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Investigation of acoustic streaming patterns
around oscillating sharp edges†

Nitesh Nama,a Po-Hsun Huang,a Tony Jun Huang*ab and Francesco Costanzo*ac

Oscillating sharp edges have been employed to achieve rapid and homogeneous mixing in

microchannels using acoustic streaming. Here, we used a perturbation approach to study the flow

around oscillating sharp edges in a microchannel. This work extends prior experimental studies to

numerically characterize the effect of various parameters on the acoustically induced flow. Our

numerical results match well with the experimental results. We investigated multiple device parameters

such as the tip angle, oscillation amplitude, and channel dimensions. Our results indicate that, due to the

inherent nonlinearity of acoustic streaming, the channel dimensions could significantly impact the flow

patterns and device performance.
1 Introduction

Microfluidic devices can be effective in many applications
including biomedical diagnostics, drug delivery, chemical
synthesis, and enzyme reactions.1 An important requirement
for these systems is the ability to rapidly and efficiently mix
small amounts of samples on a microscale.2,3 Various tech-
niques have been utilized to enable rapid mixing in micro-
fluidic devices including chaotic advection,4–9 hydrodynamic
focusing,10,11 electrokinetically driven mixing,12–16 3D combi-
natorial bubble-based mixing,17,18 and thermally-19,20 as well
as optically-induced21 mixing. Recently, acoustic-based
mixers22–26 have gained significant interest because of their
non-invasive nature. These mixers utilize acoustic waves to
perturb the laminar flow pattern in microchannels to achieve
rapid and homogeneous mixing.27–32 In particular, acousti-
cally driven, oscillating bubbles have been used to achieve
fast and homogeneous mixing by generating acoustically-
induced microvortices.33–35 Bubble-based acoustic mixers
have been utilized for enzyme reaction characterization,36

DNA hybridization enhancement,37,38 chemical gradient
generation,39 and optofluidic modulators.40,41 However,
bubble-based acoustic mixers have also proven to be somewhat
challenging due to bubble instability, heat generation, and
hard-to-control bubble-trapping processes.41,42 To overcome
these difficulties, we recently reported a sharp-edge-based
micro-mixer41 where the flow field is perturbed using micro-
vortices generated by an acoustically oscillating sharp edge.
The performance of the sharp-edge based micro-mixer was
found to be very close to that of the bubble-based micro-mixer
with the added advantage of convenient and stable operation
over bubble-based micro-mixers. However, to realize the full
potential of these devices and explore further applications, a
deeper understanding of the flow field around oscillating
sharp edges is required.

Steady streaming around obstacles in an oscillating
incompressible fluid has been studied extensively.43–47 Due
to the dissipative nature of the fluid, the response to time-
harmonic forcing is generally not harmonic. The fluid's
response to harmonic forcing can be viewed as a combina-
tion of a time harmonic response, generally referred to as
acoustic response, and the remainder, referred to as acoustic
streaming.48 Time averaging of the Navier–Stokes equations
yields a term analogous to Reynolds stress (normally
observed in turbulent flows) which causes a “slow” steady
streaming around obstructions in the flow field. This can
also be interpreted by saying that the nonlinear hydrody-
namic coupling results in a partial transmission of the acous-
tic wave energy to the fluid as steady momentum resulting in
acoustic streaming.49 Since the latter is a byproduct of the
acoustic attenuation due to viscous dissipation, it provides a
unique way to utilize the dominant viscous nature of micro-
fluidic flows.50 It is important to note that there are two main
dissipation mechanisms:43 (1) wave attenuation in the bulk
fluid, and (2) dissipation in the boundary, in which the
streaming in the boundary layer drives streaming in the bulk.
Both mechanisms owe their origin to the action of Reynolds
stress.43,45 It is the acoustic energy flux dissipation that
oyal Society of Chemistry 2014
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Fig. 1 (a) Schematic of the device showing a microfluidic channel
with sharp-edge structures on its side walls. The channel walls are
subjected to a time-harmonic excitation produced by a piezoelectric
transducer placed on one side of the channel. (b) Typical micro
streaming patterns produced in the fluid occupying the channel as a
response to piezoelectric excitation. (c) Typical geometric dimensions
of the corrugated channel.
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induces momentum flux gradients, and these, in turn, drive
acoustic streaming. While, in the first case, dissipation
occurs in the bulk fluid, in the second case, most of the dissi-
pation occurs within the boundary layers at the solid
surfaces.51 The dominance of one mechanism over the other
is dependent on the size of the device. For devices where the
microchannel is very small compared to the wavelength and
the attenuation length, like the one used in this article, the
streaming will be boundary layer driven.

While bubble-based mixers have been extensively studied
both analytically and numerically,33,37,52,53 the knowledge of
flow fields around oscillating sharp edges is limited. Lieu
et al.49 have studied the flow around obstacles in an oscillat-
ing incompressible flow field. However, Lieu et al.49 do not
discuss the possible singularities induced in the flow by the
geometry of the obstacles. In addition, their analysis is not
directly applicable to our system, which is characterized by
acoustic wave propagation, with the latter requiring an
explicit modeling of the fluid compressibility. Although
steady streaming has been widely studied for cases where the
fluid can be treated as infinite, little attention has been given
to this phenomenon in confined flows.49 The basic hydrody-
namic traits of low Reynolds number flows in microfluidic
channels are dictated by the motion of the walls. This,
coupled with the inherent nonlinearity of the acoustic
streaming phenomenon, implies that the geometrical dimen-
sions of the microfluidic channel and the boundary condi-
tions significantly impact the flow field around the
oscillating sharp edge inside a microchannel. These consider-
ations justify a numerical approach to study the flows in
question in which the geometry of the walls can be accurately
represented.

