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Tunable phononic crystals with anisotropic inclusions
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We present a theoretical study on the tunability of phononic band gaps in two-dimensional phononic crystals
consisting of various anisotropic cylinders in an isotropic host. A two-dimensional plane-wave expansion method
was used to analyze the band diagrams of the phononic crystals; the anisotropic materials used in this work include
cubic, hexagonal, trigonal, and tetragonal crystal systems. By reorienting the anisotropic cylinders, we show that
phononic band gaps for bulk acoustic waves propagating in the phononic crystal can be opened, modulated,
and closed. The methodology presented here enables enhanced control over acoustic metamaterials which have
applications in ultrasonic imaging, acoustic therapy, and nondestructive evaluation.
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I. INTRODUCTION

Understanding the propagation behavior of acoustic waves
in periodic composite structures is important for many
acoustic-based applications. These periodic composite struc-
tures, known as phononic crystals, are composed of arrays of
elastic inclusions embedded in a host material with different
elastic properties.1 For wavelengths on the scale of the
structure’s periodicity, phononic crystals exhibit complete
phononic band gaps: frequency ranges where the vibration of
acoustic waves is suppressed in any mode.2–4 Phononic band
gaps result from the destructive interference between incident
acoustic waves and reflections from these periodic scatterers;
as such, they have been employed to obtain perfect acoustic
mirrors,5 filters,6 switches,7,8 and lenses9–11 at designated
frequencies. In addition, vibrations at frequencies in the band
gap can be strongly localized to defects in the phononic
crystal, making them practical for acoustic resonators12,13 and
waveguides.14–16

At frequencies outside the phononic band gap, the band
diagrams for phononic crystals are distorted when compared
to a homogeneous, isotropic material. Isotropic media have
circular equal-frequency contours (EFCs), whereas the EFCs
in a phononic crystal can be highly anisotropic, especially
at frequencies near the phononic band gaps. In general, the
propagation direction of an acoustic wave beam is normal
to the EFCs of the medium per the relation vg = ∇kω(k),
where vg is the group velocity, ω is the angular velocity, and k
is the wave vector. As a result, large bending effects such
as negative refraction,17–22 self-collimation,23 and acoustic
mirages24 can be obtained within phononic crystals due to the
anisotropic EFCs. Phononic crystals are identified as acoustic
metamaterials because of this extraordinary behavior, and their
applications have been extended from bulk acoustic waves25–27

to surface acoustic waves,28,29 and more recently to plate
waves.30–32

Much of the existing research on phononic crystals focuses
on understanding how the width and position of phononic band
gaps depend upon the constitutive parameters (e.g., geometry,
composition, and material properties) of the structures.33 This
focus is mainly due to the fact that almost all phenomena
exhibited by phononic crystals rely on the formation of a
phononic band gap. Explicit control of a phononic band gaps
yields desirable operation parameters and improves overall

performance for phononic crystal-based applications. Recent
studies have shown that phononic band gaps can be tuned by
(i) physical rotation34–36 or relocation37 of inclusions to
modify the dispersion relation for acoustic waves, (ii) me-
chanical deformation of the structure by an external stress,38

(iii) actively changing the elastic properties of the constitutive
materials through application of a strong external stimulus
(e.g., electric and magnetic fields),8,39,40 and (iv) changing the
acoustic velocities in ferroelectric materials through a tem-
perature variation induced phase transition.41,42 For cases (i)
and (ii), isotropic materials are usually chosen to form the
heterogeneous structures where a change in geometry accounts
for the tunability of the phononic band gaps. On the contrary,
a number of anisotropic materials have been utilized to build
tunable phononic crystals with approaches (iii) and (iv), as
they are more sensitive to perturbations in the environment.
Because of this sensitivity, the rotation and/or relocation of
anisotropic inclusions in a phononic crystal could potentially
have greater flexibility and stronger effects in tuning phononic
band gaps, however, no comprehensive research has been done
yet.

In this work, we present a comprehensive study on the
tunability of phononic band gaps in two-dimensional phononic
crystals consisting of anisotropic cylinders in an isotropic
host. We demonstrate that control of the phononic band gaps
results from the reorientation of the anisotropic cylinders.
The anisotropic materials considered in this study include
cubic, hexagonal, trigonal, and tetragonal materials. A two-
dimensional plane-wave expansion (PWE) method28 is used
to calculate the variation in the phononic band gaps upon the
reorientation of the anisotropic cylinders. Our results show that
the band gaps of a phononic crystal can be broadly tuned by
the proposed method, allowing enhanced control over acoustic
metamaterials.

