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Numerical study of acoustophoretic motion of
particles in a PDMS microchannel driven by
surface acoustic waves†

Nitesh Nama,a Rune Barnkob,b Zhangming Mao,a Christian J. Kähler,b

Francesco Costanzo*ac and Tony Jun Huang*ad

We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS

microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a

perturbation approach where the flow variables are divided into first- and second-order fields. We use

impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actu-

ation by a displacement function from the literature based on a numerical study of piezoelectric actuation.

Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels

vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk

acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged

acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles

driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to

demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated

acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune

the position of the vertical pressure node along the channel width by tuning the phase difference between

two incoming surface acoustic waves.
1. Introduction

The emergence of lab-on-a-chip technologies has sparked a
renewed interest in microfluidics. One of the requirements
for the success of lab-on-a-chip systems is to precisely manip-
ulate fluids and particles immersed in them at microscales.1,2

Here, surface acoustic wave (SAW) based systems, recently
reviewed in ref. 3–5 have shown great potential in recent years.

SAW-based systems rely on piezoelectric actuation of sur-
face acoustic waves in a solid substrate. These waves propagate
along the substrate surface and, as they encounter a fluid inter-
face, they radiate acoustic energy into the fluid. This drives
acoustic streaming in the fluid itself as well as the motion of
the immersed particles. The particles experience primarily two
forces, the acoustic radiation force arising from the scattering
of sound waves on the particles and the Stokes drag force from
the induced acoustic streaming. However, while bulk acoustic
wave (BAW) based systems have been heavily studied,6–9 the
theoretical and numerical work on SAW-driven systems is
rather limited and so is the full understanding of the underly-
ing physics. For example, little investigation has been made on
the mechanisms underlying the vertical focusing of particles in
poly-dimethylsiloxane (PDMS) channels,10 the mechanism of
cell–cell interactions in a SAW device,11 the effect of using
PDMS channels as opposed to silicon walls, the precise bulk
acoustic fields and associated acoustic streaming, and the critical
particle size for the transition between radiation-dominated and
streaming-dominated acoustophoresis. The latter has been exten-
sively studied within BAW-driven systems,9,12,13 but it is yet to be
examined in SAW-driven systems.

One of the primary reasons for the lack of a detailed theo-
retical understanding of the physical processes involved in
SAW devices is the difficulty in the identification of precise
boundary conditions. From a numerical viewpoint, the differ-
ence between BAW systems and SAW systems is limited to
the differences in actuation and wall conditions, while the
governing equations remain the same. While SAW-based sys-
tems with free boundaries in form of droplets have been
oyal Society of Chemistry 2015
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heavily studied numerically,14–16 SAW-driven systems with
closed boundaries have received less attention. Using hard-
wall boundary conditions, few studies have been reported for
the acoustic streaming in a closed SAW-driven system.17,18

However, while BAW systems utilize walls that are often made
of hard material like glass or silicon making hard-wall bound-
ary conditions appropiate, SAW-based systems often utilize
soft materials such as PDMS leading to significant radiative
energy losses.

In this work, we employ impedance boundary condi-
tions to model the PDMS walls of a typical SAW-based
device to setup a numerical model for investigating the
acoustophoretic motion in SAW devices. In line with the work
by Muller et al.9 we employ perturbation theory and use the
solution of the first-order equations to calculate the time-
averaged solutions, such as the acoustic streaming induced
in the liquid and the acoustic radiation force acting on
suspended particles. These are then used to determine
the particle trajectories and to study the transition of domi-
nance on particles' motion between the two forces. The
numerical method and the results presented in this work
will be helpful in providing a better understanding of
the physics in SAW-driven devices as well as to allow
for future optimization and reliable control of SAW-based
microfluidic devices, such as those employed in ref. 19–21.