In this work, we numerically investigate the acoustic
streaming generated in a fluid by oscillating sharp edges
inside a microchannel. We build on our previous experimen-
tal studies and aim at characterizing the effect of various
parameters on the micro-eddies around the sharp edges. We
model the fluid as compressible and linear viscous so that
the fluid's equations of motion are the compressible Navier–
Stokes equations. These are intrinsically nonlinear and char-
acterized by different behaviors over wide ranges of time and
length scales. The flow on the large length- and time-scales
arises from the acoustic excitation on much smaller time and
length scales.28 Consequently, a direct solution of the com-
pressible Navier–Stokes equation remains computationally
challenging even with modern computational tools. To over-
come this difficulty, we employ Nyborg's perturbation
approach51 complemented by periodic boundary conditions.
To capture the singularity in the flow field, we refine the
mesh near the tip of the sharp edge using an adaptive mesh
refinement strategy. Our approach is general in the sense
that we do not make a priori assumptions about specific flow
regimes in selected regions of the computational domain.
After identifying boundary conditions that lead to predictions
matching the experimental observations, we numerically
investigate the effects of various parameters like tip angle,
This journal is © The Royal Society of Chemistry 2014
displacement amplitude, and channel dimensions on the
streaming velocity and particle mean trajectories. The numer-
ical methods and results presented in this article will be use-
ful in optimizing the performance of acoustofluidic devices
and providing design guidelines.
2 Micro-acousto-fluidic channel with
sharp edges

Fig. 1(a) provides a schematic of the oscillating sharp-edge-
based acoustofluidic micromixer. A single-layer polydimethyl-
siloxane (PDMS) channel with eight sharp-edges on its
sidewall (four on each side) was fabricated using standard
soft lithography and bonded onto a glass slide. A piezoelec-
tric transducer (model no. 273-073, RadioShack®) was then
attached adjacent to the PDMS channel. Upon the actuation
of the piezoelectric transducer, the sharp-edges were acous-
tically oscillated with a frequency of 4.75 kHz. These oscilla-
tions generate a pair of counter-rotating vortices (double-
ring recirculating flows) in the fluid around the tip of each
sharp-edge, as shown in Fig. 1(b). Typical channel dimen-
sions are indicated in Fig. 1(c). To visualize and character-
ize the streaming flow inside the channel, a solution
containing 1.9 μm diameter dragon green fluorescent beads
(Bangs Laboratories, Inc.™) was introduced into the chan-
nel. The typical bead trajectories observed in experiments
are shown in Fig. 2.
Lab Chip, 2014, 14, 2824–2836 | 2825
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Fig. 2 Experimentally observed trajectories of 1.9 μm diameter
fluorescent polystyrene beads in our acoustically oscillated micro-
mixer with sharp edges. The geometry of the microchannel is
described in Fig. 1(c) except for the fact that here, the tips of the sharp
edges are 200 μm from the wall instead of 250 μm. The driven oscilla-
tion is harmonic with a frequency equal to 4.75 kHz.
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3 Modeling

We denote vector quantities by boldface type and scalars by a
normal-weight font.

The mass and momentum balance laws governing the
motion of a linear viscous compressible fluid are48,54,55




   


t
v 0 (1)

and

    



        





  v v v v v

t
p 2 1

3b (2)

where ρ is the mass density, v is the fluid velocity, p is the
fluid pressure, and μ and μb are the shear and bulk dynamic
viscosities, respectively. The fields ρ, p, and v are understood
to be in Eulerian form,54 i.e., functions of time t and of the
spatial position x within a chosen control volume. Eqn (1)
and (2), with appropriate boundary conditions and a consti-
tutive relation linking the pressure to the fluid density, allow
one to predict the motion of the fluid. We assume the rela-
tion between p and ρ to be linear:

p = c0
2ρ, (3)

where c0 is the speed of sound in the fluid at rest. Direct sim-
ulation of this non-linear system of equations poses signifi-
cant numerical challenges owing to the widely separated
length (characteristic wave lengths vs. the characteristic geo-
metrical dimensions of the microfluidic channels) and time
scales (characteristic oscillation periods vs. characteristic
times dictated by the streaming speed).56 Because of viscous
dissipation, the response of the fluid to harmonic forcing is,
in general, not harmonic. The fluid response is generally
thought to be composed of two components: (i) a periodic
component with a period equal to the forcing period, and (ii)
a remainder that can be viewed as being steady. It is this
2826 | Lab Chip, 2014, 14, 2824–2836
second component which is generally referred to as the
streaming motion.48 We employ the Nyborg's perturbation
technique51 in which the fluid velocity, density, and pressure
are assumed to have the following form:

v v v v   0 1
2

2
3  � � �O( ) , (4a)

p p p p O    0 1
2

2
3  � � �( ) , (4b)

         0 1
2

2
3� � �O( ) , (4c)

where ε is a non-dimensional smallness parameter. Following
Köster,57 we define ε as the ratio between the amplitude of
the displacement of the boundary in contact with the piezo-
electrically driven substrate (i.e., the amplitude of the bound-
ary excitation) and the characteristic length. We take the 0-th
order velocity field v0 to be equal to zero thus assuming the
absence of an underlying net flow along the micro-channel.

v v
v v

1 1 1 1
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2

2
2

2
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  

� � �

� �
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, ,
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2
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p p 22

2
2  � ,

(5)

Substituting eqn (4) into eqn (1) and (2) and setting the
sum of all the terms of order one in ε to zero, the following
problem, referred to as the first-order problem, is obtained:




