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Introduction

Holographic polymer-dispersed liquid crystals (H-PDLCs)1 
have been developed for a wide range of photonic applica-
tions.2–7 In an H-PDLC structure, liquid crystals (LCs) exist 
within polymeric matrices as periodically arranged micro/
nano-droplets/channels. The optical properties of the entire 
H-PDLC structure can be effectively altered when one 
externally changes the orientation of LC molecules inside 
the droplets.8,9 In this regard, electrical and optical10–19 
approaches have been extensively exploited to reorient the 
LC molecules. However, these two manipulation methods 
have their respective limitations. For example, electrically 
driven H-PDLCs demand a high electric field (10−20 V/
µm) due to the high surface area to volume ratio of small 
LC droplets.20–22 This becomes problematic because the 
wholly organic nature of H-PDLC devices makes them 
vulnerable to high electric fields, thereby forestalling prac-
tical application. In addition, optically driven devices show 
a propensity for poor optical contrast. To overcome these 
limitations, researchers are still searching for other driving 
schemes to meet the requirements of excellent optical per-
formance and low power consumption.

Beyond electrical and optical driving, LC molecules can 
also be acoustically reoriented.23 LC realignment based on 
acoustic waves has already found valuable applications within 
the areas of imaging24–26 and medical diagnostics.27–29 Ozaki  

et al.30,31 used acoustic streaming to change the alignment of 
cholesteric LC molecules and demonstrate a lasing effect. Very 
recently, we have demonstrated a surface acoustic wave 
(SAW)–driven light shutter based on PDLCs.32 The SAW-
driven approach is energy efficient and free of contamination 
due to its unique properties. In this letter, we report SAW-
driven H-PDLC gratings for switchable diffraction, which are 
potentially useful in many photonic applications, such as opti-
cal switches, spatial light modulators, and switchable add/drop 
filters.
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Abstract

We report holographic polymer-dispersed liquid crystal (H-PDLC) gratings driven by surface acoustic waves (SAWs). 
Our experiments show that upon applying SAWs, the H-PDLC grating exhibited switchable properties: The diffraction of 
the H-PDLC grating decreased, whereas the transmission increased. This acoustically switchable behavior is due to the 
acoustic streaming-induced realignment of liquid crystals as well as absorption-resulted thermal diffusion. Such SAW-driven 
H-PDLC gratings are potentially useful in many photonic applications, such as optical switches, spatial light modulators, and 
switchable add/drop filters.
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Materials and Methods
Sample Preparation
In our experiment, SAWs were generated by an interdigital 
transducer (IDT) on a piezoelectric substrate of lithium 
niobate (LiNbO

3
). The detailed procedures for IDT fabrica-

tion can be found elsewhere.6,33–36 In brief, two respective 
layers of metals (Ti/Au, 5 nm/80 nm) were subsequently 
deposited on a photoresist-patterned LiNbO

3
 substrate. The 

IDTs were then released after a lift-off process. To form an 
H-PDLC grating, a drop of prepolymer/LC syrup was sand-
wiched between a glass slide and the LiNbO

3
 substrate and 

then subjected to light exposure to induce phase separation 
between the LCs and polymers using a conventional laser 
holography setup. In this setup, two collimated writing 
beams from an Ar+ laser (488 nm) intersected at an angle of 
~20°. Each beam had a diameter of 2 cm and an intensity 
of ~10 mW/cm2. The exposure time was 2 min. After expo-
sure, the samples were further cured for another 10 min 
under a UV lamp to ensure complete polymerization. The 
PDLC cell thickness was controlled to be 15 µm using 
polystyrene beads as spacers. The prepolymer/LC syrup 
consisted of 43.37 wt% monomer, dipentaerythritol penta-/
hexa-acrylate (DPPHA); 6.62 wt% cross-linking monomer, 
N-vinylpyrrollidone (NVP); 0.84 wt% photoinitiator, Rose 
Bengal (RB); 0.92 wt% coinitiator, N-phenylglycine 
(NPG); and 48.25 wt% LC E7. The LC E7 has the ordinary 
refractive index of n

o
 = 1.52 and a birefringence of Δn = 

0.22 (n
e
 = 1.74) at room temperature. Its clearing point is 

58 °C. At the isotropic state, it has a refractive index of n
iso

 
≈ (2n

o
 + n

e
)/3 = 1.59. The syrup was mechanically blended 

to form a homogeneous mixture at a temperature of 70 °C.