2. Governing equations

The mass and momentum balance laws governing the
motion of a linear viscous compressible fluid are22,23




   



t

 v 0, (1)

and

    



       





   

v v v v v
t

p b   2 1
3

, (2)

where ρ is the mass density, v is the fluid velocity, p is the
fluid pressure, and μ and μb are the shear viscosity and bulk
viscosity, respectively. Here, the fields ρ, p, and v are under-
stood to be in Eulerian form,23 i.e., functions of time t and
spatial position r within a fixed volume. Furthermore, in
order to describe the fluid motion, we need a constitutive
relation linking the pressure and density. We assume a linear
relation between p and ρ:

p = c20 ρ, (3)

where c0 is the speed of sound in the fluid at rest. Combining
eqn (1)–(3) with appropriate boundary conditions, the system
is fully determined. Nonetheless, the above-mentioned nonlinear
system of equations is numerically challenging to solve via a
direct numerical simulation due to the widely separated time
This journal is © The Royal Society of Chemistry 2015
scales (characteristic oscillation periods vs. characteristic times
dictated by the streaming speed).24 For example, a typical
SAW device is operated at frequencies in the range of 1–100
MHz, while the streaming fields are characterized by time
scales of the order of tenth of seconds to several minutes.
Therefore we neglect the transient build-up of the acoustic
fields and in this work we only consider time-harmonic forc-
ing. However, because of viscous dissipation, the response of
the fluid to a harmonic forcing is, in general, not harmonic.
The fluid response can be understood to be comprised of two
components: (i) a periodic component with period equal to
the forcing period, and (ii) a remainder that can be viewed as
being steady. It is this second component which is generally
referred to as the streaming motion.4 Following our recent
model,25 we employ Nyborg's perturbation technique26 in
which fluid velocity, density, and pressure are assumed to
have the following form

v = v0 + ε1 + ε22 + O(ε3) + ⋯, (4a)

p p p p      0 1
2

2
3  � � �O , (4b)

            0 1
2

2
3� � �O , (4c)

where ε is a non-dimensional small parameter. Following
Köster,17,27 we define ε as the ratio between the amplitude of
the displacement of the boundary in contact with the piezo-
electrically driven substrate (i.e., the amplitude of the boundary
excitation) and a characteristic length. We take the zeroth order
velocity field v0 to be equal to zero thus assuming the absence of
an underlying net flow along themicrochannel. Letting

v v

v v
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(5)

substituting eqn (4a), (4b) and (4c) into eqn (1)–(3), and setting
the sum of all the terms of order one in ε to zero, the following
problem, referred to as the first-order problem, is obtained
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t
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Repeating the above procedure for the terms of order two
in ε, and averaging the resulting equations over a period of
oscillation, the following set of equations, referred to as the
second-order problem, is obtained




    


 2
0 2 1 1t
 v v , (8)
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(9)

where 〈A〉 denotes the time average of the quantity A over a
full oscillation time period. As pointed out by Stuart,28 iner-
tial terms in eqn (9) can be significant and must be retained
in the formulation. Also, to fully account for viscous attenua-
tion of the acoustic wave, both within and without the
boundary layer, the last term in eqn (9) associated with the
bulk viscosity must also be retained.

3. Numerical model
3.1 Model system and computational domain

A typical standing SAW (SSAW) device for particle manipula-
tion consists of a PDMS channel bonded on a piezoelectric
substrate (Fig. 1(a)). The device employs a pair of metallic
interdigitated transducers (IDTs) sitting on the surface of the
piezoelectric substrate. A SSAW is produced via the superpo-
sition of two counter-propagating traveling SAWs generated
on the surface of the piezoelectric substrate by applying a
harmonic electric signal to the IDTs. The full physical system
is governed by coupling of elastic, electromagnetic, and
hydrodynamic effects, which makes numerical modeling
challenging.17,27 Thus, we simplify the system by modeling
the PDMS walls of the channel using impedance boundary
conditions limiting this study to cases with PDMS walls of
thickness 2 mm or greater, while the effect of piezoelectric
substrate is modeled using a displacement function at the
substrate boundary. As a result our computational domain Ω

shown in Fig. 1(b) consists of a rectangular microchannel of
2702 | Lab Chip, 2015, 15, 2700–2709

