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ABSTRACT
Epitaxial self-assembled quantum dots (SAQDs) result from Stranski-Krastanow growth whereby epitaxial 3D islands

form spontaneously on a planar thin film. Common systems are GexSi1−x/Si and InxGa1−xAs/GaAs. SAQDs are typically

grown on a (001) surface. The formation and evolution of SAQDs is governed in large part by the interaction of surface

energy and elastic strain; however, the surface energy density is quite complicated and not well understood. Many growth

processes take place at high temperature where stress and entropy effects can have a profound effect on the surface free

energy. There are three competing theories of the nature of the planar (001) surface: I. It is a stable crystal facet. II. It is a

stable non-faceted surface. III. It is an unstable crystal antifacet. Each leads to a different theory of the SAQD formation

process. The first theory appears most often in modeling literature, but the second two theories take explicit account of the

discrete nature of a crystal surface. Existing observational and theoretical evidence in support of and against these theories

is reviewed. Then a simple statistical mechanics model is presented that yields a phase-diagram depicting when each of the

three theories is valid. Finally, the Solid-on-Solid model of crystal surfaces is used to validate the proposed phase diagram

and to calculate the orientation and height dependence of the surface free energy that is expressed as a wetting chemical

potential, a wetting modulus and surface tilt moduli.

Keywords: quantum dots, self-assembly, epitaxial growth, surface energy, roughening, SOS model, step-edges, films,

GeSi, InGaAs

1. INTRODUCTION
Production of reliable and high quality heteroepitaxial self-assembled quantum dots (SAQDs) will represent an important

step in the advancement of semiconductor fabrication at the nanoscale allowing breakthroughs in optoelectronics and

electronics.1–11 SAQDs are the result of a transition from 2D growth to 3D growth in strained epitaxial films such as

SixGe1−x/Si and InxGa1−xAs/GaAs. This process is known as Stranski-Krastanow growth.3, 12–14 For SAQDs to compete

with traditional lithography, they must be designable or at least reproducible. The design of SAQD fabrication processes

will rely on computational modeling, but even today, there are still outstanding fundamental questions regarding how

to model SAQD formation. There are essentially three competing models of SAQD growth: I. the nucleation and growth

model,15 II. the surface linear instability model,16–18 also known as the Asarro-Tiller-Grinfeld (ATG) instability model, and

III. the surface non-linear instability model.19 These three models correspond to three states of the crystal (001) surface:

I. a faceted surface with positive step-edge energy, II. a thermally roughened surface, and III. an anti-faceted surface with

negative step-edge energy. The distinctions between these three models and the corresponding states of the crystal surface

require clarification. For GexSi1−x/Si SAQDs, the same experimental evidence20–22 has been cited as supporting either

model II22 or III,23 and it is only recently that the ATG model (II) has been applied to InxGa1−xAs/GaAs.24, 25 Here, the

evidence in support of the three SAQD formation models is discussed, and a simplified statistical mechanics model of

the strained stepped crystal surface is reported that helps to resolve the existing ambiguities and clarify the role of crystal

surface energy in determining SAQD formation and morphology. In addition, the solid-on-solid (SOS) model is used to

demonstrate calculations of wetting energies and isotropic and anisotropic surface tilt-moduli. The presented models have

many simplifying approximations, but they clarify the ambiguity in SAQD growth processes, thereby bringing reliable

models usable for design and optimization of fabrication processes a step closer.
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Figure 1. Snapshot of a continuum simulation of Ge/Si SAQD formation similar to Ref.25 Dots have a lens or mound shape because all

surface energy anisotropy is neglected.

1.1 The crystal surface energy
In strained film or SAQD growth models, the crystal surface or film height evolves in a fashion that dissipates free energy.