   
1

0 1 0
t

v , (6)

   0
1

1
2

1 1
1
3




     





  v v v

t
p b . (7)

Repeating the above procedure for the terms of order two
in ε, and averaging the resulting equations over a period of
oscillation, the following set of equations, referred to as the
second-order problem, is obtained:




   


 2
0 2 1 1t
v v , (8)

  

  

0
2

1
1

0 1 1

2
2

2 2
1
3








 

     





 


v v v v

v

t t

p v b ,
(9)

where 〈x〉 denotes the time average of the quantity x over a
full oscillation time period. As pointed out by Stuart,45,58

inertia terms in eqn (9) can be significant and must be
retained in the formulation. Also, to fully account for viscous
attenuation of the acoustic wave, both within and without
the boundary layer, the last term in eqn (9) associated with
the bulk viscosity must also be retained. The above sets of
equations need to be complemented by appropriate boundary
conditions. In Fig. 1(a) and 3, we observe that the device
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 (a) A portion of the microfluidic device. (b) Definition of a
periodic cell forming the device.
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consists of an assemblage of identical cells. While the num-
ber of cells in a device is finite, we assumed that the flow in
each cell is identical to the flow in any other cell, and there-
fore we used the cell in Fig. 3(b) as our computational
domain with the stipulation that computed flow must satisfy
periodic boundary conditions. As will be discussed later, the
solution of the streaming problem under periodic boundary
conditions predicted flows that agreed well with those experi-
mentally observed. The latter also have an anti-symmetric
pattern internal to the selected unit cell corresponding to the
region of width L in Fig. 3(b). In these figures, we have also
indicated the relevant geometric descriptors that define our
solution domain as well as the labels identifying specific
regions of the boundary.
3.1 Boundary conditions

The action of the transducer is transferred onto the fluid in
the microchannel by way of the device's substrate and the
channel's PDMS walls. PDMS has an acoustic impedance sim-
ilar to that of water. A precise modeling of the loading acting
on the fluid would require the solution of a 3D piezo-electro-
elastic problem. With this in mind, we note that the purpose
of this work is to investigate how various features of sharp-
edge micro-acousto-fluidic devices contribute to mixing. This
objective can be achieved without detailed modeling of wave
propagation through the substrate and its passage through
the channel walls by subjecting the walls of the channel to
appropriate boundary conditions. This would also allow us to
solve a 2D instead of a 3D problem. While identifying an
appropriate set of boundary conditions is generally difficult,
the task is simplified by the availability of experimental
results concerning typical flows observed in the devices. As
mentioned earlier, our group has generated a significant
amount of experimental results (Fig. 2) which were published
by Huang et al.41 Hence, in this work, we do not solve a
coupled piezo-electro-elastic problem to relate the voltage
control on the transducer to the corresponding loading con-
ditions on the channel. Rather, we formulate simple bound-
ary conditions based on observations from our prior
experimental work.41 In Fig. 1(a) and 3, we observe that the
This journal is © The Royal Society of Chemistry 2014
diameter of the transducer is much larger than the transverse
width of the channel (≈600 μm) so the channel can be
assumed to be subject to a plane wave parallel to the x direc-
tion and traveling in the y direction. It must be noted that
this assumption cannot be used if the wavelength of the
acoustic wave is comparable to the channel dimensions. In
that case, one needs to consider the radial nature of the
acoustic wave. In the device used in this article, the wave-
length of the acoustic wave (≈30 cm) is much larger than the
channel width (≈600 μm). Hence, we assume that the bound-
ary portions Γt and Γb (the solid lines in Fig. 3(b), including
the sharp edge structures) are subject to a displacement field
w(x, t) of the following form

w w w

w w w

x t ft ft

x t ft
t c

t
s
t

b c
b

s
b

, cos sin ,

, cos

       
     

2 2

2

 

 ssin ,2ft 
(10)

where wt
c, w

b
c , w

t
s, and ws

s are vector-valued constants, and
where f is the transducer oscillation frequency in hertz. Con-
sistent with the asymptotic expansion in eqn (4), the bound-
ary conditions on Γt and Γb for the first-order problem
are57,59 v1(xt,b, t) = ∂w(xt,b, t)/∂t, which gives

v1(xt,b, t) = − 2πf [wt,b
c sin(2πft) − wt,b

s cos(2πft)], (11)

where the subscripts and superscripts t and b stand for
‘on Γt’ and ‘on Γb’, respectively.

For the second-order problem, we have57,59

v2(xt,b, t) = − 〈(w(xt,b, t) · ∇)v1(xt,b, t)〉. (12)

As already mentioned, and as shown in Fig. 2 and 3,
experimental results are characterized by distinctive symme-
tries. Hence, for both the first- and second-order problems,
we enforce periodic boundary conditions along the x direc-
tion, that is, on Γ and Γr. Specifically, for all pairs of homol-
ogous points x and xr on Γ and Γr, respectively, we demand
that

v1(x, t) = v1(xr, t) and v2(x, t) = v2(xr, t). (13)

As far as the y direction is concerned, we observe that the
wavelength of the forced oscillations in the substrate is much
larger than the channel's width. Hence, we subject Γt and Γb
to identical (uniform) boundary conditions as though the
channel walls were rigidly and harmonically displaced in the
vertical direction:

w(xb, t) = w(xt, t). (14)

For comparison purposes, noticing that the experiments
suggest the presence of an anti-symmetric pattern relative to
the vertical mid-line of the solution domain, we have also
considered the following boundary conditions:
Lab Chip, 2014, 14, 2824–2836 | 2827
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w(xb, t) = − w(xt, t). (15)