Fig. 1 (a) Cross-sectional sketch of the SAW-driven device consisting
of a lithium niobate substrate and liquid-filled PDMS channel (width
w = 600 μm and height h = 125 μm). The substrate is acoustically actu-
ated via two sets of interdigitated transducers (IDTs). Note, the figure is
not drawn to scale and that the PDMS channel walls are considered to
be of thickness 2 mm or greater. (b) Sketch of the computational
domain is Ω with impedance boundaries Γi and Dirichlet actuation
boundary Γd.
width w = 600 μm and height h = 125 μm, where the bound-
aries subject to the impedance condition are denoted by Γi,
while the actuated boundary is denoted by Γd. The boundary
conditions are discussed in detail in section 3.2. In this work,
we analyse the case where the piezoelectric substrate is made
of lithium niobate actuated with a surface wave of wavelength
λ = 600 μm and frequency f = 6.65 MHz, and where the chan-
nel is filled with water. The values for all the relevant proper-
ties of the piezoelectric substrate and water, as well as the
typical operational parameters used in our numerical model,
are listed in Table 1.
3.2 Boundary conditions

As the objective of this work is to study the fluid and particle
motion inside the microfluidic channel shown in Fig. 1, we
simplify the system considerably by modeling the effect of
piezoelectric substrate via a displacement boundary condi-
tion while the PDMS walls are modeled using impedance
boundary conditions.

The type of waves usually considered in SAW devices are
the so-called Rayleigh waves. The amplitude of these waves
decay exponentially with the depth into the substrate,
thereby confining most of the energy to the surface.37 The
two wave motions in the y and z direction are known to be
90° out of phase in time, thereby resulting in elliptical dis-
placements. Based on these considerations, it is possible to
find displacement functions for waves which propagate along
the y direction and decay exponentially in both y and z direc-
tion. Taking these considerations into account, Gantner
et al.38,39 analyzed numerically the Rayleigh waves in piezo-
electric substrates in great detail. We use the displacement
results from their analysis, also used by Köster,17,27 to
describe the displacement profile due to a traveling SAW
which takes the form

u t y u
y w
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u t y u

y
C y

z
C y
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(10)

where uy and uz are the displacements along the y and z
direction, respectively, Cd is the decay coefficient, and ω =
2πf is the angular frequency. The value of Cd employed by
Köster17,27 (8060 m−1) is appropriate for a SAW device
loaded with an infinite layer of water at frequencies in the
range of 100 MHz. Recently, Vanneste and Bühler40 investi-
gated streaming patterns using an attenuation coefficient of
2800 m−1 for a frequency of approximately 150 MHz. Using
the leaky SAW dispersion relation employed by Vanneste
and Bühler40 for a frequency of 6.65 MHz, we get an attenu-
ation coefficient of 116 m−1. However, we note that the
dispersion relation employed by Vanneste and Bühler40 is
valid for a SAW propagating under an infinitely thick
layer of water. A finite thickness might further reduce the
This journal is © The Royal Society of Chemistry 2015
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Table 1 Material parameters at T = 25 °C

Water

Density29 ρ0 997 kg m−3

Speed of sound29 c0 1497 m s−1

Shear viscosity29 μ 0.890 mPa s
Bulk viscosity30 μb 2.47 mPa s
Compressibilitya κ0 448 TPa−1

Lithium niobate (LiNbO3)

Speed of sound31 csub 3994 m s−1

Poly-dimethylsiloxane (PDMS, 10 : 1)

Density32 ρwall 920 kg m−3

Speed of sound33 cwall 1076.5 m s−1

Attenuation coeff. (6.65 MHz)b33 31 dB cm−1

Polystyrene

Density29 ρp 1050 kg m−3

Speed of sound34 (at 20 °C) cp 2350 m s−1

Poisson's ratio35 σp 0.35
Compressibilityc κp 249 TPa−1

Acoustic actuation parameters

Wavelength (set by IDTs) λ 600 μm
Forcing frequency f 6.65 MHz
Displacement amplitude μ0 0.1 nm
Displacement decay coefficient Cd 116 m−1

a Calculated as κ0 = 1/Ĳρ0c0
2). b Calculated via power law fit to data by

Tsou et al.33 c Calculated as 


 p
p

p p p


 
  