The dependent variable, h, is a continuous order parameter that is a function of x, the vector position in the x− y−plane,

usually the (001) plane. h(x) is indicative of the film height but not identically equal to it. In contrast, the actual film height

takes on discrete values at the atomic scale h(x)= H (x)h0, where H(x) is an integer. In Sec. 3, h(x) is set to be an ensemble

average of atomic-scale film heights h = 〈h〉. In many instances, the details of how h(x) relates to h(x) are ignored, and

one simply writes down a phenomenological evolution equation, for example, ∂th(x, t) = ∇ · D̃ ·∇[δ f [h]/δh(x)], where

f [h] is the free energy and D̃ is the diffusivity. A snapshot of such a simulation is shown in Fig. 1. It is also possible

to add other terms such as condensation terms,26 random deposition terms25 or stochastic thermal fluctuations in surface

diffusion.25, 27

The film free energy f [h] is sum that includes the elastic strain energy, fe, that tends to destabilize 2D film growth,

and the surface and wetting energy, fsw; thus, f = fe + fsw. Often, the second contribution is broken in up into the sum of

two terms, fsw = fs + fw, where fs is the surface free energy and fw is the wetting energy, but it is unclear whether such a

deconvolution is accurate. The details of fsw greatly influence both small-scale morphology such as shape22, 28 and large-

scale morphology such as quasiperiodicity and order.24, 27 It is most often assumed that the surface and wetting energy fsw
is an integral over a local energy density that is a local function of the film height (h(x)) and gradient (∇h(x)) so that

fsw = d2xw
[
h(x) ,∇h(x)

]
.

The three cases of the crystal surface free energy map onto two forms of the kernel w.23, 29

case I. Facet If a faceted film surface has an (001) orientation, the energy density is believed to be a local function of the

gradient magnitude,29

w = ww
(
h
)
+ γ1

∣∣∇h(x)
∣∣+ γ3 |∇h(x)|3 + . . . , (1)

where ww
(
h
)

= w
(
h,∇h = 0

)
is the wetting energy density. In the anisotropic case with steps in two orthogonal

directions, e.g. x and y,

w = ww
(
h
)
+ γx

∣∣∂xh(x)
∣∣+ γy

∣∣∂xh(x)
∣∣+ γxxx

∣∣∂xh(x)
∣∣3 + . . . . (2)

The first order term is the step-edge energy per unit length, ex(y)/as, times step edge density,
∣∣∂xh(x)/h0

∣∣; γx(y) =
ex(y)/(h0as). Higher order terms include step-step interactions.

case II. Thermally roughened. Above the roughening transition temperature, TR, the (001) facet thermally roughens, and

the leading gradient dependent term in the surface energy kernel is quadratic in ∇h(x),29

w = ww
(
h
)
+

1

2
w̃(0,2) :

[
∇h(x)⊗∇h(x)

]
+ . . . , (3)
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where w̃(0,2) is the second derivative of w
[
h,∇h

]
with respect to ∇h.

case III. Antifacet. It was hypothesized and demonstrated using atomic-scale empirical potential models that under in-

tense surface strain, the step-edge energy can actually become negative.23 In this case, the free energy kernel is the

same as in case I (Eqs. 1 and 2), but γx(y) is negative.

The form of the free energy density (w) determines how easily a surface can be perturbed from being flat by a destabilizing

force density. Assuming that w is a function of h and ∇h, one can define three important quantities for a flat film of

height h: the wetting chemical potential mw = ∂w/∂h, the wetting modulus, w(2,0) = ∂ 2w/∂h
2

and the tilt modulus,

w̃(0,2) = ∂ 2w/∂∇h
2
. The tilt modulus includes the effects of increased surface area as the surface tilts as well as the change

in the energy density, γ
(
∇h

)
; w̃(0,2) =

[
γ
(
∇h

)
Ĩ +∂ 2

∇h
γ
(
∇h

)∣∣∣
∇h=0

. In pattern formation problems such as epitaxial SAQD

formation, it is often useful to know how the energy changes when a sinusoidal perturbation is introduced.30–32 Writing

a Fourier series for the film height, h(x) = ∑k eik·xhk, and hk = A−1 d2xe−ik·xh(x), where A is the film surface area

projected onto the x− y−plane, and h−k = h
∗
k so that h(x) is real. Assuming that hk is small whenever k �= 0, and noting

that h0 is the spatially averaged film height, one can write down the free energy in terms of the Fourier components,

fsw = Aww
(
h0

)
+

A
2

∑
k�=0

w(2)
k,−k

∣∣hk
∣∣2 + . . . , (4)

where

w(2)
k1,k2

=
∂ 2 ( fsw/A)
∂hk2

∂hk1

=
(

w(2,0) +k1 · w̃(0,2) ·k1

)
δk1+k2

(5)

can be considered the surface modulus in Fourier space, and δk1+k2
is the Kronecker Delta that is equal to 1 when k1 =−k2

and equals 0 otherwise. The Fourier components of the chemical potential are

mk =
∂ ( fsw/A)

