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Anisotropy and order of epitaxial self-assembled quantum dots
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Epitaxial self-assembled quantum dots (SAQDs) represent an important step in the advancement of semi-
conductor fabrication at the nanoscale that will allow breakthroughs in electronics and optoelectronics. In these
applications, order is a key factor. Here, the role of crystal anisotropy in promoting order during early stages
of SAQD formation is studied through a linear analysis of a commonly used surface evolution model. Elastic
anisotropy is used as a specific example. It is found that there are two relevant and predictable correlation
lengths. One of them is related to crystal anisotropy and is crucial for determining SAQD order. Furthermore,
if a wetting potential is included in the model, it is found that SAQD order is enhanced when the deposited film
is allowed to evolve at heights near the critical surface height for three-dimensional film growth.
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Epitaxial self-assembled quantum dots (SAQDs) repre-
sent an important step in the advancement of semiconductor
fabrication at the nanoscale that will allow breakthroughs in
electronics and optoelectronics. SAQDs are the result of lin-
early unstable film growth in strained heteroepitaxial systems
such as Si,Ge,;_,/Si and In,Ga,_,As/GaAs and other sys-
tems. SAQDs have great potential for electronic and opto-
electronic applications. In these applications, order is a key
factor. There are two types of order, spatial and size. Spatial
order refers to the regularity of SAQD dot placement, and it
is necessary for nanocircuitry applications. Size order refers
to the uniformity of SAQD size which determines the volt-
age and/or energy level quantization of SAQDs. It has been
observed that crystal anisotropy can have a beneficial effect
on SAQD order.! Here, the role of crystal anisotropy in pro-
moting order during early stages of SAQD formation is stud-
ied through a linear analysis of a commonly used surface
evolution model.'=

The linear analysis addresses the initial stages of SAQD
formation when the nominally flat film surface becomes un-
stable and transitions to three-dimensional growth. This early
stage of SAQD growth determines the initial seeds of order
or disorder in an SAQD array, and can be analyzed analyti-
cally. A dispersion relation as in Refs. 2 and 6 is used, and
two predictable correlation lengths that grow as the square-
root of time [Egs. (14) and (17)] are found. One of the cor-
relation lengths results from crystal anisotropy. This length
plays a limiting role in the initial order of SAQD arrays, and
it is shown that anisotropy is crucial for creating a latticelike
structure that is most technologically useful. This method of
analysis can be extended for use in any “nucleationless”
model of SAQD growth, although here, the specific instance
of elastic anisotropy is treated as elastic anisotropy is the
most easily estimated. Anisotropy of surface energy may also
effect SAQD order, and a similar analysis would result.

At later stages when surface fluctuations are large, non-
linear dynamics come into play. At this stage, there is a natu-
ral tendency of SAQDS to either order or ripen."'® Ripening
systems will tend to have increased disorder as time
progresses, while ordering systems will tend to order only
slightly due to critical slowing down.” Also, it is important to
note that while an ordering system might be “ordered” when
compared to other nonlinear phenomena such as convection
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roles, etc..® the requirements for technological application
are much more stringent. In a numerical investigation, it was
found that SAQDs have enhanced order due to crystal aniso-
tropy, but soon become disordered from ripening.! In any
case, an understanding of the order during the initial stages
of SAQD growth is essential to further investigation of the
final SAQD array order.

As in Refs. 1-3 and 6, a wetting energy is included in the
analysis. The wetting potential ensures that growth takes
place in the Stranski-Krastanow mode: a 3D unstable growth
occurs only after a critical layer thickness is achieved, and a
residual wetting layer persists. Although somewhat contro-
versial, the physical origins and consequences of the wetting
potential are discussed in Refs. 2 and 9. The analysis pre-
sented here is quite general, and one can exclude or neglect
the effect of the wetting potential by simply setting it to zero.
That said, if the wetting potential is real, the present analysis
shows that it beneficial to SAQD order to grow near the
critical layer thickness.

The remainder of this report is organized as follows. First,
stochastic initial conditions are discussed. Second, the evo-
Iution of a single mode for the isotropic case is discussed.
Third, the resulting correlation functions and correlation
lengths are derived for the isotropic case. Fourth, the analysis
is repeated for the anisotropic case using elastic anisotropy
as an example. Finally, a representative numerical example is
presented using parameters appropriate for Ge dots grown on
Si.

To analyze resulting SAQD order, the mathematical
model must include stochastic effects. For simplicity, sto-
chastic initial conditions with deterministic time evolution
are used. This method of analysis yields a correlation func-
tion that is used to characterize SAQD order.