3 1
1

1
2c

from Landau

and Lifshitz.36

Fig. 2 Plot of standing SAW displacement vectors along the interface
of the channel and the piezoelectric substrate at z = 0 at (a) t = 0, (b) t =
π/6ω, (c) t = π/3ω, (d) t = π/2ω, (e) t = 2π/3ω, and (f) t = 5π/6ω. The
displacement function is obtained by superimposing two incoming
traveling SAWs from the left and the right direction, see eqn (11).
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attenuation coefficient. Noting this, for comparison pur-
poses we considered a case with Cd = 0 (see ESI† Fig. 1). We
observed that decreasing the value of Cd from 116 m−1 to
zero does not change the solution significantly. With this in
mind, we have used an attenuation coefficient of 116 m−1

for all the results presented in this article.
Using eqn (10), we construct the standing SAW displace-

ment profile over Γd by superimposing the displacement pro-
file of two SAWs traveling in opposite directions with a phase
difference of Δϕ:

u t y u
y w
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w y
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(11)
This journal is © The Royal Society of Chemistry 2015
The displacement function is plotted in Fig. 2. This displace-
ment function is then differentiated with respect to time to
obtain the first-order velocity that we impose over Γd
(Fig. 1(b)):

v
u

1 t y
t y
t

,
,

, on .d     


 (12)

For the boundary condition on the channel walls, marked
as Γi in Fig. 1(b), we use the so-called impedance or lossy-
wall boundary condition given as41

n p
c
p1

0
1i , on ,

m m
i




 (13)

where i is the imaginary unit, and ρm and cm are the mass
density and the speed of sound of the wall material, respec-
tively. Note that this boundary condition is very different
from the hard-wall condition, n·v1 = 0, used to model silicon
or glass walls in BAW systems as the impedance boundary
condition allows a non-zero first-order wall velocity.
Futhermore, with this boundary condition, the model
assumes all transmitted wave energy to be absorbed in the
PDMS, i.e. no reflected waves, from a potential PDMS/air
interface, are allowed to re-enter the water channel. The
model therefore only applies to cases, where the PDMS walls
are thick enough to attenuate waves transmitted from the
channel. In commonly-used PDMS (10 : 1), the attenuation
coefficient for frequencies of 5 MHz and 7 MHz are 21.30 dB
cm−1 to 33.57 dB cm−1, respectively, which translate to decay
coefficients of 490 m−1 and 773 m−1.33 For the specific fre-
quency of 6.65 MHz used in this work, the attenuation coeffi-
cient is close to 31 dB cm−1 corresponding to a decay coeffi-
cient of 714 m−1. Therefore, if the channel walls are thicker
than 2 mm, only a exp(−714 m−1 × 2 × 0.002 m) = 0.058 frac-
tion of the transmitted waves at the water/PDMS interface
will reach the PDMS/air interface and come back again. This
corresponds to an absorption of more than 94% and thus the
assumption of total absorption of acoustic waves in the
PDMS walls is reasonable for channel walls thicker than 2
mm. For higher actuation frequencies commonly used in
SAW devices (tens of MHz) the attenuation coefficient
Lab Chip, 2015, 15, 2700–2709 | 2703
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increases further (more than double at 11 MHz) thus making
the assumption of total absorption even more reasonable.

For the second-order problem, Bradley42 offered a careful
analysis of the boundary conditions to be satisfied on the
moving surfaces. Specifically, the no-slip boundary condition
needs to be satisfied on the deformed positions of the mov-
ing surfaces, and not on the initial rest positions. However,
the displacement amplitude in SAW devices is usually in sub-
nanometer range, thus it is possible to neglect the minute
difference between the initial and the deformed positions.
Noting this, we employ the zero-velocity boundary condition
on all the boundaries, similar to those used by Muller et al.:9

v2 = 0, on Γi ∪ Γd. (14)
3.3 Single-particle acoustophoretic trajectories

In order to be able to predict acoustophoretic particle trajec-
tories of a typical microfluidic experiment using polystyrene
tracer particles, we implement a particle tracking strategy.
Such trajectories will also establish the foundation for experi-
mental validation of our numerical model by using three-
dimensional particle tracking velocimetry.9,43 We consider
particles suspended in a suspension dilute enough to neglect
particle–particle interactions, hydrodynamic as well as acous-
tic. The tracking strategy is predicated on the determination
of the acoustic radiation force due to the scattering of waves
on the particle as described by Settnes and Bruus.44 Consid-
ering a particle of radius a much smaller than the wavelength
λ, mass density ρp, and compressibility κp, the radiation force
takes the form:44

F v vrad ,      






  a f p p f3 0
1 1 1 0 2 1 1

2
3


Re Re* * * * (15)

where κ0 = 1/Ĳρ0c0
2) is the compressibility of the fluid, ReĳA]

denotes the real part of quantity A, the asterisk denotes the
complex conjugate of the quantity, and the coefficients f1 and
f2 are given by

f fp p

p
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0
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0

0

1
2 1
2 1 3

  
   
  




  

  
 and  , (16)
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3
2

1 1 2

0

i , , .� � �
a

(17)

Note that we use the general expression for the radiation
force without a priori assumption of whether we deal with
traveling or standing waves.