∂h−k
=

[
w(1)

w
(
h0

)−w(2,0)h0

]
δk−0 +wk,−khk (6)

If the rank-2 tensor, w̃(0,2) has eigenvectors in the x− and y−directions with eigenvalues w(0,2)
x and w(0,2)

y , then

w(2)
k,−k = w(2,0) +w(0,2)

x k2
x +w(0,2)

y k2
y . (7)

As can be seen from Eqs. 4, the larger the surface modulus, the more energy it costs to perturb the flat surface. The wetting

modulus tends to stabilize a flat surface against all perturbations, while the tilt modulus tends to stabilize against high wave

vector (short wavelength) perturbations.

The three discussed cases can be distinguished by the nature of their tilt modulis. In case I. faceting, the tilt moduli are

essentially infinite and positive, so that it is impossible to perturb the surface with a small force. For case II. roughened

surface, the tilt moduli are positive and finite, so that the surface is perturbable, and for case III. antifaceting, the tilt moduli

are negative and infinite so that there is a large internal force that roughens the surface even in the absence of other effects.

Due to these differences in the resistance of the film surface to perturbation, three very different models of SAQD formation

result. They are as follows:

case I. Nucleation and Growth (faceting) The flat film is extremely stable with an infinite surface modulus, but it is

possible to form localized structures whose faces are also facets such as in the {105} directions.15 Thus, SAQDs

form that are highly shape-constrained and have a total free energy f as a function of volume f (V ) = aV 2/3 −bV ,

where a is the rate of energy cost due to the increased crystal surface, and b is the energy released due to elastic

strain relief. The free energy peaks when V ∗ = [a/(3b)]3. Plugging into f , the SAQDs form with an energy barrier

of f (V ∗) = (4/27)a3/b2. This model treats SAQD formation as a localized nucleation and growth event.

case II. Linear instability (roughening) In this case, the flat film surface is perturbable, and one sees a more cooperative

SAQD formation process where quasiperiodic arrays of SAQDs form essentially simultaneously. In this case, it is

guaranteed that there will be some circumstances for which a 2D film is unstable. For large film heights, the substrate
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would be less important so that the wetting modulus goes to zero (w(1,0) → 0). The surface modulus (Eq. 5) should

decrease even further when one considers very large wavelengths (small k). Thus, for sufficiently large film heights,

there is some wavelength long enough that the flat film surface can be easily perturbed. In the ATG model,16–18, 33, 34

the perturbing force is a self-excitation, where the amount of released elastic free energy is proportional to the

magnitude of the wave vector, ‖k‖. Using the elastic energy release coefficients, combined with the surface and

wetting moduli, one can find a critical film height for the transition from 2D to 3D growth, the mean perturbation

wavelength and the orientation of SAQD arrays.

case III. Nonlinear instability (antifaceting) In this case, no additional perturbation is required.35 The flat film is at an

infinitely sharp free energy maximum and finds a suitable faceting direction that is a free energy minimum. For

GexSi1−x/Si, this is the (105) orientation. In this case, the elastic strain energy is almost irrelevant to the initial

formation, and its role is to drive coarsening once SAQDs have initially formed. At smaller scales, coarsening takes

place via dot coalescence. Once dots reach a certain size, coarsening takes place by competition for material with

larger dots siphoning material from smaller dots.

1.2 Reconciling the three models.
The discussion of these three models now begs the question, which is correct? Is it more than one with different mechanisms

occurring under different circumstances? This question has been studied most with regard to GexSi1−x/Si SAQDs, but

patterns of InxGa1−xAs/GaAs dots also contribute some evidence to the discussion. Although, at this point it is hard to

have a conclusive answer, most observations seem to be explained be explained by the ATG model with the least amount

of theoretical discomfort. First, some experimental evidence is considered, and then the theoretical arguments.