In Sec. II, we introduce the model and method used to
calculate the band gaps of the phononic crystals. In Sec. III, we
present and discuss the tunability of two-dimensional phononic
crystals with cubic, hexagonal, trigonal, and tetragonal cylin-
ders, respectively. Finally, we present a summary in Sec. IV.

II. FORMULATION

Figure 1 gives a schematic which illustrates the geometry
of the periodic composite structures used in our work. The
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FIG. 1. (Color online) The left diagram shows the top view of an
infinite two-dimensional square-lattice phononic crystal. The right
diagram shows the corresponding first Brillouin zone of the unit
cell.

anisotropic cylinders with radius r are arranged in a two-
dimensional square array with lattice spacing d and embedded
in a homogeneous host material. A global Cartesian coordinate
system xyz is set with the z axis parallel to the cylinder
axis and x and y axes along the lattice axes of the square
array. In the absence of a body force and temperature
factor,42,43 the equation of motion for the displacement

vector in a periodic composite structure can be written
as

ρ(r)üi(r,t) = ∂j [cijmn(r)∂num(r,t)], (1)

where r = (x,z) = (x,y,z) is the position vector with respect
to the global coordinate system xyz, t is the time variable,
and ρ(r) and cijmn(r) are the position-dependent mass density
and elastic stiffness tensor, respectively. In this section, the
constitutive materials (cylinders and host) of the periodic
composite structure are of the lowest symmetry, i.e., belonging
to the triclinic symmetry.

The wave behavior in this two-dimensional phononic
crystal is very complicated and highly sensitive to the
frequency and direction of the propagating wave due to
the periodicity of the structure and the anisotropy of the
constitutive materials. The wave equation, Eq. (1), can be
solved by a number of numerical methods, such as PWE
methods,28 multiple-scattering theory (MST),44–46 and finite-
difference time-domain (FDTD) methods.14 In this work we
use a two-dimensional PWE method to solve for the dispersion
relations of the acoustic waves because of its strength in
analyzing structures containing anisotropic materials.28 When
only bulk acoustic modes are considered, the PWE method
dictates that the equation of motion for a two-dimensional
periodic composite structure can be expanded into a Fourier
series with respect to reciprocal-lattice vectors G and G′, and
rewritten as an eigenvalue problem:

⎢⎢⎢⎢⎣
ω2ρG−G′ + M1

G−G′ L1
G−G′ U 1

G−G′

L2
G−G′ ω2ρG−G′ + M2

G−G′ U 2
G−G′

W 1
G−G′ W 2

G−G′ ω2ρG−G′ + M3
G−G′

⎥⎥⎥⎥⎦ ·

⎢⎢⎢⎢⎣
A1

G′

A2
G′

A3
G′

⎥⎥⎥⎥⎦ ≡ MU= 0, (2)

where U is the eigenvector and M is a function of the Block
wave vector k, angular frequency ω, Fourier coefficients of
mass density ρG−G′ and components of elastic stiffness tensor
c
ij

G−G′ . The expressions of the nine matrix entries in Eq. (2) are

M1
G−G′ = [

b1c
11
G−G′ + b2c

16
G−G′ + b3c

61
G−G′ + b4c

66
G−G′

]
,

M2
G−G′ = [

b1c
66
G−G′ + b2c

62
G−G′ + b3c

26
G−G′ + b4c

22
G−G′

]
, (3)