While the boundary conditions in eqn (12) are common in
streaming problems, its use for a sharp-edge device is prob-
lematic. Our domain has re-entrant corners at the sharp
edges so that the solution of the first-order problem, while
bounded, has singular velocity gradients at the sharp edges.
Therefore, eqn (12) implies that, at the sharp edges, not only
the velocity gradients of the second-order solution but also
the velocity field itself is singular. This feature of the solu-
tion, which is intrinsic to a geometry with re-entrant corners,
seems to have been neglected in other studies. In order to
remove the singularity in the second-order velocity, one
would have to set the displacement at the sharp edge to zero
and, possibly, control its growth away from the edge. How-
ever, this constraint is difficult to justify on practical and
physical grounds due to the very design of the microfluidic
channel of interest. Hence, with the expectation to accurately
capture the solution only outside the Stokes boundary layer,
we proceed to determine numerical solutions without taking
any special precautions other than the use of a reasonable
adaptive mesh refinement scheme as will be described later.

3.2. Mean trajectories

Fig. 2 shows the mean trajectories of the polystyrene spheri-
cal beads placed in the fluid for streaming flow visualization
purposes. As this is the primary piece of experimental evi-
dence at our disposal, we wish to establish whether or not
our calculations are able to reproduce a flow pattern similar
to that in Fig. 2. The beads used in Fig. 2 are the same as
those used by Bruus and co-workers60–64 who have carefully
studied the scattering problem that arises from the release of
these beads within a streaming flow. We believe the results
by Bruus and co-workers to be rigorous and we have
implemented in our code the tracking strategy they
proposed.60–64 This strategy is predicated on the determina-
tion of the radiation force acting on a bead of radius a, mass
density ρp, and compressibility κp under the influence of a
standing wave in the flow. The bead is modeled as a wave
scatterer, and the radiation force is then found to be

F v vrad      






4
3

1
2

3
4

3

1 0 1
2

0 2 1 1
a f p f  Re (16)

where κ0 = 1/(ρ0c0
2) is the compressibility of the fluid, Re( f2)

is the real part of f2, and where

f f1
0

2
0

0

1
2 1
2 1 3

  
   
  





  

 
p p

p

and


(17)

with

 



    



     

3
2

1 1
0

� � �  



a f

(18)

and the symbol ‘ι’ denotes the imaginary unit. In addition to
the radiation force, a bead is assumed to be subject to a drag
2828 | Lab Chip, 2014, 14, 2824–2836
force proportional to vbead − 〈v2〉, which is the velocity of the
bead relative to the streaming velocity. When wall effects are
negligible, the drag force is estimated via the simple formula
Fdrag = 6πμa(〈v2〉 − vbead). The motion of the bead is then pre-
dicted via the application of Newton's second law:

mpap = Frad + Fdrag, (19)

where mp and ap are the mass and acceleration of the bead,
respectively. In many acoustofluidic problems, the inertia of
the bead can be neglected.61 Doing so, eqn (19) can be used
to solve vbead:

v v Fbead
rad

  2 6a
(20)

For steady flows, we can identify the bead trajectories with
the streamlines of the velocity field vbead in eqn (20).

For an “ideal tracer”, a bead should have the same density
and compressibility as the surrounding fluid, Frad = 0 and the
bead's velocity should coincide with the streaming velocity.
However, it is well known that the trajectories of the stream-
ing velocity field (or its streamlines in steady problems) are
not fully representative of the mean trajectories of the fluid's
particles as the latter are subject to a drift effect known as
Stokes drift.65 The theory around the Stokes drift is devel-
oped without reference to the motion of a bead in the fluid
and therefore it can be viewed as a theory for the identifica-
tion of mean trajectories of fluid particles. We adopt the the-
ory of Lagrangian mean flow described by Bühler66 and
employed by Vanneste and Bühler,67 in which the mean
particle paths are the trajectories of a velocity field referred
to as the Lagrangian velocity, denoted as vL, and given by

vL = 〈v2〉 + 〈(ξ1 · ∇)v1〉, (21)

where the field ξ1(x,t) is the first-order approximation of the
lift field ξ1(x,t). The latter is defined such that x + ξ repre-
sents the true position at time t of a particle with mean posi-
tion at x (also at time t). By asymptotic expansion, ξ1 is such
that




 
1

1t
v (22)

Eqn (22) implies that, once the first-order problem velocity
solution of the form v1 = vc1(x) cos(2πft) + vs1(x) sin(2πft) is com-
puted, ξ1 can be calculated during post-processing via an ele-
mentary time integration. For a steady problem, the
trajectories of the fluid particles are then the streamlines of vL.

Different from vbead, vL is an intrinsic property of the com-
bination of the first- and second-order solutions of the
acoustofluidic problem. That is, vL arises from kinematic
arguments alone without reference to the balance of linear
momentum or the balance of mass. As such, the Lagrangian
This journal is © The Royal Society of Chemistry 2014
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Table 1 Constitutive and operational parameters

Water

Density ( ρ0) 1000 kg m−3

Shear viscosity ( μ) 0.001 Pa s
Bulk viscosity ( μb) 0.001 Pa s
Compressibility (κ0) 448 TPa−1

Speed of sound (c0) 1500 m s−1

Polystyrene beads

Density ( ρp) 1050 kg m−3

Compressibility (κp) 249 TPa−1

Diameter (2a) 1.9 μm

Operational parameters

Forcing frequency ( f ) 4750 Hz
Displacement amplitude (‖w‖Γ t,Γb) 1 μm
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velocity field does not coincide with either vbead or the mean
velocity of the mass flow.66,67 The latter, denoted as vM, is
defined such that ρ0v

M gives the second-order approximation
of the linear momentum flow per unit volume:

v v vM   2
0

1 1
1


 (23)

As already alluded to, vbead, vL, and vM introduce corre-
sponding notions of mean flow trajectories which can be
quite distinct from one another. However, they all carry use-
ful information about the solution.