1.2.1 Experimental Evidence

First, consider GexSi1−x/Si experiments. Although, the faceting model or nucleation and growth model (I) was originally

developed to describe GexSi1−x/Si SAQD dot formation, it appears to have more staying power applied to InxGa1−xAs/GaAs

dots. In particular, key experimental observations20–22 suggest that the nucleation and growth model does not apply to

GexSi1−x/Si SAQDs. According to the nucleation and growth model, SAQDs should start off as small faceted dots and

grow in a self-similar manner with an occasional shape-transformation once certain critical volumes are achieved. In

Refs.,20–22 it was observed that SAQDs appear to form as low-aspect ratio surface perturbations that grow vertically into

fully formed SAQDs. Tersoff, et al.22 claimed that these observations support Model II, that the strained (001) GexSi1−x
surface is stable, but not a facet, i.e. it has a finite resistance to small perturbations, not an infinite one. Shenoy, et al.23

and Ramasubramaniam and Shenoy35 claim that this observation supports Model III, Antifaceting leading to a nonlinear

surface instability.

It would appear, however, that the experimental evidence better supports Model II, the ATG model. It was observed

that early in the formation of GexSi1−x/Si SAQDs, a recognizable characteristic wavelength develops and persists as

growth continues.20 Growth occurring at a characteristic wavelength is typical of linear instability models and is certainly

predicted by the ATG model. The Antifaceting model (III) should result in many initially small dots with (105) facets

that coalesce into larger dots. Thus, there should be an initially small characteristic wavelength that grows longer during

coarsening, in contradiction to the experimental observations. In favor of the antifaceting model over the ATG model, it

was pointed out that the ATG model predicts roll-like structures where individual dots have material bridges during the

initial stages of growth, whereas such structures are not observed experimentally. This evidence, however, is ambiguous as

it is unclear how long the bridges should persist. In Ref.,25 such bridges only lasted for atomic-scale fluctuations. Atomic

scale variations in an order parameter would manifest as a local bias of film roughness that would be difficult to observe.

Some InxGa1−xAs/GaAs structures also exhibit characteristic length scales reminiscent of the cooperative ATG process.

At high temperatures one can find rolls (Figs. 2c and d in Ref.36), correlated dense arrays of SAQDs (Fig. 1 in Ref.37) and

quantum dot chains in multilayers (Fig. 1a in Ref.38). Such patterns at high temperature suggest that the surface has been

thermally roughened, resulting in an ATG-like process.24

1.2.2 Theoretical Evidence

The theoretical evidence appears at first to support models I and III, but further analysis suggests that Model II might be the

most applicable model. Models I and III, based respectively on faceting and antifaceting of the (001) surface, are persuasive

Proc. of SPIE Vol. 7224  722405-4



in that they take explicit account of atomic-scale crystal step edges . Furthermore, in favor of the anti-faceting model (III),

the necessary reduction in step-edge energy with increasing compressive strain was calculated through atomistic empirical

potential calculations.19 However, Model III omits the effects of configurational entropy. It is essentially a zero-Kelvin

model that considers total energies of non-fluctuating crystal morphologies instead of free energies of fluctuating ones. At

finite temperature, the free energy of a fluctuating step edge is f = 〈u〉− kbT s, where 〈u〉 is the mean total energy, kb is

Boltzmann’s constant, and s is the entropy. The roughening transition occurs when the step free energy goes to zero so that

steps spontaneously form.39, 40 It is impossible that the mean energy 〈u〉 of a step becomes negative before the step free

energy. Thus, if the antifaceting model (III) applies at all, there must also be some conditions under which the ATG model

(II) applies. Furthermore, once one considers entropy effects, it is clear that even when 〈u〉 becomes zero or less that the

maximum entropy state is a statistically flat surface. If the film surface is everywhere a {105} orientation, it will maximize

entropy by randomly switching between segments that are (105) and (105), etc. Such random switching leads to a surface

that is flat in the mean with 〈h(x)〉 = constant, but with a significant amount of fluctuation,
〈

h(x)2
〉

> 0. This effect is

similar to the entropic spring model of polymer stretching, and this state of the crystal surface is essentially a roughened

surface (model II). A Solid-On-Solid statistical mechanics models of surfaces with some positive and some negative step

energies would tend to support this second view.41 Thus, it seems likely that strain effects lower the roughening temperature

of strained film surfaces, but they do not lead to an anti-faceting SAQD growth model.