M3
G−G′ = [

b1c
55
G−G′ + b2c

54
G−G′ + b3c

45
G−G′ + b4c

44
G−G′

]
,

L1
G−G′ = [

b1c
16
G−G′ + b2c

12
G−G′ + b3c

66
G−G′ + b4c

62
G−G′

]
,

(4)
L2

G−G′ = [
b1c

16
G−G′ + b2c

66
G−G′ + b3c

21
G−G′ + b4c

26
G−G′

]
,

U 1
G−G′ = [

b1c
15
G−G′ + b2c

14
G−G′ + b3c

65
G−G′ + b4c

64
G−G′

]
,

(5)
U 2

G−G′ = [
b1c

65
G−G′ + b2c

64
G−G′ + b3c

25
G−G′ + b4c

24
G−G′

]
,

W 1
G−G′ = [

b1c
51
G−G′ + b2c

56
G−G′ + b3c

41
G−G′ + b4c

46
G−G′

]
,

(6)
W 2

G−G′ = [
b1c

56
G−G′ + b2c

52
G−G′ + b3c

46
G−G′ + b4c

42
G−G′

]
,

where
b1 = −(G1 + k1)(G′

1 + k1),

b2 = −(G1 + k1)(G′
2 + k2),

(7)
b3 = −(G2 + k2)(G′

1 + k1),

b4 = −(G2 + k2)(G′
2 + k2).

In the above equations, Voigt’s notation has been used to
express the Fourier coefficients of the elastic stiffness tensor
c
ij

G−G′ . The eigenfrequencies of the bulk acoustic modes can
be obtained by setting

det(M) = 0. (8)

Once the eigenfrequencies are obtained, the relative ampli-
tude of the displacement for each eigenmode can be solved by
substituting the eigenfrequencies into Eq. (2).

As the anisotropic cylinders are rotated through an angle θ

about the cylinder axis (z axis), the crystalline axes of the cylin-
ders are reoriented accordingly. The rotation of the cylinders
changes the value of the Fourier coefficients in the elastic stiff-
ness tensor c

ij

G−G′ in Eqs. (3)−(6), which influences the acous-
tic wave propagation behavior in the periodic composite struc-
ture. We define another Cartesian coordinate system abc with
the c axis parallel to the z axis of the global system, as shown
in Fig. 1, to track the orientation of the anisotropic cylinders.
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The transformation of the coordinate position vector between
the global and cylinder coordinate systems can be achieved by⎢⎢⎢⎢⎣

a

b

c

⎥⎥⎥⎥⎦ =

⎢⎢⎢⎢⎣
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎥⎥⎥⎥⎦ ·

⎢⎢⎢⎢⎣
x

y

z

⎥⎥⎥⎥⎦ . (9)

Consequently, the elastic stiffness tensor of the rotated
cylinders in terms of the global coordinate system xyz can
be obtained by transforming the rotational coordinate:47

c′ = TcTt , (10)

where

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 sin 2θ

sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0

0 0 0 cos θ − sin θ 0

0 0 0 sin θ cos θ 0

− sin θ cos θ sin θ cos θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

is the transformation matrix and Tt is the transpose of T. Once the elastic stiffness tensor c′ is obtained, the new dispersion
relations for the bulk acoustic modes can be calculated by substituting c′ back into Eqs. (3)−(6) and solving the eigenvalue
problem.

The elastic material properties used in our work are listed in Table I.47 The elastic stiffness components given in Table I
refer to the global coordinate axes x, y, z that coincide with the crystalline axes X, Y, Z, i.e., acoustic waves propagate
in the XY plane of the anisotropic materials. When acoustic waves do not propagate in the XY plane of the cylinders,
i.e., the cylinder coordinate axes a, b, c do not coincide with the crystalline axes X, Y, Z, corresponding coordinate
transformations must be applied to the elastic stiffness tensor of the cylinders before solving the eigenvalue problem. As
acoustic waves propagate in the XZ plane of the cylinders, for example, the embedded crystal experiences a clockwise
rotation through 90◦ about the crystalline X axis. Or when acoustic waves propagate in a meridian plane, the crystal
rotates through 45◦ about the crystalline Z axis followed by 90◦ about the crystalline X axis. The coordinate transformation
matrices for a rotation through an angle ξ about the crystalline X axis and an angle η about the crystalline Y axis
are

TX =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 cos2 ξ sin2 ξ sin 2ξ 0 0

0 sin2 ξ cos2 ξ − sin 2ξ 0 0

0 − sin ξ cos ξ sin ξ cos ξ cos 2ξ 0 0

0 0 0 0 cos ξ − sin ξ

0 0 0 0 sin ξ cos ξ

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

and

TY =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 η 0 sin2 η 0 − sin 2η 0

0 1 0 0 0 0

sin2 η 0 cos2 η 0 sin 2η 0

0 0 0 cos η 0 sin η

sin η cos η 0 − sin η cos η 0 cos 2η 0

0 0 0 − sin η 0 cos η

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

respectively. The coordinate transformation matrix for a rotation about the crystalline Z axis is the same as the one defined in
Eq. (11).
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TABLE I. Elastic properties of the materials used in this paper (Ref. 47).