Experimental Setup
Figure 1 illustrates the structure of the SAW-driven H-PDLC 
grating. This grating is located between two parallel IDTs on 
the LiNbO

3
 substrate. The first IDT is employed for SAW 

generation, whereas the second is for SAW detection. A radio 
frequency (RF) signal is applied to one of the two IDTs to 
generate the SAW, which propagates along the surface of the 
piezoelectric substrate. By tuning the applied frequencies 
from the function generator and monitoring the frequency-
dependent amplitude in voltage on an oscilloscope, an opti-
mum resonant frequency can be selected as the driving 
frequency. At this working frequency, the diffraction proper-
ties of H-PDLC gratings will be investigated.

Results
H-PDLC Grating

Figure 2 shows the scanning electron microscopy (SEM) 
image of the H-PDLC grating with the LC cell de-capped 

and LC removed. It is clear that polymer-rich (lighter 
stripes) and LC-rich (darker stripes) lamellae alternate 
inside the grating structure. The two-beam interference at 
an angle of ~20° produced a 700-lines/mm H-PDLC grat-
ing with a period of 1.4 µm. Judging from the small holes, 
where the LC droplets reside, the size of most LC droplets 
is in the range of 50 to 300 nm in diameter.

Acoustically Switchable Property
In our experiments, after the H-PDLC grating fabrication, 
we found the optimum working frequency of SAWs to be 
18.76 MHz, which is in strong agreement with the calcula-
tion from the IDT period λ (λ = 200 µm, SAW velocity 

Figure 1. Schematic of the device structure of the surface 
acoustic wave (SAW)–driven holographic polymer-dispersed 
liquid crystal (H-PDLC) grating. The liquid crystal (LC) droplets 
are periodically arranged in the polymer matrix with droplet 
directions randomly aligned. The coordinate system is chosen 
to make the SAW propagate along the x-axis. The interdigital 
transducer (IDT) and H-PDLC have a working area of 6 × 8 mm2 
and 8 × 8 mm2, respectively.

Figure 2. A scanning electron microscopy (SEM) image showing 
the morphologies of the holographic polymer-dispersed liquid 
crystal (H-PDLC) grating.
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under the working situation c ≈ 3750 m/s, so the working 
frequency f = c/λ = 18.75 MHz). At this frequency, we 
investigated the intensity changes of the first-order diffrac-
tion of the H-PDLC grating. An He-Ne laser (633 nm) 
beam was normally incident on the sample. The diffracted 
intensity was collected by a power meter and fed into a 
computer. Figure 3 shows the first-order diffraction as a 
function of applied acoustic power. The diffraction inten-
sity gradually decreases with the increase of the applied 
acoustic power. We attribute this change to the acoustic 
streaming-induced realignment of LC molecules as well as 
absorption-resulted thermal diffusion. When the propagat-
ing SAW encounters the H-PDLC grating, the acoustic 
wave attenuates while propagating due to the absorption 
and thermal conduction of the grating itself. The attenuated 
acoustic wave exerts a net force on the LC molecules inside 
the droplets through momentum conservation, which causes 
a steady flow known as acoustic streaming.37 This acoustic 
streaming could lead to a vortical current inside the LC 
droplets that is responsible for realigning most of the LC 
molecules perpendicular to the substrate.38 When most of 
the LC molecules align perpendicular to the substrate, the 
normally incident light sees only the ordinary refractive 
index of the LCs regardless of its polarization, which is 
nearly the same as the refractive index of the polymer 
matrix. As a result, the index modulation inside the grating 
disappears, as does the diffraction of the grating. In Figure 
3, the threshold switching power (the point of diffraction 
intensity change) is ~4 dBm, whereas the switching power 
(the point at which the diffraction intensity reaches a mini-
mum) is ~24 dBm. The inset shows the captured intensity 