2. SIMPLE MODEL OF GROWTH REGIMES
It is possible to construct a phase diagram that indicates when each of the three proposed SAQD growth models applies

by using a simple step-edge energy model based on the rule of mixtures combined with the step-edge strain sensitivity

modeled by Shenoy et. al23 and the step-edge free energy model proposed by Zandvliet.39, 40 In Ge and Si, it was observed

that monolayer SA and SB step-edges have fluctuating kinks that have lengths equal to the diagonal length of a unit cell,

aS =
√

2a0 = 7.68Å, and that are separated by the same amount, aS (Figs. 1 and 2 in Ref.40 and Fig. 2 in Ref.39). These

kinks are thermal excitations of a straight step-edge, and the free energy of a fluctuating step-edge can be estimated using

the step-edge energy eSA(SB) and the second-nearest neighbor interaction energy, eSNN .

The step-edge free energy for each length as is approximately39, 40

fSA(SB) ≈ eSA(SB) − kbT ln

(
1+

2exp [eSNN/(kbT )]
exp

[
eSB(SA)/(kbT )

]−1

)
, (8)

The roughening transition occurs when f SA(SB) → 0, and the roughening temperature can be found numerically in terms of

eSA(SB) and eSNN . fSA(SB) → 0 at the same temperature for both kinds of steps. By analyzing STM micrographs of step edge

kink densities, Zandvliet39, 40 was able to determine the step-edge and second nearest neighbor energies for unstrained Si

and Ge (001) surfaces. For unstrained Si, eSA, Si = 53±26 meV, eSB, Si = 124±27 meV, and eSNN, Si = −67±20 meV.,39

giving an estimated roughening temperature of TR, Si = 1342± 108 K in agreement with experimental observations of

roughening at T = 1483 K. For unstrained Ge, eSA, Ge = 102±7 meV, eSB, Ge = 41±7 meV, and eSNN, Ge = 0±5 meV.,40

giving an estimated roughening temperature of TR, Ge = 887± 115 K, in agreement with an observed high temperature

phase transition at T = 955 K.

When the alloy composition of GexSi1−x/Si film changes from x = 0 to x = 1, two things happen. First, the step-

edge energy changes due to chemical mixing. Second, as observed in the calculations by Shenoy, el al. ,19 the step-edge

energy decreases as the biaxial strain becomes more compressive. A simple model of the strain-sensitivity can be used to

demonstrate the effect on the step-edge energies and free energies. In atomistic calculations, the strain sensitivity varied

greatly depending on which empirical potentials were used, so for simplicity, it is assumed here that all three step-edge

energies can be characterized by a single strain-sensitivity (α) that will be chosen ad hoc to conform best with experimental

observation. Thus, the form for the step-edge energy is

ei (x) = [ei, Si (1− x)+ ei, Ge (x)] (1+αε0x) , (9)

where i = SA, SB or SNN, and ε0 =−0.04 is the biaxial strain in a Ge/Si film. With lower step-edge energies, the roughening

temperature should be lower as well.
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Figure 2. GexSi1−x/Si (001) surface phase diagram corresponding to αε0 = −1.68 as calculated using Eqs. 8 and 9. Four phases or

SAQD growth regimes are found.

Plugging the strain-dependent step-edge energy, Eq. 9 into the step-edge free energy formula (Eq. 8), one obtains a

phase diagram for the strained film surface. Fig. 2 shows the phase diagram corresponding to α = 42 or αε0 = −1.68.

There are four regions or phases:

I. Faceted fSA(SB) > 0, and eSA(SB) > 0 so that the (001) surface is a crystal facet. SAQD formation should follow growth

model I that requires thermal activation and SAQD nucleation should be somewhat rare.15

II. Roughened fSA(SB) < 0, and eSA(SB) > 0. The (001) crystal surface is roughened. SAQD formation should take place

via growth model II, the ATG mechanism starting first with the formation of organized surface ripples.