Elastic stiffness (×1010 N/m2)

Material Symmetry Density(kg/m3) C11 C12 C13 C14 C33 C44 C66

Epoxy isotropic 1180 0.761 0.159
GaAs cubic 5307 11.88 5.38 5.94
ZnO hexagonal 5680 20.97 12.11 10.51 21.09 4.247
Quartz trigonal 2651 8.674 0.699 1.191 1.791 10.72 5.794
TiO2 tetragonal 4260 26.6 17.33 13.62 46.99 12.39 18.86

III. NUMERICAL RESULTS

A. Cubic inclusions: GaAs/epoxy square lattice

Here we consider a two-dimensional phononic crystal
consisting of a square array of circular gallium arsenide (GaAs)
cylinders embedded in a homogeneous epoxy background.
The phononic crystal has a lattice spacing d in both the x
and y directions. Bulk acoustic waves propagate along the
XY plane [(001) plane] in crystalline GaAs, thus no coordinate
transformations need to be applied to the elastic stiffness tensor
of the cylinders. GaAs belongs to the cubic crystal system
while the epoxy is isotropic. The elastic stiffness tensor of a
cubic material has the form

c =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

The slowness surfaces of bulk acoustic waves propagating
in the XY plane of GaAs are shown in Fig. 2(a). It can be seen
in this figure that the pure shear mode is isotropic, while the
quasilongitudinal and quasishear modes are anisotropic with
an eightfold symmetry. We expect that a cylinder rotation will
change the band diagrams of the phononic crystal, including
the width and position of the phononic band gaps.

Note that the elastic stiffness components c14 = c41,
c15 = c51, c24 = c42, c25 = c52, c46 = c64, and c56 = c65 of
cubic and isotropic materials are zero; as a result, the Fourier
components in Eqs. (5) and (6) vanish (U 1

G−G′ = U 2
G−G′ =

W 1
G−G′ = W 2

G−G′ = 0). The M matrix in Eq. (2) can therefore
be decoupled into two different polarization modes of bulk
acoustic waves as

[
ω2ρG−G′ + M1

G−G′ L1
G−G′

L2
G−G′ ω2ρG−G′ + M2

G−G′

]
·
[

A1
G′

A2
G′

]
= 0

(15)

)b()a(
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FIG. 2. Slowness surfaces of bulk acoustic
waves propagating in (a) the XZ plane of GaAs,
(b) the meridian plane of ZnO, (c) the XZ plane
of quartz, and (d) the XY plane of TiO2.
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FIG. 3. (Color online) Dispersion relations for bulk modes of a
GaAs (XZ plane)/epoxy square-lattice phononic crystal with a filling
fraction of 0.65 and a cylinder rotation angle of (a) 0◦ and (b) 45◦;
(c) and (d) depict the angular dependence of the midgap frequency
and relative bandwidth of the phononic band gaps, respectively.

for the mixed polarization modes [i.e., longitudinal (L) and
shear horizontal (SH) modes with polarization in the xy plane]
and [

ω2ρG−G′ + M3
G−G′

] · [
A3

G′
] = 0 (16)

for the transverse polarization mode [i.e., shear vertical
(SV) mode with polarization along the z axis]. The mixed
polarization modes correspond to the quasilongitudinal and
quasishear modes in GaAs [Fig. 2(a)], and the transverse
polarization mode corresponds to the pure shear mode.

Figure 3(a) shows the calculated dispersion relations for
bulk acoustic waves propagating in a GaAs/epoxy phononic
crystal with a filling fraction of f = 0.65 and a cylinder
rotation angle of θ = 0. The vertical axis of the dispersion
relations gives the reduced frequency � = ωd/2πC where C
is the transverse wave velocity in epoxy, and the horizontal
axis is the reduced wave vector K = kd/π along the
periphery of the irreducible part (triangle 
XM) in the first
Brillouin zone. We used 121 reciprocal-lattice vectors in all

