobate. The filling fraction is f"0.6.
Shown in Fig. 12 are the dispersion curves for both of the

bulk modes and surface acoustic modes. The surface wave
dispersion curves along --X and --M directions lie below
the dispersion curves of transverse waves and degenerate to
PSAW along the boundaries of X-M and --M . At one of the
vertex of the Brillouin region, M , there is a clear frequency

band gap with nondimensional width of 0.26 between PSAW
and PSAW. At the vertex X , we found a frequency band gap
between SAW and SAW with nondimensional width of 0.52.
Similar to the isotropic Al/Ni square lattice, the surface wave
and higher SAW mode continues to exist along X-M bound-
ary up to about 39.35° and 24.70° rotated from X point in
Fig. 12.
For some materials with symmetry higher !and equal to"

than hexagonal symmetry, the x-y plane is isotropic for all
the propagation modes. The irreducible part of the Brillouin
zone of a square lattice is an isosceles right-angled triangle
showed in Fig. 2!a". But the material with orthorhombic
symmetry is anisotropic in the x-y plane; the dispersion re-
lations of propagation along x axis and y axis are different.
The irreducible part of the Brillouin zone of a square lattice
is extended to a square with vertices -, X , M , Y shown in
Fig. 2!a". However, due to the small difference between C11
and C22 and between C13 and C23 , we found that the differ-
ences of dispersion relations along --X and --Y are very
small in this case, therefore, only -, X , M are considered in
Fig. 12.
To further investigate the anisotropic effect on the disper-

sion of a phononic structure, we considered the Y -cut barium

FIG. 11. Dispersion relations of BAW and SAW modes !Al/
ZnO, f"0.6, hex.".

FIG. 12. Dispersion relations of BAW and SAW modes !Al/
barium sodium niobate, f"0.6, sq.".
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sodium niobate as the background material. Shown in Fig. 13
are the dispersion curves of the bulk modes and surface
acoustic modes of the Al/barium sodium niobate (Y -cut"
phononic structure with hexagonal lattice. According to the
discussions in the above paragraph, the irreducible part of
the Brillouin zone of a hexagonal lattice for anisotropic ma-
terials must be extended to the first quadrant in original hex-
agonal lattice with vertices -, K , L , Y shown in the inset of
Fig. 13.
For the longitudinal modes L !square symbols", unlike

that of the square lattice, we find that band gap occurs in the
--K section !the width is 0.91". It is seen that the dispersion
relations in K-L section are almost symmetric respect to the
center of the section (M point". It is worth noting that in the
L-Y section, sharp bends of the dispersion curves occur be-
tween SH1 and L modes and between L and SH0 modes.
Therefore, there are mode interchanges !SH and L) exist in
this phononic structure with hexagonal lattice. In the --Y

section, the waves propagation are along y axis, the displace-
ment fields of longitudinal and shear horizontal modes are uy
and ux , respectively.
From Fig. 13, we find that at K point, there is no surface

wave band gap existed. However, along the --Y boundary, a
PSAW-PSAW band gap exists at the boundary point Y . The
phenomenon shows the characteristics of an anisotropic ma-
terial.

V. CONCLUSION

In this paper, we studied the phononic band gaps of sur-
face waves in two-dimensional phononic structures consist
of general anisotropic materials. The explicit formulations of
the plane harmonic bulk wave and the surface wave disper-
sion relations in such a general phononic structure are de-
rived based on the plane wave expansion method. Two-
dimensional phononic structures with either the square or the
hexagonal lattice are considered in the numerical examples.
Band gap characteristics of the phononic structures with dif-
ferent anisotropic background materials !isotropic, cubic,
hexagonal and orthorhombic" are calculated and discussed. It
is worth noting that some of the crossing over of the disper-
sion curves !apparently" is indeed sharp bends of the disper-
sion curves. Around this sharp bend area, the mode exchange
suddenly. Results of this paper can serve as a basis for both
numerical and experimental investigations of phononic crys-
tal structures consist of general anisotropic materials.
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APPENDIX

The expressions of the 27 matrices in Eq. !7" are

MG,G!
(1) "& (2#G#G!

#!G1!k1"!G1!!k1"CG#G!
11 #!G1!k1"!G2!!k2"CG#G!

16

#!G2!k2"!G1!!k1"CG#G!
16 #!G2!k2"!G2!!k2"CG#G!

66 ' , !A1"

MG,G!
(2) "& (2#G#G!

#!G1!k1"!G1!!k1"CG#G!
66 #!G1!k1"!G2!!k2"CG#G!

26

#!G2!k2"!G1!!k1"CG#G!
26 #!G2!k2"!G2!!k2"CG#G!

22 ' , !A2"

MG,G!
(3) "& (2#G#G!