III. Anti-faceted or roughened fSA(SB) < 0, and eSA(SB) < 0. Both the step-edge free energy and total energy are negative.

As discussed in Sec. 1.2.2, it is unclear whether the surface acts as an entropic spring in which case SAQD growth

model II applies, or whether it is best modeled as nonlinear instability as described in Ref.,35 SAQD growth modell

III.

IV. Frozen Region IV is not really a phase, but below the surface diffusion freeze-out temperature, the diffusion rate is

so small that no significant surface evolution takes place, and the surface free energy is irrelevant. For Ge, this

temperature is about TFO = 300±75◦C.

The presented step-edge free energy model and resulting diagram should be taken as approximate because it is based

on guessed forms for the step-edge energies and strain sensitivities of GexSi1−x/Si film surfaces (Eq. 9); however, when

αε0 = −1.68 (Fig. 2), its predictions are consistent with observation of GexSi1−x/Si SAQD growth at T = 670◦C20 . It

was observed that there was a minimum value of Ge content for which SAQDs form, xmin. ≈ 0.2. In Fig. 2, the x = 0.2,

T = 670◦C point lies on the I-II phase boundary, suggesting that thermal activation of SAQD formation is rare, but upon

roughening, SAQDs form via the ATG mechanism and are ubiquitous. A second transition was experimentally observed

at x = 0.6, that lies on the II-III phase boundary in Fig. 2. For x > 0.6, dots were seen to be far less correlated. Perhaps

this change in behavior is due to a different formation mechanism that might result if the ATG mechanism switches over

to the antifaceting mechanism, or perhaps it is just related to a significant drop in the surface modulus. In the middle

region, 0.2 < x < 0.6, fairly prominent long characteristic wavelengths (∼ 100−200 nm) were observed (Fig. 3 in Ref.20),

a phenomenon that is typical of the ATG formation mechanism. Thus, despite its gross approximations, the presented

model appears to explain different observed growth regimes for an appropriate choice of the strain-sensitivity. The model

does, however, have one more major shortcoming, while it predicts that surface strain lowers the roughening temperature,

TR, in GexSi1−x/Si films, it does not provide an estimate for the finite surface modulus (w(2)
k,−k) when T > TR. To find the

surface modulus one can use the more sophisticated, but also more cumbersome Solid-On-Solid (SOS) model.41, 42
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Figure 3. Solid on Solid (SOS) model for mw = 6.29×10−6 meV/Å
3

from Series 1 in Sec. 3.2.3. Fig. (a) shows a snapshot of fluctuating

discrete film heights. Fig. (b) shows the time averaged spectrum 〈|hk|2〉 after about 200×106 steps.

3. SURFACE MODULUS AND THE SOS MODEL
The Solid-On-Solid (SOS) model is used to evaluate the surface modulus, w(2)

k,−k (Fig. 3).41, 42 The SOS model gives

both the wetting modulus (w(2,0)) and the tilt modulus (w̃(0,2)) as a function of the film height order parameter (h) and

temperature (T ). In this model, film height (h) is a discrete variable on a lattice. Monolayer steps, kinks and islands arise

naturally. Since the purpose here is to provide a proof of concept, the model is kept simple by assuming a square lattice

with step-edges perpendicular to the x− and y− directions (Fig. 3). This structure is appropriate for one layer because of

surface reconstruction and discrete step-edge lengths,39 but layer-to-layer relationships appropriate for a diamond crystal

structure are not properly maintained.41 The square-lattice has spacing equivalent to the smallest kink size and spacing in

Si, as = 7.68 Å.39 Steps have a height h0 and step-edge energies, ex and ey (Eq. 12).

Using this model, the following calculations are performed. First, it is demonstrated that the wetting potential arises

naturally as an effect of configurational entropy using a simplification that neglects step-edge energies (Sec. 3.1). Then,

Monte Carlo calculations of the SOS model are presented that include step-edge energies and estimate both the wetting

and tilt moduli (Sec. 3.2). In these calculations, the SOS model is applied three cases: 1. a roughened (T > TR) film with

isotropic step-edge energies (ex = ey) and varying wetting chemical potential (mw), 2. a faceted isotropic film (T < TR),

and 3. a roughened film with anisotropic step-edge energies (ex �= ey). The last case is motivated by prior work on the

influence of anisotropic tilt moduli on InxGa1−xAs/GaAs film morphology.24 Values of physical constants are given in

Table 1. In general full calculations are performed using dimensionless quantities (capital letters), but results are reported

here in dimensional quantities (lower-case letters).