calculations conducted in this paper to ensure the convergence
of the PWE method. The red solid and blue dashed lines
in Fig. 3(a) represent the mixed polarization and transverse
polarization modes, respectively. The GaAs/epoxy phononic
crystal demonstrates a narrow phononic band gap ranging
from � = 1.621 to � = 1.630 with a relative bandwidth
(phononic band-gap width divided by midgap frequency) of
0.55%. The yellow colored area in the figure indicates the
location of the phononic band gap. When the GaAs cylinders
are rotated through an angle of 45◦ about the cylinder axis,
the elastic stiffness tensor changes with respect to the global
coordinate system xyz; the corresponding dispersion relations
are displayed in Fig. 3(b). Comparing Fig. 3(b) with Fig. 3(a),
the shape of the mixed polarization modes (red solid lines)
deforms greatly. However, the dispersion relation for the
transverse polarization mode (blue dashed lines) is not altered
at all after cylinder rotation because the Fourier components
in M3

G−G′ do not vary with the coordinate transformation. The
45◦-cylinder-rotated GaAs/epoxy phononic crystal exhibits
two phononic band gaps, separated by the second band of
the vertical polarization mode, extending from � = 1.368 to
� = 1.425 (relative bandwidth 4.1%) and from � = 1.548 to
� = 1.659 (relative bandwidth 6.9%), respectively.

To further investigate the geometric dependence of the
dispersion relations of the GaAs/epoxy phononic crystal, we
calculated the midgap frequency and relative bandwidth of
the phononic band gaps for cylinder rotation angles from 0◦ to
45◦ with an increment of 2.5◦, as shown in Figs. 3(c) and 3(d),
respectively. This angular range is sufficient because the angu-
lar dependence of the phononic band gaps is symmetric about
θ = 45◦. We find that the first (lower frequency) phononic
band gap only appears when θ > 30◦. The midgap frequency
of this band gap decreases with θ while the gap width increases
with θ . The second (higher frequency) phononic band gap
exists throughout all rotation angles; it is located between the
third and fourth frequency bands of the mixed polarization
mode for θ � 15◦ and between the second frequency band
of the transverse polarization mode and the fourth frequency
band of the mixed polarization mode for 15◦ < θ � 45◦. The
maximum width of the second phononic band gap is 12% at
θ = 25◦. It is worth noting that the two phononic band gaps
are separated by the second frequency band of the transverse
polarization mode. The width of the partial phononic band
gap of the mixed polarization modes increases progressively
with an increase in rotation angle, as displayed in Fig. 3(d).
The strong tunability of this partial phononic band gap holds
great potential for filtering applications.

When compared to existing studies that employ rota-
tion of noncircular cylinders34,35 or utilize strong external
stimuli,8,39–42 our phononic crystals demonstrate a competitive
tuning range for both the position and width of the phononic
band gaps. Our results suggest that the reorientation of
anisotropic cylinders can serve as a feasible approach for
tuning the dispersion relations for acoustic waves propagating
in phononic crystals.

B. Hexagonal inclusions: ZnO/epoxy square lattice

Now we consider a two-dimensional, square-lattice
phononic crystal consisting of zinc oxide (ZnO) cylinders

174303-5



SZ-CHIN STEVEN LIN AND TONY JUN HUANG PHYSICAL REVIEW B 83, 174303 (2011)

embedded in epoxy. ZnO belongs to the hexagonal crystal
system and its elastic stiffness tensor has the form

c =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 (c11 − c12)/2

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

Acoustic waves propagate in the meridian plane of crys-
talline ZnO, thus two coordinate transformations with respect
to the X and Z axis were applied to the elastic stiffness
tensor of the cylinders. Without considering the piezoelectric
effect, the slowness surfaces of the three bulk modes at room
temperature exhibit a fourfold symmetry shown in Fig. 2(b).
After coordinate transformations, the elastic stiffness tensor
of ZnO is no longer lower than orthorhombic symmetry,
hence the M matrix in Eq. (2) cannot be decoupled into two
different polarization modes.28 The three bulk acoustic modes
in the phononic crystal are all mixed polarization modes and
distinguished as quasi-L, quasi-SH, and quasi-SV modes.

Figure 4(a) shows the calculated dispersion relations for
bulk acoustic waves propagating in a ZnO/epoxy phononic
crystal with a filling fraction of f = 0.45 and a cylinder rotation
angle of θ = 0. Note that the irreducible part of the Brillouin
zone for the phononic crystal is now rectangular (
XMY) due
to the fourfold symmetry of the slowness surfaces of ZnO in
the meridian plane. It can be seen from Fig. 4(a) that the band
diagrams along 
-X and X-M are different from those along

-Y and Y-M, respectively. The arrows point out differences
between X and Y at points near the first phononic band gap.
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FIG. 5. (Color online) Angular dependence of (a) the midgap
frequency and (b) relative bandwidth of phononic band gaps of a
ZnO (meridian-plane)/epoxy square-lattice phononic crystal with a
filling fraction of 0.45.