3.3. Numerical solution approach

As is customary in acoustic streaming problems, we seek the
time-harmonic solution for v1 and p1 in the first-order prob-
lem, while we seek steady solutions for v2 and p2 in the
second-order problem. Combining information from these
two solutions, it is then possible to estimate the mean trajec-
tory of material particles in the flow.

All the solutions that will be discussed later are for two-
dimensional problems. The numerical solution was obtained
via an in-house finite element code based on the deal.II finite
element library.68,69 For both first- and second-order prob-
lems, we used Q2–Q1 elements for velocity and pressure,
respectively, where Q1 and Q2 denote quadrilateral elements
supporting Lagrange polynomials of order one and two,
respectively. Our code was developed using the mathematical
framework discussed by Köster57 who offered a very careful
analysis of the numerical properties of the approach. The
main fundamental difference between our code and that by
Köster is the use of adaptivity. Specifically, to mitigate some-
what the effects of the singularities discussed earlier, we
adopted a very traditional adaptive mesh refinement strategy
with an error estimator based on the solution's gradients.70

Our specific error estimator was based on the gradient of the
velocity solution of the first-order problem. The flow patterns
we presented are those that did not significantly change
upon further refinement of the mesh outside the Stokes
boundary layer. Clearly, we make no claims on the values of
the velocity gradients within this layer near the sharp edges.

4 Results and discussion
4.1. Constitutive parameters

All of the results presented were obtained using the values in
Table 1 for the constitutive and operational parameters in
the governing equations. Some of the results pertain to the
motion of a dilute concentration of 1.9 μm diameter fluores-
cent beads. The frequency employed in simulations was cho-
sen because it is the frequency used in prior experimental
work from our group on a sharp-edge acoustic mixer with the
same geometry considered herein.41 As frequency is related
to wavelength, our choice of frequency must also be consis-
tent with the assumption discussed in section 3.1 concerning
This journal is © The Royal Society of Chemistry 2014
the channel being subject to a plane wave with a wavelength
of roughly 30 cm. With this in mind, streaming effects in
micro-acousto-fluidic devices are typically more evident at
higher frequencies, i.e., in the MHz regime. We have not con-
sidered such high frequencies in the present study because
we feel that our assumption concerning the wave impinging
on the channel would no longer be acceptable. However, for
the purpose of comparison, we did carry out a simulation
with a frequency of 4.75 MHz and presented the correspond-
ing results in the ESI† (section III, Fig. 3).
4.2. In lieu of convergence tables

As mentioned earlier, the gradients of the first-order velocity
and the second-order velocity fields are unbounded at the
tips of the sharp edges. As such, the second order velocity
solution does not converge in a strict sense. Nonetheless, it
turns out that the singularity effects are all contained within
the Stokes boundary layer and it is therefore still possible to
talk about an effective notion of convergence outside this
layer. To illustrate this idea, we present in Fig. 4 the plots of
the magnitude of the second-order velocity v2 as a function of
position along a line parallel to the y axis (cf. Fig. 3), emanat-
ing from the tip of the lower sharp edge as shown in red in
the left inset of Fig. 4. The latter shows three curves corre-
sponding to increasing adaptive refinement levels identified
via the number of degrees of freedom (DOF) used in the cal-
culation. Our calculations have been carried out on increas-
ingly refined meshes using the adaptive refinement strategy
described in section 3.3. The left inset depicts the initial
(coarsest) mesh, which consists of 4032 elements with a total
of 37 251 degrees of freedom. Our most refined mesh was
achieved after nine levels of adaptive refinement and it had
1 134 530 DOF. The curves shown pertain to refinement levels
five, six, and seven with 248 592, 362 360, and 530 290 degrees
of freedom, respectively. Curves corresponding to further
refinement were not plotted because they overlapped the
curves shown for refinement levels six and seven. The right
inset, whose vertical axis has units identical to the overall
plot, shows a zoomed-in detail of the three curves away from
Lab Chip, 2014, 14, 2824–2836 | 2829
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Fig. 4 Plot of the magnitude of the second-order velocity vs. position
along a line parallel to the y axis and emanating from the tip of a sharp
edge (red line in left inset). The different curves correspond to different
levels of adaptive refinement. The inset on the left shows the initial
mesh used for the calculations. The right inset shows a zoomed-in
portion of the plot outside the Stokes boundary layer of thickness δ.
The units on the vertical axis of the right inset are the same as those
on the overall plot.
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the sharp tip. To facilitate the discussion, we have used a
grey rectangle at the left edge of the plot to distinguish
the part of the velocity response contained in the Stokes
boundary layer. The thickness of the Stokes layer has been
denoted by δ and computed using the well-known formula

    2 2 0/ f .71,72 As expected, the magnitude of v2 dis-

plays an asymptote at the sharp edge. At the same time, the
magnitude of v2 appears to be well-behaved outside the
Stokes layer.
4.3. Effects of boundary conditions on Γt and Γb