In addition to the radiation force, a bead is assumed to be
subject to a drag force proportional to vp − 〈v2〉, which is the
velocity of the bead relative to the streaming velocity. When
wall effects are negligible, the drag force is estimated via the
simple formula Fdrag = 6πμa(〈v2〉 − vp). The motion of the
2704 | Lab Chip, 2015, 15, 2700–2709
bead is then predicted via the application of Newton's second
law

m
tp
p rad dragd

d
v

F F   (18)

where mp is the mass of the bead. In many acoustofluidics
problems the inertia of the bead can be neglected since the
characterstic time of acceleration is small in comparison to
the time scale of the motion of the particles.45 Doing so, eqn
(18) can be solved for vp

v v F
p   2 6

rad

a
(19)

For steady flows, we can identify the bead trajectories with
the streamlines of the velocity field vp in eqn (19).

3.4 Numerical scheme

For the first-order problem we seek solutions of the following
form

v(r, t) = v(r)exp(−iωt), (20a)

p(r, t) = p(r)exp(−iωt), (20b)

where vĲr) is a vector-valued function of space while pĲr) is a
scalar function of space. For the second-order problem, we
seek steady solutions. We also note that the second-order
problem has pure Dirichlet boundary conditions on all sides
and hence does not admit a unique solution unless we assign
an additional pressure constraint. However, since the radia-
tion force used here is completely dependent only on the
first-order fields, we do not use the second-order pressure in
any of our calculations. Combining information from the
first- and the second-order solutions, it is then possible to
estimate the mean trajectory of particles in the flow.

All the solutions discussed later are for two-dimensional
problems. The numerical solution was obtained via the finite
element software COMSOL Multiphysics 4.4.46 For both the
first- and second-order problems we used Q2–Q1 elements
for velocity and pressure, respectively, where Q1 and Q2
denote triangular elements supporting Lagrange polynomials
of order one and two, respectively.

4. Results and discussions
4.1. Mesh convergence analysis

To capture the physics inside the boundary layers near the
walls, we use a computational mesh with a maximum ele-
ment size near the boundary, db while the maximum ele-
ment size in the bulk of the domain was set to 2 μm.
Fig. 3(a) shows an illustrative mesh with db = 30δ, where δ is
the viscous boundary layer thickness given by eqn (17). To
check for mesh convergence, we investigate the behavior of
the variables solved for on a series of meshes generated by
progressively decreasing the mesh element size, db. We
This journal is © The Royal Society of Chemistry 2015
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define a relative convergence function CĲg) for a solution g
with respect to a reference solution gref obtained on the finest
mesh as

C g
g g y z

g y z
( ) ,

 
 




ref

ref

d d

d d

2

2
(21)

where we use a reference solution gref obtained for db = 0.2δ
with approximately 5.6 × 105 elements. The results of the
mesh convergence analysis are shown in Fig. 3(b) where the
convergence function C is plotted as a function of δ/db. As
the value of db reaches 0.3δ all the variables have reached
sufficient convergence and throughout the rest of the work
we use a mesh with db = 0.3δ.