#!G1!k1"!G1!!k1"CG#G!
55 #!G1!k1"!G2!!k2"CG#G!

45

#!G2!k2"!G1!!k1"CG#G!
45 #!G2!k2"!G2!!k2"CG#G!

44 ' , !A3"

SG,G!
(1) "&#!G1!k1"CG#G!

15 #!G2!k2"CG#G!
56

#!G1!!k1"CG#G!
15 #!G2!!k2"CG#G!

56 ' , !A4"

FIG. 13. Dispersion relations of BAW and SAW modes %Al/
barium sodium niobate !Y cut", f"0.6, hex.&.
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SG,G!
(2) "&#!G1!k1"CG#G!

46 #!G2!k2"CG#G!
24

#!G1!!k1"CG#G!
46 #!G2!!k2"CG#G!

24 ' , !A5"

SG,G!
(3) "&#!G1!k1"CG#G!

35 #!G2!k2"CG#G!
34

#!G1!!k1"CG#G!
35 #!G2!!k2"CG#G!

34 ' , !A6"

NG,G!
(1) "#CG#G!

55 , NG,G!
(2) "#CG#G!

44 , NG,G!
(3) "#CG#G!

33 , !A7"

LG,G!
(1) "&#!G1!k1"!G1!!k1"CG#G!

16 #!G1!k1"!G2!!k2"CG#G!
12

#!G2!k2"!G1!!k1"CG#G!
66 #!G2!k2"!G2!!k2"CG#G!

26 ' , !A8"

LG,G!
(2) "&#!G1!k1"!G1!!k1"CG#G!

16 #!G1!k1"!G2!!k2"CG#G!
66

#!G2!k2"!G1!!k1"CG#G!
21 #!G2!k2"!G2!!k2"CG#G!

26 ' , !A9"

OG,G!
(1) "&#!G1!k1"CG#G!

14 #!G2!k2"CG#G!
46

#!G1!!k1"CG#G!
56 #!G2!!k2"CG#G!

25 ' , !A10"

OG,G!
(2) "&#!G1!k1"CG#G!

56 #!G2!k2"CG#G!
25

#!G1!!k1"CG#G!
14 #!G2!!k2"CG#G!

46 ' , !A11"

TG,G!
(1) "#CG#G!

45 , TG,G!
(2) "#CG#G!

45 , !A12"

UG,G!
(1) "&#!G1!k1"!G1!!k1"CG#G!

15 #!G1!k1"!G2!!k2"CG#G!
14

#!G2!k2"!G1!!k1"CG#G!
56 #!G2!k2"!G2!!k2"CG#G!

46 ' , !A13"

UG,G!
(2) "&#!G1!k1"!G1!!k1"CG#G!

56 #!G1!k1"!G2!!k2"CG#G!
46

#!G2!k2"!G1!!k1"CG#G!
25 #!G2!k2"!G2!!k2"CG#G!

24 ' , !A14"

KG,G!
(1) "&#!G1!k1"CG#G!

13 #!G2!k2"CG#G!
36

#!G1!!k1"CG#G!
55 #!G2!!k2"CG#G!

45 ' , !A15"

KG,G!
(2) "&#!G1!k1"CG#G!

36 #!G2!k2"CG#G!
23

#!G1!!k1"CG#G!
45 #!G2!!k2"CG#G!

44 ' , !A16"

VG,G!
(1) "#CG#G!

35 , VG,G!
(2) "#CG#G!

34 , !A17"

WG,G!
(1) "&#!G1!k1"!G1!!k1"CG#G!

15 #!G1!k1"!G2!!k2"CG#G!
56

#!G2!k2"!G1!!k1"CG#G!
14 #!G2!k2"!G2!!k2"CG#G!

46 ' , !A18"

WG,G!
(2) "&#!G1!k1"!G1!!k1"CG#G!

56 #!G1!k1"!G2!!k2"CG#G!
25

#!G2!k2"!G1!!k1"CG#G!
46 #!G2!k2"!G2!!k2"CG#G!

24 ' , !A19"

JG,G!
(1) "&#!G1!k1"CG#G!

55 #!G2!k2"CG#G!
45

#!G1!!k1"CG#G!
13 #!G2!!k2"CG#G!

36 ' , !A20"

JG,G!
(1) "&#!G1!k1"CG#G!

45 #!G2!k2"CG#G!
44

#!G1!!k1"CG#G!
36 #!G2!!k2"CG#G!

23 ' , !A21"

XG,G!
(1) "#CG#G!

35 , XG,G!
(2) "#CG#G!

34 . !A22"

In the above equations, Voigt’s notation has been used to rewrite CG
i jmn as CG

IJ .
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