In section 3.1, we discussed two possible expressions for the
boundary conditions on the Γt and Γb (cf. Fig. 3) portions of
the solution's domain. Fig. 5 shows our numerical solution
for the velocity vbead in eqn (20) of beads in the flow. As
shown in Fig. 3, the results in the above figure were obtained
for a channel with L = 300 μm, H = 600 μm, α = 15°, and h =
200 μm. In both cases, the wall displacement was completely
2830 | Lab Chip, 2014, 14, 2824–2836

Fig. 5 Plots of the velocity vbead in eqn (20) corresponding to the
boundary conditions in (a) eqn (14) and (b) eqn (15). The color map
represents the magnitude of vbead whereas the lines are some of the
streamlines of the vbead field. The channel dimensions (cf. Fig. 3) are
L = 300 μm, H = 600 μm, α = 15°, and h = 200 μm. The wall
displacement was only in the y direction with magnitude 1 μm.
in the y direction with an amplitude of 1 μm. In both cases,
we observed that eddies are predicted with streamlines sym-
metric relative to the (geometric) center of the simulation
domain. These features match with the experimentally
obtained bead traces in Fig. 2. However, we noticed that in
the experiments there is no evidence of large eddies at the
foot of the sharp edges, as predicted using the anti-periodic
boundary conditions in eqn (15). Furthermore, we observed
that the magnitude of vbead is vastly different in the two
cases. In fact, even in some regions outside the Stokes layer,
the velocity predicted in Fig. 5(b) can be of the same order of
magnitude as the average flow velocity observed in experi-
ments with a net flow through the channel (absent in our
simulations). Instead, the magnitudes in Fig. 5(a) are more
compatible with experimental results, as are the predicted
streamlines. As discussed in section 3.1, the boundary condi-
tions used in this work are based on heuristic arguments and
under the assumption that the channel is rigid, as opposed
to being produced by a more sophisticated piezo-electro-
elastic calculation. Despite this approximation, the result in
Fig. 5(a) is very much in agreement with the experimental
observations. Therefore, for the remainder of the paper, we
will use only the boundary conditions in eqn (14).
4.4 Mean flows and trajectories

Next, we compare the three different types of mean velocities
introduced in section 3.2, along with their corresponding
streamlines. Fig. 6 shows plots of vbead, vL, and vM for the
boundary conditions given by eqn (16). Again, the channel
has the following dimensions: L = 300 μm, H = 600 μm, α =
15°, and h = 200 μm; also the wall displacement was com-
pletely in the y direction with an amplitude of 1 μm. It is
important to note that the three plots in Fig. 6 are the out-
come of a single calculation, that is, they are the product of a
single set of geometric parameters and boundary conditions.
As discussed earlier in the paper, we view vbead as the velocity
of tracing beads in a fluid. The field vbead is an attempt to
capture, in an approximate sense, the interaction between
the beads and the fluid in which they are immersed. Instead,
vL, which is the sum of the second-order velocity and the
Stokes drift term, is the so-called Lagrangian velocity and it
is the vector field whose trajectories are the mean trajectories
of the fluid particles.66,67 Finally, vM is the average mass flow.
Fig. 6 shows that the above notions of mean flow can indeed
be quite different and therefore represent very distinct prop-
erties of the same underlying solution. The difference
between the streamlines of vL and the experimental bead tra-
jectories is expected. In fact, vL indicates the trajectory of
fluid particles in the absence of the beads in the flow, and
thus should not be used for comparison with bead trajecto-
ries. On the other hand, vbead, resulting from the balance of
radiation force and Stokes drag, describes the motion of the
beads and is indicative of the bead trajectories observed in
the experiments. We have already established that the bead
trajectories are in good qualitative agreement with the
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Plots of the mean velocity fields and corresponding streamlines discussed in section 3.2: (a) vbead; (b) vL; (c) vM. The color map represents
the velocity magnitudes, whereas the lines depict streamlines. In all cases, the channel dimensions (cf. Fig. 3) are L = 300 μm, H = 600 μm,
α = 15°, and h = 200 μm. The wall displacement was only in the y direction with magnitude 1 μm.

Fig. 7 Plot of the magnitude of the second-order velocity as a func-
tion of the boundary displacement amplitude. ‖v2‖ was measured at a
point lying on a line emanating from the tip of a sharp edge parallel to
the y direction (cf. Fig. 3) and the distance away from the tip is equal
to the thickness of the Stokes boundary layer. The geometry parame-
ters have been kept the same as in preceding calculations.
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experiments. Therefore, we can use the other measures of
mean flow with the same degree of confidence. It may be
noted from eqn (20) that the difference between vbead and the
second-order velocity depends on a term that is proportional
to the square of the radius of the bead. Thus, as the bead size
approaches zero, vbead tends to the second-order velocity and
the bead tracking method essentially consists of the study of
the mean trajectory of the second-order velocity solution. As
the velocity field vL is an intrinsic property of the flow with-
out any beads in it, we feel that it is a more appropriate
descriptor of mean fluid particle trajectories and, as such, a
more meaningful descriptor of the mixing properties of the
sharp-edge device. Hence, in the remainder of the paper, we
will base most of our discussion on plots of vL. Before pro-
ceeding further, we observe that the streamlines of vL do not
show eddies for the geometry and boundary conditions used
to generate Fig. 6. This is because, for the stated simulation
conditions, the Stokes drift effectively cancels the streaming
velocity v2. As will be shown later, for other simulation condi-
tions, the Lagrangian velocity will show the existence of
eddies in the mean flow.
4.5. Effect of displacement amplitude

Next, we study the effect of displacement amplitude pre-
scribed on Γt and Γb on the magnitude of the resulting
streaming velocity (v2). We simulate the acoustic streaming
for different values of the input displacement amplitude and
the same geometric parameters used thus far. With this in
mind, Fig. 7 shows the plot of the magnitude of the second-
order (streaming) velocity measured at a point lying on a line
emanating from the tip of a sharp edge parallel to the y direc-
tion (cf. Fig. 3) and a distance away from the tip equal to the
thickness of the Stokes boundary layer. The second-order
streaming velocity was found to increase quadratically with
displacement amplitude. This is expected since the first-
order pressure and velocity depend linearly on the displace-
ment amplitude; and the second-order streaming velocity, in
turn, depends quadratically on the first-order pressure and
velocity. In the experiments, the amplitude of the acoustic
This journal is © The Royal Society of Chemistry 2014
wave is proportional to the square-root of the signal power,
for small values of the signal power. Thus, we expect the
streaming velocity to be linearly dependent on the input
signal power.