3.1 Simple Wetting Model
A simple wetting model illustrates the entropic origins of the wetting potential or height dependence of the surface energy.

A Lagrange multiplier mw is introduced to control the mean film height 〈h〉. mw is in fact the wetting chemical potential,

mw = δ f /δh. For absolute simplicity, step-edge energies are neglected ex = ey = 0. When new material is added, a

bonding energy (eb) is released. Thus, the energy as a function of the film height at a particular lattice site is u(h) =
−eb (h/h0) ,where h = 0h0, 1h0, 2h0, . . . . First the partition function at a lattice site is calculated,

Z (mw) =
∞

∑
H=0

exp

[
− 1

kbT

(−eb −mwh0a2
s
)

H
]

= 1/

{
1− exp

[
1

kbT

(
eb +mwh0a2

s
)]}

,
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Symbol Value Definition

a0 5.43Å lattice constant of Si

aS 7.68Å Step-edge lattice constant of (001)Si

h0 1.38 Å Monolayer step height of (001) Ge0.4Si0.6/Si

eSA, Si 53±26 meV SA step-edge energy of (001) Si

eSB, Si 124±27 meV SB step-edge energy of (001) Si

eSNN, Si −67±20 meV Second nearest neighbor energy of (001) Si

TR, Si 1342±108 K Roughening temperature of (001) Si

eSA, Ge 102±7 meV SA step-edge energy of (001) Ge

eSB, Ge 41±7 meV SB step-edge energy of (001) Ge

eSNN, Ge 0±5 meV Second nearest neighbor energy of (001) Ge

TR, Ge 887±115 K Roughening temperature of (001) Ge

ex(y) step-edge energies in SOS model

eb unspecified bonding energy
Table 1. Physical Constants. Values for Si and Ge come respectively from

where a2
s is the area per lattice site. Using standard statistical mechanics techniques (Appendix A), the average film height

is calculated as h = h0 〈H〉 =
(
kbT/a2

s
)

∂mw lnZ = h0/
{

exp
[
− 1

kbT

(
eb +mwh0a2

s
)]−1

}
. Solving for mw,

mw = − 1

h0a2
s

{
kbT ln

[
1+

(
h0/h

)]
+ eb

}
. (10)

Plugging mw(h) back into Z, the wetting free energy density is found;

ww
(
h
)

= −kbT
a2

s
lnZ +mwh =

kbT
a2

s

{− ln
[
1+

(
h/h0

)]− ln
[
1+

(
h0/h

)](
h0/h

)}− ebh
a2

s h0
.

Note that in the absence of fluctuations, (T → 0), ww(h)→−ebh/(h0a2
s ) as expected. It is easily verify that mw = ∂ww/∂h.

The resulting wetting modulus is

w(2,0)
w =

∂ 2ww

∂h
2

=
kbT
a2

s

1

h
(
h0 +h

) , (11)

thus justifying the singular wetting potentials used in some modeling work. The bonding energy eb is irrelevant to diffusive

processes as it is constant and contributes nothing to the gradient of mw or to the wetting modulus. If the bonding energy

were a function of the film height (e.g. see Refs.41, 43), then it would both complicate analysis and alter the form of the

free energy and chemical potential. For example, one might hypothesize that the first layer has a lower bonding energy

so that eb (h = h0) = eb − einterface and eb (h > h0) = eb. This simple model demonstrates how even in the absence of any

additional energy terms (e.g. see Ref.43), a thermodynamic wetting potential can develop merely due to the fact that the

nearby film-substrate interface reduces configuration entropy by constraining height fluctuations.