In this model, the film height H is a function of lateral
position x and time ¢. The film height is treated as an average

film height () with surface fluctuations h(x,7),
H=H+h(x,1). (1)

In this way, H functions as a control parameter® physically

signifying the amount of available material per unit area to

form SAQDs, and h(x,7) evolves via surface diffusion giving
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the resulting surface profile. Order is then analyzed using the
spatial correlation function, {(h(x,1)h(0,7)) and the corre-
sponding spectrum function {/(t)hy:(1)").

An initially flat surface is in unstable equilibrium, and it is
necessary to perturb it to produce SAQDs. Therefore, sto-
chastic initial conditions are implemented by letting A(x,0)
in Eq. (1) be random white noise. Specifically, h(x,0) is
assumed to be sampled from a normal distribution such that

and  (h(x,0)h(x’,0)) = A28 (x - x'),
(2)

where A is the noise amplitude of dimension [length]'*%?, 4
is the dimension of the surface, and & (x) is the
d-dimensional Dirac Delta function. Much of the following
analysis uses the Fourier transform with the convention,
hy(t)=(2m)~ [ d’k exp(—ik-x)h(x,t). The mean and two-
point correlation functions for A (0) are

(h(x,0)) =0,

A2
2m)

(M (0)=0 and (Il (0)hy(0)") = &k -Kk').

3)

The deterministic evolution of a single Fourier component
is determined by surface diffusion with a diffusion potential
m(x,1).>3 This model is phenomenological in nature, but
contains the essential elements of SAQD formation. Thus, it
is an adequate, but not overly complex starting point for the
investigation of the effects of crystal anisotropy. Further-
more, models of this nature can be derived from atomic scale
simulations.'® At any instant in time, the growing film is
described by the curve H(x,7). Using Eq. (1) to decompose

the film height di(x,)=V-[DVu(x,t;H)], dH/dt=Q,

where w depends on H and Q is the flux of new material
onto the surface.

The appropriate diffusion potential u must produce
Stranski-Krastanow growth. Thus, it must incorporate the
elastic strain energy density w that destabilizes a planar sur-
face, the surface energy density < that stabilizes planar
growth and a wetting potential W(H) that ensures substrate
wetting. The simplest form that gives the appropriate behav-
ior is

pw=0lo-xy+n,W (H)] (4)

similar to Refs. 1 and 4—6, where () is the atomic volume,
is the total surface curvature, and n, is the vertical compo-
nent of the unit surface normal 7. The strain energy density
o is found using isotropic linear plane strain elasticity. In
general, w is a function of x, and it is a nonlocal functional of
the entire surface profile H(x).

Consider first, the one-dimensional and two-dimensional
isotropic cases. Following Refs. 2, 4, and 6, the surface dif-
fusion potential [Eq. (4)] is expanded to first order in the film
height fluctuation h. The elastic energy w is calculated using
linear isotropic elasticity. It is a nonlocal function of h(x);
thus, it is useful to work with the Fourier transform. In the
isotropic case, the linearized diffusion potential [Eq. (5)] de-
pends only on the wave vector magnitude k= IKll. Thus,
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Mk :f(ks ’Fl)hk (5)

with
flk,H) = Q[=2M (1 + v) €k + yik*> + W'(H)]. (6)

In the anisotropic case, there will also be a dependence on
the wave vector direction 6.
The time dependence of the film height has a simple so-

lution if there is no additional flux of material (Q=0, and H
is constant):

hy (1) = hy (0)e ¥, (7

with
o= - DI*f(k,H), (8)

where oy, is the dispersion relation and depends only on the
wave vector magnitude k. Modes with positive o; grow un-
stably, while modes with negative values of oy decay.

The important features of o, are most easily recognized
using a characteristic wave number is k.=2M (1 + V)Gzo/ v and
a characteristic time 7,=(DQyk})™":>0

o= t:.lafz(a— o - B), 9)

where the shorthand a=k/k, and B=W"(H)/(yk>) is used.
The dispersion relation (9) has a peak at ko= ayk, where

1
ap= 5(3 +19-32p).
Expanding o about k,
! 2
0=~ 0p— EUz(k— ko)~
where

1 o
oo=—ai(ay-2B), o=kl’r'Gay-4B). (10)

4t,
Thus,

Iy (£) = Iy (0) 0=tk = ko)

(1

Now, the statistical correlation functions and correlation
lengths that characterize order are derived. Using Egs. (7)
and (11) along with the stochastic initial conditions [Egs. (2)
and (3)], the mean value of &y (¢) is (I (1)) ={hy(0))e¥=0, so
that the mean surface perturbation is simply O for all time
and all k. However, the mean-square surface perturbations as
characterized by the second-order correlation function'' can
be large,

(D (1)) = (i (0) e (0) e oo
A2
" 2w

Sk —K')e?¥, (12)

using Eq. (3). The real space correlation function can be
found by taking the inverse Fourier transform of Eq. (12),
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(h(x,0)h(x",1)") = f d'k f Ak ™K X (p (D (1))
2

" en’

where integration over k' is simple due to the §(k-k’) in
Eq. (12).