4.6. Effect of the channel dimensions h and H

In this section, we turn to an assessment of the effectiveness
of sharp edges in acoustofluidic mixing. Mixing characteriza-
tion is an inherently complex subject because mixing is a
time dependent process. The assessment offered in this
paper is limited to the theoretical modeling employed: the
equations presented earlier are for a single flow. Therefore,
our conclusions are strictly applicable only to perfectly misci-
ble fluids of same density and constitutive properties.
Because our focus is on the analysis of steady state acoustic
streaming, we did not consider the time evolution of the
fluid. This is not to say that our predictions are inadequate.
In fact, analyzing the structure of steady state mean particle
trajectories is analogous to analyzing a dynamical system's
response in phase-space to determine the possible evolution
of the system as a function of initial conditions, where the
latter, in the present context, is the initial positions of fluid
Lab Chip, 2014, 14, 2824–2836 | 2831
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particles in the channel. Therefore, given fluid particles ini-
tially distributed as shown in Fig. 1(a) near the fluid inlets,
we can tell whether or not particles are forced by the device
to travel away from their initial position. While we do not
solve a time dependent system, we do solve for the streaming
velocity. This indicator will allow us to assess whether a par-
ticular configuration will achieve mixing more rapidly than
the other. The mean trajectories we study are the streamlines
of the Lagrangian velocity field vL.

As shown in Fig. 3, we begin our analysis by considering
the effect of the channel dimensions h and H. We consider
three different cases with constant tip size h = 200 μm and
the following values for H: 600 μm, 750 μm, and 900 μm. In
all cases, the separation between sharp edges L was 300 μm
and the tip angle α was 15°. It can be seen from Fig. 8,
regardless of the ratio h/H, that fluid particles near the walls
are forced by the device to travel towards the opposite wall.
Also, as the ratio h/H decreases, the flow pattern “breaks”
into two distinct vortices, thus acquiring the sort of pattern
displayed in Fig. 5. This result indicates that there is a critical
value of h/H for which eddies might not be present. Unfortu-
nately, we do not have experimental confirmation of this
finding at this time. Nonetheless, this finding points to the
conclusion that narrowing channels might not be necessarily
desirable. We view the presence of eddies near the oscillating
sharp tips as a mixing enhancer. This feature indicates that
there are trajectories spanning the entire width of the chan-
nel in close proximity with trajectories of a very different
type, namely with local circulation. While this pattern is cer-
tainly not turbulent or chaotic, it does indicate the possibility
of good mixing conditions in that a small local random per-
turbation around the oscillating tips can cause particles com-
ing from, say, the top region of the domain to be “trapped”
(at least temporarily) in a completely different region of the
channel. From the viewpoint of mixing with an underlying
input flow, the fact that the streaming flow solution displays
2832 | Lab Chip, 2014, 14, 2824–2836

Fig. 8 Plots particle trajectories for three different cases with fixed value o
(cf. Fig. 3). The color map describes the values of the magnitude of the Lagr
a very distinct central symmetry indicates that better mixing
conditions are achieved by ensuring that the inlet flow is not
centered within the channel. Finally, we observe that, as H
increases, the fraction of the solution domain experiencing
mid-range velocity magnitudes appears to increase.

4.7. Effect of the channel dimension L

As shown in Fig. 3, L is the distance separating sharp edges
on opposite sides of the channel walls. Fig. 9 shows the
Lagrange velocity streamlines and magnitudes for three dif-
ferent values of the parameter L equal to 200 μm, 300 μm,
and 400 μm. The values of h and H were 200 μm and 600 μm,
respectively. The tip angle was set to 15°. These results
indicate that increasing the distance between opposing sharp
edges does not favor the presence of eddies near the tips.
However, the streamlines in Fig. 9(a) seem to indicate the
presence of possible stagnation points at the feet of the sharp
edges, clearly a feature that would be undesirable. As far as
the magnitude of the velocity is concerned, the figures do not
indicate sufficiently strong trends in this regard.

4.8. Effect of tip angle

Normally, mixing of fluids occurs as these fluids move along
the channel. That is, when there is a net flow, governed by
the conditions at the inlets, it interacts with the streaming
flow. Provided that we did not consider this interaction, the
ability of the device to force particles along the trajectories
illustrated thus far depends on the strength of the streaming
flow in relation to the background net motion along the
channel. For this reason, it is important to determine which,
if any, is the design feature that most decisively contributes
to the magnitude of the streaming flow. We believe this fea-
ture to be the angle α (cf. Fig. 3) at the tip of the sharp edge.
It is because α is acute that the second-order solution is sin-
gular. It is therefore important to understand how α affects
This journal is © The Royal Society of Chemistry 2014

f h = 200 μm and values of (a) H = 600 μm, (b) 750 μm, and (c) 900 μm
angian velocity vL, whereas the lines identify the streamlines of vL.
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Fig. 9 Plots particle trajectories for three different cases with fixed values of h = 200 μm and H = 600 μm, and different values of (a) L = 200 μm,
(b) 300 μm, and (c) 400 μm (cf. Fig. 3). The color map describes the values of the magnitude of the Lagrangian velocity vL, whereas the lines
identify the streamlines of vL.