4.2 Wall impedance sweep

To study the effect of the wall material of the microfluidic
channel, we perform a series of simulations with increasing
value of wall impedance while the fluid impedance is kept
constant. For each value of increasing impedance we com-
pare the solution g to the solution gref obtained using hard-
wall boundaries (i.e. n·v1 = 0 at Γi) by calculating the conver-
gence function CĲg) in eqn (21). The first-order pressure field
from the hard-wall solution is shown in Fig. 4(a) and features
a resonance with no traveling waves as typically observed in
BAW systems. The convergence function CĲg) for the first-
order pressure and velocity fields is plotted in Fig. 4(b) and it
is seen that as the wall impedance increases, the solutions
converge to the hard-wall solution. The values of the conver-
gence function C for impedance values for those of glass
(zgl = 1.3 × 107 kg m−2 s−1) and silicon (zsi = 2.0 × 107 kg m−2 s−1)
were around 0.45 and 0.3, respectively, while C for PDMS is
around 1. Thus, to a reasonable approximation, hard-wall
boundary conditions can be used for BAW systems using typi-
cally silicon or glass walls, while it is an inaccurate condition
for SAW systems using PDMS walls. This is in good agree-
ment with the fact that PDMS, having an acoustic impedance
similar to water, absorbs most of the incident waves with lit-
tle reflections while silicon and glass, having very different
acoustic impedances from water, reflect most of the incident
waves leading to the building up of resonances inside the
microchannel.

4.3. Acoustic fields

Having identified the proper mesh refinement level in sec-
tion 4.1 and that impedance boundary conditions are appro-
priate for modeling PDMS walls in section 4.2, we investigate
the acoustic fields that are set up inside the channel. In
Fig. 5 we show the first-order pressure field p1, first-order
velocity field v1, and the second-order velocity field 〈v2〉,
where the plotted colors indicate the field magnitude (from
blue minimum to red maximum) and the black arrows indi-
cate the field vectors. For the first-order pressure field p1
and first-order velocity field v1 in Fig. 5(a) and (b),
This journal is © The Royal Society of Chemistry 2015
respectively, we observe a clear horizontal standing wave
along y, but as indicated by the upwards-pointing magenta
arrows, we observe that the first-order fields are traveling
waves moving from the bottom wall towards the top wall
along the z direction. The first-order pressure amplitude pa is
observed to be 12.9 kPa as opposed to 70.5 kPa observed
when using the hard-wall boundary conditions as shown in
Fig. 4(a). This difference in pressure amplitude can be
attributed to the fact that a resonance is set up in the chan-
nel when using the hard-wall boundary condition, leading to
an increased pressure amplitude. Furthermore, we notice
that the first-order velocity amplitude |va| is observed to be
5.3 mm s−1. This amplitude is greater than the actual veloc-
ity amplitude |va| = ωu0 = 4.17 mm s−1 imposed via the actu-
ation function described in eqn (11), which indicates that the
traveling wave is not completely transmitted through the
PDMS walls and thus reflections occur from the channel
walls due to the small but non-zero impedance mismatch
between the PDMS and water.

Fig. 5(c) shows the second-order velocity field 〈v2〉, in
which four streaming vortices are observed along the y direc-
tion with a maximum velocity of 1.47 μm s−1 close to the bot-
tom wall. Fig. 5(d) shows a zoomed version of the second-
order velocity near the bottom boundary and we note that no
streaming rolls are observed within the viscous boundary

layer of width       2 0 210/ .  m , which were observed

numerically by Muller et al.9 for a BAW system. The differ-
ence between the model by Muller et al. and our model, is
that we use impedance boundary conditions instead of hard-
wall conditions, which allow the first-order velocity to have
a slip-velocity thus minimizing the velocity gradients near
the walls. Furthermore, in contrast to the work by Muller and
co-workers, we actuate the bottom wall from where the
streaming is driven.