In the figure, we observe that three phononic band gaps exist
below reduced frequency � = 1.5, between the fourth and
fifth, seventh and eighth, and eighth and ninth frequency bands,
denoted by the yellow colored areas. The midgap frequency
(relative bandwidth) of these three band gaps is 0.7155
(1.82%), 1.2025 (7.07%), and 1.3975 (4.65%), respectively.
When the ZnO cylinders were rotated 45◦ in a clockwise
direction, the band gaps remained between the same pairs of
frequency bands [Fig. 4(b)]. However, the relative bandwidth
of the first and second band gaps expanded enormously to
8.01% and 12.98%, respectively, while the third band gap was
reduced to 2.69%. Figure 5 displays the geometric dependence
of the phononic band gaps in the ZnO/epoxy phononic crystal
on the cylinder rotation angle for a range of 0–90◦. The solid
lines and shaded areas in Fig. 5(a) denote the midgap frequency
and the range of the three phononic band gaps, respectively.
The relative bandwidths are plotted in Fig. 5(b). At first glance,
we notice that all the band-gap parameters are symmetric
around 45◦; the observed symmetry can be explained by the
fact that our calculations account for wave propagation in the
entire 
XMY rectangle of the first Brillouin zone. For example,
the dispersion relations along 
-X at θ = 0 are identical to
those along 
-Y at θ = 90◦ due to the fourfold symmetry of
the slowness surfaces of ZnO. The width of the first phononic
band gap increases monotonically with cylinder rotation angle
and reaches a maximum of 8.01% at θ = 45◦. The widths of
the second and third band gaps also vary with rotation angle,
but their maxima appear at θ = 35◦ (and θ = 55◦ due to the
mirror-image symmetry) and θ = 25◦ (θ = 65◦), respectively.
Figure 5 demonstrates that the proposed method can be used
to tune the phononic band gaps of a square-lattice phononic
crystal consisting of hexagonal cylinders over a considerable
range.

C. Trigonal inclusions: Quartz/epoxy square lattice

In this subsection, we investigate a phononic crystal con-
sisting of a two-dimensional square array of quartz cylinders
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FIG. 6. (Color online) Dispersion relations for bulk modes of a
quartz (XZ plane)/epoxy square-lattice phononic crystal with a filling
fraction of 0.6 and a cylinder rotation angle of (a) 90◦ and (b) 45◦.

embedded in a homogeneous epoxy background. Quartz be-
longs to the trigonal crystal system, which has six independent
elastic stiffness components (see Table I). Bulk acoustic waves
propagate in the XZ plane [(010) plane] of quartz, thus a
coordinate transformation with respect to the crystalline X
axis was applied to the elastic stiffness tensor of the cylinders.
The slowness surfaces of the bulk modes propagating in the
XZ plane of quartz have a fourfold symmetry, as shown in
Fig. 2(c). The dispersion relations of a quartz/epoxy phononic
crystal with a filling fraction of 0.6 and a cylinder rotation
angle of 90◦ are shown in Fig. 6(a). In the figure, we observe a
wide phononic band gap between the fourth and fifth frequency
bands that expands in reduced frequency from 1.448 to 1.644.
The midgap frequency and relative bandwidth of the band
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FIG. 7. (Color online) Angular dependence of (a) the midgap
frequency and (b) relative bandwidth of phononic band gaps of quartz
(XZ plane)/epoxy square-lattice phononic crystals with different
filling fractions.

gap are 1.546% and 19.6%, respectively. Note that if only the

XM triangle in the first Brillouin zone is considered, there
should be a phononic band gap between the third and fourth
frequency bands; however, the overlap of these frequency
bands in the Y-M direction closes this gap. Figure 6(b) shows
the dispersion relations when the cylinder rotation angle is 45◦.
At this cylinder rotation angle the third and fourth frequency
bands do not overlap and a phononic band gap opens up,
extending from 1.270 to 1.294 with a relative bandwidth of
2.4%. The original phononic band gap remains intact, however,
its relative bandwidth of the phononic band gap decreases
to 7.8%.