Fig. 10 Plot of ‖v2‖ values at a fixed point ahead of a sharp edge vs.
tip angle α (cf. Fig. 3). The dimensions of the channel are h = 200 μm,
H = 600 μm and L = 300 μm. Open circles denote computed data
points corresponding to α = 7.5°, 15°, 30°, 45°, and 60°. In all cases,
‖v2‖ was calculated at the point lying on a line emanating from the tip
of a sharp edge parallel to the y direction and the distance away from
the tip is equal to twice the thickness of the Stokes boundary layer.
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the strength of the streaming flow. Normally, one would have
to characterize the type of singularity induced by the tip
angle and make inferences on the overall strength of the
streaming flow. Unfortunately, no analytical results are avail-
able on the analysis of the strength of the singularity at
re-entrant corners for asymptotic expansions of the compress-
ible Navier–Stokes equations as employed here. However, in
the equations for both the first- and second-order problems,
we see the presence of differential operators that are strongly
reminiscent of the Navier equations for the linear elastic
boundary value problem.

When a re-entrant corner is present in elastic problems,
the displacement gradient experiences singularities of the
type 1/rc, where r is the distance from the tip of the corner

and 0 1
2  .73 For α → 0,   1

2 , which represents the

stress/strain behavior found at the tip of a sharp crack. While
the equations used herein are not identical to those of linear
elasto-statics, we speculate that the analogy with fracture
problems in elasticity might be an appropriate tool to guide
us in the interpretation of the results. In order to quantify
how the velocity depends on the tip angle, we have measured
the magnitude of v2 at a distance equal to 2δ ahead of the tip
along a line emanating from the tip and parallel to the y,
where δ is the thickness of the Stokes layer. The calculations
are reported in Fig. 10. Clearly, the choice of location at
which ‖v2‖ is measured is arbitrary but it is motivated by the
fact that ‖v2‖ becomes unbounded as the tip is approached
and therefore its measure becomes meaningless. The plot
shows that ‖v2‖ increases with a decrease of tip angle and
that the rate of increase also increases as α becomes smaller.
Hence, one immediate conclusion is that the smaller the
value of α, the stronger the effect of the streaming flow on
the overall flow in the device and the better its mixing prop-
erties. However, this conclusion needs to be tested by consid-
ering the effect of the tip angle on particle trajectories. This
effect was captured in Fig. 11 for the values of tip angles
already mentioned. What is important to notice is that, for α
= 7.5° the simulation predicts the appearance of recirculation
areas at the feet of the sharp edges that may trap fluid parti-
cles permanently. This effect is not entirely surprising since
This journal is © The Royal Society of Chemistry 2014
the angle at the sharp edge feet reaches 90° as α reaches
zero, thus producing stagnation zones in the channel with
adverse effect on the device mixing properties. At the same
time, we notice that, as the angle becomes smaller, higher
values of particle velocity are present over a larger portion of
the solution domain. The importance of this observation lies
in the fact that higher particle velocities can strongly reduce
mixing times and therefore have a very enhancing effect on
the mixing properties of the device as a whole.

5 Conclusion

We studied the flow around acoustically actuated oscillating
sharp edges inside a microchannel using a perturbation
approach. The numerical results were compared with experi-
mental results and a very good agreement was observed
between them, especially in view of the strong simplifying
assumptions adopted in choosing boundary conditions. We
demonstrated that a computational domain under periodic
Lab Chip, 2014, 14, 2824–2836 | 2833
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Fig. 11 Plot of ‖vL‖ (colormap) and it streamlines for various values of tip angle α (cf. Fig. 3). The dimensions of the channel are h = 200 μm,
H = 600 μm and L = 300 μm. The values of α are (a) 7.5°, (b) 15°, (c) 30°, (d) 45°, and (e) 60°.
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boundary conditions can be used to model the full device,
resulting in significant savings in computational costs and
time. The predicted flow profiles were found to reflect the
inherent nonlinearity of the acoustic streaming phenomenon
as the various patterns identified are not linear scaling of
one another. The flow field was found to be heavily depen-
dent on the geometrical parameters of the device like the tip
angle of the sharp edges and the ratio h/H between the dis-
tance of the sharp edges from the wall and the overall chan-
nel's width. The streaming velocity was also observed to show
a quadratic dependence on the applied input displacement
and a nonlinear increase with the decrease in the tip angle.
At the same time, we showed that properties contributing to
the overall mixing effectiveness of the device can be in “com-
petition” with each other, making the identification of the
optimal geometric and working configurations nontrivial. For
this reason, we believe that our computational effort, in addi-
tion to providing better understanding of flow around sharp
edges in confined microchannels, is also very useful in
design optimization of sharp-edge micro-mixers. The latter
have numerous applications in many lab-on-a chip processes
like medical diagnostics, drug delivery, chemical synthesis,
and enzyme reactions.74–76 A natural extension of our numer-
ical model would be to include the coupling of the micro-
fluidic channel with the substrate. Our numerical model can
also be integrated with a study of the acoustic wave propaga-
tion through phononic structures which have been recently
demonstrated77–79 as an alternative interface between the
substrate and the disposable microfluidic chip to achieve bet-
ter control of the acoustic wave propagation.
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