2
Using Eq. (10),e%7% = ¢200i=(112)20200=k) which is peaked
at k=kg. This form suggests that the real-space correlation

function is periodic with a Gaussian envelope that has a stan-
dard deviation of

f ddkeik(x—x')eZ(rkt, (13)

Leo =201 (14)

L. is the correlation length of the film-height profile, and
characterizes the degree of order of the SAQD array. For
example, in one dimension (d=1)

(e, ))h(0,0)) -+ -+
AZ

_ _E f dke2zrot—(1/2)L§0r(k—ko)ziikx,,,
2 + J0

S
(27TL2 )1/2

cor:

20701—(112) (x/Lgg)? COS(k()x)

an approximation that is valid if k.L.,,>1. Thus, L., gives
the length scale over which dots will be ordered, and this
scale grows as 12 As t—,

e, H(0.0)') = — 25— 2 o)
X, ) Y=——F—-¢"9 cos ,
QL) ot
and the entire array should be perfectly ordered.
The situation in two-dimensions, however, is less friendly.

2
As 1— 0, L, —, and eV Leorlkk0) = 277/ L2 )2 5(k—k,)

cor
2

(h(x,0)h(0,8)") -+ = @n L.,

Nk
- (27TL2 )1/2

Ccor-

f d2ke20'0t+ik'x5(k _ kO) e

270 Jo(ko I X 11).

Thus, the two-dimensional isotropic case has statistical order
at large times, but does not yield SAQD lattices as does the
one-dimensional case [see Figs. 1(a) and 1(b)].

Now, consider the effects of crystal anisotropy. For ex-
ample, let the elastic energy term w have N-fold symmetry
while the other terms are assumed isotropic. Then, the
growth rate depends on both the wave vector magnitude k
(and thus on a=k/k,) and direction 6 so that, o;— oy.
Naturally, the anisotropic elastic energy term in the growth
rate oy depends on the specific anisotropic elastic constants,
but the general qualitative effect of elastic anisotropy on
SAQD growth kinetics can be investigated without incorpo-
rating a detailed elastic calculation at this time. Thus, the
present work provides motivation for more detailed calcula-
tion. A reasonable way to estimate how the elastic energy
term varies with direction (6) is to assume a low order
harmonic form with the proper rotational symmetry. The
simplest such guess is oy=r.'a*{a[1-€sin’ (N6, /2)]-a?

PHYSICAL REVIEW B 75, 193302 (2007)

300

150

- 150

- 300

300
300

150
150

0

- 150
- 150

- 300
- 300

-300 -150 0 150 300 -300 -150 0 150 300

FIG. 1. Density plots of surface profiles and correlation func-
tions at ¢/7.=471. The scale is in nm, and the physical parameters
are listed in the text. Plots (a) and (b) are a sample surface profile
and correlation function, respectively, for an elastically isotropic
material. Plots (c) and (d) are a surface profile and correlation func-
tion for an elastically anisotropic material with fourfold symmetry.
Surface profile plots saturate black at a minimum of H="H for
clarity. White dots indicate surface peaks. Correlation function plots
span *+ the maximum value/2.

— B}, where € parametrizes the importance of the directional
dependence. More precise calculations using anisotropic
elastic constants of real materials (similar to Ref. 12) will be
given in future work.

oy has peaks at N wave vectors K,=ko[(cos 6,)é,
+(sin 6,)é,] with §,=2m(n—1)/N. Around each peak, k can
be decomposed in the direction parallel (k;) and perpendicu-
lar (k) to k,,. Using this decomposition and expanding e’
about each peak,

N
2K = > exp(20,1), (15)
n=1
1 2 2 1 212
20'nt= 20'0t - ELH (kH - aokc) - ELJ_kL, (16)

Li=\20yt, and L, =\(N*aqet;'k ). (17)

Note that L is the same as L, for the isotropic case. Equa-
tion (15) is valid if k.L;>> 1, and kL, > 1. Using, Eq. (13),
but noting that oy, now depends on both the magnitude and
direction of k, along with Egs. (15) and (16),
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. _ A? 27
(h(x,0)h(0,1)") = QmPLL,
N2

X . E 92‘70[_(1/2)(L[2xﬁ+L12x2L)2 COS(kOX”),

n=1
(18)

where x;,=(cos 6,)x+(sin 6,)y and x| =(—sin 6,)x+(cos 6,)y.
Thus, the same tendency to long-range order as for the one-
dimensional case is present [see Figs. 1(c) and 1(d)].