changes at the applied acoustic power of 0, 8, 16, and 24 
dBm, respectively. It is evident that the diffraction intensity 
decreases while the transmission intensity increases. It is 
worth mentioning that with the increase of the acoustic 
power, the scattering of the H-PDLC grating also decreases 
along the normal incidence. The scattering originates from 
the LC droplet size distribution. In the H-PDLC grating, 
large LC droplets tend to scatter more light, producing a 
haze effect. When the acoustic field is applied on the sam-
ple, these large droplets will be the first to align due to their 
higher volume to surface area ratio, after which the haze 
will disappear, resulting in decreased scattering. When the 
acoustic power continues to increase, the smaller droplets 
start to align, and the index modulation further decreases. 
As a result, minimal scattering will be achieved. This is 
also confirmed from the inset of Figure 3, where the light-
scattering profile becomes smaller with the increase of 
acoustic power.

Furthermore, the switching dynamics of H-PDLC grat-
ings were explored when the IDT was switched on and off. 
Figure 4a shows the diffraction changes during on and off 
processes under different acoustic power. One can see that 
the switching-on process strongly depends on the acoustic 
power. The higher the acoustic power applied, the faster the 
switching-on process occurs within the H-PDLC grating. At 
a certain acoustic power, the switching-on time and the con-
trast will finally saturate. From Figure 4a, it can be seen 
that the switching-off time keeps almost constant, since it is 
dependent only on the material properties of LCs. In our 
experiment, at the applied acoustic power of 30 dBm, the 
optimized switching-on and switching-off times were ~12 s 
and ~82 s, respectively; the achieved optical contrast, 
defined as maximum diffraction over minimum diffraction, 
was about 19.

Discussion
According to the report by Greanya et al.,39 the switching 
process of an LC sample by an acoustic wave usually has 
two relaxation modes with fast and slow time scales. For 
the H-PDLC grating, the experimental switching-on curves 
were also fitted using a double exponential function:
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i
 and τ

i
 (i = 1, 2) are the fitting parameters, repre-

senting phase retardation and switching-on time. Figure 4b 
shows a detailed examination of the switching-on process. 
From Figure 4b, the double exponential function fits well 
with the dynamic switching behavior over the full range of 
switching-on time, which confirms that the switching pro-
cess of the H-PDLC grating has two relaxation modes (slow 
and fast) with different time scales. We also note from the 
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Figure 3. The switching dynamics of the first-order diffraction 
as a function of the acoustic power. The insets (I−IV) show the 
captured intensity changes at the applied acoustic powers of 0, 8, 
16, and 24 dBm, respectively.
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fitting of the graph that the time scales for switching on of 
relaxation modes τ

1
 and τ

2
 vary dramatically depending on 

the applied acoustic power. At higher acoustic power, both 
slow and fast relaxation modes have the same order of mag-
nitude for switching-on time, whereas at lower acoustic 
power, the slow relaxation mode is one order slower than 
the fast relaxation mode.

In summary, we have demonstrated a SAW-driven 
H-PDLC grating based on the acoustic streaming-induced 
realignment of LC molecules as well as absorption-resulted 
thermal diffusion. Upon applying the SAW, the diffraction 
of the H-PDLC grating can be switched due to the refractive 
index matching between the polymer and LC lamella. This 
acoustically switchable property makes H-PDLC–based 

devices a promising prospect for photonic applications, 
including switches, modulators, and filters.
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