4.4 Particle trajectories

Based on the acoustic fields described in the former section
and the theory described in section 3.3 (see the radiation
force field in ESI† Fig. 2), we calculate the velocities and tra-
jectories of polystyrene particles of diameters ranging from 1
μm to 20 μm. The trajectories are plotted in Fig. 6 for 243
particles with uniformly-distributed initial positions as
shown in Fig. 6(a). The panels Ĳb)–Ĳf) show the trajectories of
(b) 1 μm particles during 100 s, (c)5 μm particles during 100
s, (d) 10 μm particles during 60 s, (e) 15 μm particles during
60 s, and (f) 20 μm particles during 40 s. For each particle
trajectory the colors denote the particle velocity ranging from
zero (blue) to its maximum (red), while the colored disks
show the particles' final positions and velocities. For the 1
μm and 5 μm particles in panel (b) and (c), respectively, we
clearly see that their motion is governed by the viscous drag
from the acoustic streaming as plotted in Fig. 5(c). The parti-
cles are carried around in the four horizontal streaming rolls
and the maximum velocities of around 1.5 μm s−1 are very
close to the maximum streaming velocity of 1.47 μm s−1. As
Lab Chip, 2015, 15, 2700–2709 | 2705
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the particle size increases, the acoustic radiation force
becomes influential and for the motion of the 10 μm parti-
cles in panel (d) we observe that far from the strong stream-
ing at the bottom wall, the acoustic radiation force pushes
the particles out of the streaming vortices towards the top
wall. This is even more evident for the 15 μm particles in
panel (e), where the radiation force contribution is Ĳ15/10)2 ≈
2.25 times larger, which is seen by an almost complete
vanishing of the vortex motion as well as a maximum particle
velocity of 2.43 μm s−1. In panel (f) for the 20 μm particles,
the acoustic streaming pattern has completely vanished and
the acoustic radiation force is fully dominating the motion.
We note that the radiation force carries the particles out-
wards from (±w/4, h/2) towards the channel walls conse-
quently bringing the particles to the standing pressure nodes
at y equal to −w/2, 0, and w/2. Furthermore, we notice that
the 20 μm particles obtain velocities 4.05/2.43 ≈ 1.7 times
larger than those of the 15 μm particles, which is close to the
expected ratio of Ĳ20/15)2 = 1.8 if both the particles were fully
dominated by the radiation force, see eqn (15) and (19). For
the investigated system, the critical particle size for the tran-
sition between streaming-dominated and radiation-dominated
motion is around 10 μm depending on the particle z-position
as the acoustic streaming is strongest at the bottom wall.
If we compare this to the BAW system studied by Muller
et al.9,47 and Barnkob et al.12 where they found a transition
diameter around 1–2 μm, it is clear that the acoustic stream-
ing has a larger influence in the system studied in this work.
However, typically SAW systems are driven at higher frequen-
cies, which will increase the effect from the radiation force
2706 | Lab Chip, 2015, 15, 2700–2709

Fig. 3 Mesh convergence analysis. (a) An illustrative computational
mesh with 2478 triangular elements obtained with maximum element
size near the boundary, db = 30δ, while the maximum element size in
the bulk of the domain was set to 20 μm. (b) Semi-logarithmic plot of
the relative convergence parameter C, as given in eqn (21), for
decreasing mesh element size near the boundaries, db.
due to its linear dependence on the actuation frequency,
eqn (15). Finally, note that we have not taken into account
the enhanced viscous drag force due to the presence of the
channel walls, which would decrease the radiation force
contribution for the large particles and for particles close to
the channel walls.48

4.5. Phase sweeping

As an application of our numerical model, we investigate the
effect of the phase difference between the two incoming
SAWs by changing their relative phase Δϕ in eqn (11). Fig. 7
shows the plots of the first-order pressure fields p1 for vary-
ing phase difference Δϕ. We see that the position of the pres-
sure node along the y direction can be tuned by changing the
phase difference between the two incoming SAWs. For a
phase difference of π/2, the shift in the phase difference is
λ/8. In other words, a phase difference of π results in an
interchange in the position of the nodes and the antinodes.
This is in agreement with the results obtained by Meng
et al.,49 where they used the tuning of the pressure node to
transport single cells or multiple bubbles. This principle has
recently been utilized by Li et al.50 to study heterotypic cell–
cell interaction by sequentially patterning different types of
cells at different positions inside the microfluidic channel.
Fig. 7 also points to the fact that a minor shift in actuation
does not affect the solution in a drastic manner, indicating
the robustness of the solution with respect to minor pertur-
bations in the applied actuation.
This journal is © The Royal Society of Chemistry 2015

Fig. 4 Impedance convergence analysis. (a) First-order pressure field
p1 when using hard-wall conditions n·v1 = 0 at Γi boundaries [color
plot ranging from −70.5 kPa (blue) to 70.5 kPa (red)]. (b) Semi-
logarithmic plot of the relative convergence parameter C, as given in
eqn (21), as a function of the wall impedance zwall. The solution with
hard-wall boundary conditions in panel (a) was chosen as the refer-
ence solution. As the impedance of the walls increases, the solution
with impedance boundary conditions converges to the solution with
the hard-wall boundary conditions.