As a numerical example, consider Ge grown on Si. Both
the isotropic approximation and an estimated elastically an-
isotropic case (with N=4, and €=0.1) are treated. Neglecting
the difference in elastic properties of the Si substrate
Eg.=1.361X10"? dyne/cm?,  v5.=0.198, €,=-0.0418,
0=227X10"3 cm?, y=1927 erg/cm?, and W(H)=4.75
X 107%/H erg/cm®. The resulting biaxial modulus is
M=1.697 X 10'? dyne/ cm?, characteristic wavenumber is

k.=0.369 nm™" and critical film height is H,=1.132 nm

~4 ML. If the film is grown to a thickness of H=",
+0.25 ML~1.203 nm, and then allowed to evolve,
B=0.2078, a;=0.5664, ky=0.209 nm™', &;,=0.01206¢",
0,=0.867k°17", L,=0.746ky" (t/1.)", and
L, =0.539k;"(t/1.)"". Note that the unspecified diffusivity D
has been absorbed into #.. The film will stay in the linear
regime as long as the surface fluctuations stay small. For this
purpose, let “small” mean 1 ML=2.83X 1078 cm. Once the
fluctuations become “large,” individual dots will begin to
form, and a nonlinear analysis becomes necessary. It is use-
ful to know the correlation lengths at this time.

To find the correlation lengths, one must choose the initial
height fluctuation intensity A and then calculate the time for
fluctuations to become “large.” The initial fluctuation inten-
sity is somewhat arbitrary, but A=8.02x 107'° cm? gives an
average fluctuation of 1 ML over a patch 1 ML? and seems
appropriate. Next Egs. (17) and (18) are used to find 7 for
which the rms fluctuations become large h,,={|h(0,1)*)!/?
=a,. There are two solutions, #/t.=5.53X1073, and
t/t.=471. The first solution is an artifact of the white noise
initial conditions and occurs during an initial shrinking of the
surface height variance; thus, the second solution is taken. At
t/t,=471, the correlation lengths are found using Eq. (17),
L.ow=Ly=77.5 nm, and L | =56.0 nm. The smaller correlation
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length gives koL, /7=3.73, so a patch of about four dots
across is expected to be reasonably well ordered.

A numerical simulation of linear size [=24(27/ko)
=722 nm can be easily performed. The discrete initial con-
ditions 7 (0) are taken from a normal distribution of zero
mean and variance <hk(0)h:,(0)>discm€:(Az/lz)ékk/, where
Ok’ 1s the Kronecker delta, and each vector component of k
takes discrete values 2@m/l with m an integer. These com-
ponents then evolve via Eq. (7). The results of an isotropic
and anisotropic simulation along with the corresponding
real-space correlation functions are shown in Fig. 1. These
plots clearly demonstrate the importance of anisotropy in
producing long range order.

Figures 1(c) and 1(d) appear to agree qualitatively with
observations of nucleationless growth of Ge,Si;_, nanostruc-
tures on Si,'3"1 although mostly with x<0.5. Typical ob-
served dot arrangements appear to correspond to lower val-
ues of B than 0.2078 used for the example as they are
quasiperiodic but less ordered than Fig. 1(c). Quantitative
reporting of correlation lengths would assist comparison and
possibly enable better tuning of phenomenological models to
experiments. InP/InGaP nanostructures reported in Ref. 16
appear similar.

From the analysis of the isotropic model, it is clear that
long range statistical order (long correlation lengths) require
tight distributions in reciprocal space. This long range statis-
tical order is achieved in the large time limit, but this statis-
tical order is insufficient to produce a well-ordered array of
SAQDs. This lack of usable order is reflected in the real-
space two-point correlation function of the isotropic model.
However, in the one-dimensional and two-dimensional an-
isotropic cases, there is tendency to form a lattice after a long
time. In the anisotropic case, there are two correlation
lengths that characterize observed SAQD array order. Ana-
Iytic formulas for these correlation lengths have been given
for a model with simplified elastic anisotropy, but the general
conclusions and method of analysis should apply to any
source of anisotropy. Additionally, from a simple form of the
wetting potential it is observed that at film heights just above
the critical threshold H,, the correlation lengths can grow
quickly while the height fluctuations grow slowly; thus order
is enhanced. Availability of measured SAQD correlation
lengths would help to improve this analysis and to engineer
more ordered quantum dot arrays.
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