In periodic composite structures, the filling fraction can be
another important parameter on band diagram deformation and
band-gap modification. Figure 7 shows the relative bandwidth
of the first [Fig. 7(a)] and second [Fig. 7(b)] phononic band
gaps in the quartz/epoxy phononic crystals as a function of fill-
ing fraction and cylinder rotation angle. Only filling fractions
ranging from 0.35 to 0.6 (with an increment of 0.05) are shown
because no phononic band gap is present in quartz/epoxy
phononic crystals outside this range. For any fixed θ , we
can see that the width of both phononic band gaps increases
with filling fraction, reaching a maximum at f = 0.55 (black
lines with diamond markers), then decreasing and finally
disappearing when f > 0.6. In this regard, a quartz/epoxy
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FIG. 8. (Color online) Dispersion relations for bulk modes of a
TiO2 (XY plane)/epoxy square-lattice phononic crystal with a filling
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(c) and (d) depict the angular dependence of the midgap frequency
and relative bandwidth of the phononic band gaps, respectively.
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phononic crystal can be designed with a filling fraction close
to 0.55 to obtain the widest possible phononic band gap. For
all filling fractions shown in the figure, we observe that the first
phononic band-gap width climbs with cylinder rotation angle
[Fig. 7(a)], while the second phononic band-gap width declines
with cylinder rotation angle [Fig. 7(b)]. In fact, the first band
gap of the phononic crystal with f = 0.4 and 0.6 does not open
until θ increases to 22.5◦ and 30◦, respectively. The second
band gap of the phononic crystal with f = 0.35 closes when
θ > 30◦. Therefore by choosing a proper filling fraction and
controlling the rotation angle of the quartz cylinders, one can
obtain a tunable phononic crystal for filtering or wave-guiding
applications.

D. Tetragonal inclusions: TiO2/epoxy square lattice

Finally we consider a two-dimensional, square-lattice
phononic crystal consisting of rutile (TiO2) cylinders embed-
ded in epoxy. TiO2 belongs to the tetragonal crystal system
that has six independent elastic stiffness components. Bulk
acoustic waves propagate in the XY plane of crystalline
TiO2 hence no coordinate transformation was necessary.
The slowness surfaces of the bulk modes propagating in TiO2

are shown in Fig. 2(d); they exhibit an eightfold symmetry. The
dispersion relations of a TiO2/epoxy phononic crystal with a
filling fraction of 0.5 and cylinder rotation angles of 0◦ and
45◦ are shown in Figs. 8(a) and 8(b). Figures 8(c) and 8(d)
display the angular dependence of gap position and width,
respectively. From these figures, we observe that two wide
phononic band gaps exist for all cylinder rotation angles and
a very narrow phononic band gap between the fourth and fifth
frequency bands opens up at θ > 17.5◦. These calculations
demonstrate the tunability of phononic crystals composed of
cylinders with high anisotropy.

IV. SUMMARY

In this paper, we present a comprehensive study of tun-
able phononic band gaps in two-dimensional, square-lattice
phononic crystals consisting of anisotropic inclusions in an
isotropic host. The anisotropic materials considered in this
study include cubic, hexagonal, trigonal, and tetragonal crystal
systems. Epoxy is employed as the isotropic host material
because it allows us to investigate all bulk acoustic wave
modes. We have numerically observed that the dispersion
relations for bulk acoustic waves propagating in such het-
erogeneous structures were greatly deformed upon rotation of
the anisotropic cylinders. The tunable range of the band-gap
width and location demonstrated in this study are competitive
with current methods that utilize the rotation of noncircular
cylinders and much greater than methods relying on external
stimuli. From our theoretical investigations, we suggest that
the reorientation of anisotropic cylinders can be a simple and
effective way to obtain selective filtering and wave guiding
for applications such as acoustic imaging, nondestructive
evaluation (NDE), and lab on a chip.15–19,48–53 Epoxy may
constrain the rotational freedom of anisotropic inclusions in
a phononic crystal, limit the tunable range of band gap, and
thus compromise the performance of the device. Alternatively,
anisotropic cylinders can be immersed in gaseous or liquid
materials such as air or water to form tunable phononic
crystals. Such heterogeneous structures are ideal for audible
and underwater applications.
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