http://dx.doi.org/10.1039/C5LC00231A


Fig. 6 Particle trajectories with particle velocities as colors from blue
minimum to red maximum and colored disks denoting the final
positions within the observation time. (a) Starting position of 243
particles distributed uniformly within the microchannel. The panels
Ĳb)–Ĳf) show the trajectories of (b) 1 μm particles during 100 s, (c) 5 μm
particles during 100 s, (d) 10 μm particles during 60 s, (e) 15 μm
particles during 60 s, and (f) 20 μm particles during 40 s. The motion
of the smaller particles is dominated by the viscous drag force from
the acoustic streaming, while the larger particles are pushed to the
pressure nodes by the acoustic radiation force.

Fig. 5 Color plots of the first-order pressure p1 and velocity v1 fields
as well as the time-averaged second-order velocity 〈v2〉. The first-order
fields oscillate in time with a standing wave along y and a travelling
wave along z indicated by the upwards-pointing magenta arrows. (a)
Oscillating first-order pressure field p1 [colors ranging from −12.9 kPa
(blue) to 12.9 kPa (red)]. (b) Oscillating first-order velocity field v1 [mag-
nitude shown as colors ranging from zero (blue) to 5.3 mms−1 (red),
vectors shown as black arrows]. (c) Time-averaged second-order
velocity field 〈v2〉 [magnitude shown as colors ranging from zero (blue)
to 1.47 μm s−1 (red), vectors shown as black arrows]. (d) Zoom of the
time-averaged second-order velocity field 〈v2〉 in (c) in a slab of 0.3 μm
height from the bottom wall [magnitude shown as colors ranging from
zero (blue) to 1.72 μm s−1 (red), vectors shown as black arrows].
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5. Conclusions

We have successfully used a finite element scheme to model
the acoustophoretic motion of particles inside an isentropic
compressible liquid surrounded by PDMS walls. The system
is acoustically actuated via two counter-propagating surface
acoustic waves that form a standing wave in a piezoelectric
material interfacing the liquid channel. Our model employs
an actuation condition from the literature based on piezo-
electric simulations as well as impedance boundary condi-
tions to model the PDMS channel walls. Our model results in
significantly different acoustic fields from those observed in
bulk acoustic wave devices. Firstly, the first-order acoustic
fields are travelling in the vertical direction away from the
actuated boundary, while the horizontal standing wave fea-
ture remains. This results in a time-averaged second-order
velocity field (the so-called acoustic streaming) driven by
products of first-order fields with the characteristics of four
horizontal streaming rolls per wavelength, each of which
decay vertically from the actuated boundary. In contrast to
reported bulk acoustic wave cases, we do not observe any
acoustic streaming rolls inside the viscous boundary, which
we attribute to the differences in actuation condition as well
as differences in the established first-order fields.
This journal is © The Royal Society of Chemistry 2015
The motion of the particles is governed by the viscous
drag force from the acoustic streaming as well as the direct
acoustic radiation force due to scattering of sound waves on
the particles. For our specific model parameters (600 μm
wavelength, 6.65 MHz actuation frequency, and polystyrene
particles suspended in water), we obtain an approximate criti-
cal particle size of 10 μm for which the particle motion goes
from being streaming-drag dominated to being radiation
dominated. The critical particle size is only approximate due
to the acoustic streaming decaying strongly along the height
of the channel.

The next important step is to obtain direct experimental
validation of our numerical results by use of 3D astigmatism
particle tracking velocimetry capable of determining the
three-dimensional three-component particle trajectories.43
Lab Chip, 2015, 15, 2700–2709 | 2707
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Fig. 7 Color plots of the first-order pressure field for different values
of phase difference ∇ϕ, (a) ∇ϕ = −π/2, (b) ∇ϕ = 0, (c) ∇ϕ = −π/2, and (d)
∇ϕ = π, as in eqn (13), between the two incoming traveling waves. The
position of the pressure node along the y direction can be tuned by
changing the value of ∇ϕ. The pressure node moves by a distance of
λ/8 for each phase difference of π/2.
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Such experimental validation would pave the road for further
enhancements of our numerical model to include wall-
enhancement effects of the viscous drag force as well as the
inclusion of the heat-transfer equation in the governing equa-
tions in order to account for temperature effects as recently
studied by Muller and Bruus.51
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