3.2 Monte Carlo Simulations
Monte Carlo simulations44 are used to calculate statistics of the full SOS model and subsequently to find the relationship

between film-height (h) and the wetting chemical potential (mw) and the surface moduli (w(2,0), w(2)
x , and w(2)

y ). In the SOS

model, the energy of the surface is the total energy of the step edges,

u(h) = ∑
{i, j}

ex
∣∣hi, j −hi+1, j

∣∣+ ey
∣∣hi, j −hi, j+1

∣∣ , (12)

where h represents the set of all film heights over the entire lattice, i = 1 . . .Nx, j = 1 . . .Ny, and periodicity is assumed

so that, h−1, j = hNx, j, etc. This form issimilar to an Ising or Potts model. The binding energy (eb) is neglected in these

calculations because it does not effect diffusive processes and only shifts the chemical potential by a constant. Ideally, one
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would like to calculate the partition function Z = ∑h exp{[−u(h)−m(h)h]/(kbT )}, and the free energy, f = −kbT lnZ +
m(h)h in terms of the order parameters h in full detail as in Sec. 3.1; however, one almost always settles for much less.

Here, the average film-height is calculated for a given wetting chemical potential mw, and the surface moduli of flat films

are calculated.

3.2.1 Thermodynamic Quantities

The flat film configuration is translationally invariant, so the surface modulus can be expressed simply in Fourier space

using the convention hi, j = ∑k eik·xi, j hk and hk =(NxNy)
−1 ∑{i, j} eik·xi, j hi, j. In terms of the Fourier components, the partition

function is

Z = ∑
h

exp

{
− 1

kbT

[
u(h)−A∑

k
m−khk

]}
(13)

where A = NxNya2
s .

For a flat film, all the chemical potential Fourier components are zero except for the k = 0 component, mk�=0 = 0

(Eq. 6). The k = 0 component is m0 = mw(h0), the wetting chemical potential of the flat film of height h0, but the exact

relationship between m0 and h0 is not know a priori. The surface modulus (Eq. 5) is in general non-zero for all values of

k. Because of the symmetry of the simple square lattice, the tilt modulus has eigenvectors in the x− and y− directions, and

thus has the form of Eq. 7. For each SOS Monte Carlo simulation, the wetting chemical potential mw and temperature T
are specified and the average film height (h0), the wetting modulus (w(2,0)), and tilt moduli (w(2)

x and w(2)
y ) are obtained.

The average film height is simple to obtain from each simulation; h0 = 〈h0〉. After a sufficient number of simulations

with different mw values, the relation can be inverted to give m0(h0). The wetting and tilt moduli are more difficult.

First, the film-height spectrum (〈|hk|2〉) is obtained from the simulation (Fig. 3(b)). The surface modulus is related to the

spectrum as (Appendix A)

w(2)
k,−k =

kbT

A
〈
|hk|2

〉 . (14)

The tilt moduli can be found by comparing w(2)
k,−k to Eq. 7. There is a problem, though. The film-height gradient (∇h) is

only defined in the long wavelength limit, and Eq. 7 neglects high frequency roll-off due to the discrete lattice. Fortunately,

simulated spectra appear to be consistent with a surface modulus of the form

w(2)
k,−k = w(2,0) +a−2

s

[
w(2)

x sin2 (askx)+w(2)
y sin2 (asky)

]
. (15)

In the long wavelength limit, this form is equivalent to Eq. 7 , and it is also identical to the form one would obtain using a

finite difference model of the free energy, i.e.

f ≈ f0 +a2
s w(1,0) ∑

{i, j}

(
hi, j −h0

)
+

1

2
∑
{i, j}

[
a2

s w(2,0) (hi, j −h0

)2 +w(2)
x

(
hi, j −hi−1, j

)2 +w(2)
y

(
hi, j −hi, j−1

)2
]
.

Combining Eqs. 14 and 15, the surface moduli (w(2,0), w(0,2)
x and w(0,2)

y ) are obtained by fitting the theoretical surface height

spectrum to the simulated spectrum using the fit function,〈
|hk|2

〉
= kbT

/{
A

[
w(2,0) +w(2)

x a−2
s sin2 (askx)+w(2)

y a−2
s sin2 (asky)

]}
.

3.2.2 Metropolis Algorithm

To find the various thermodynamic averages in Sec. 3.2.1, the Metropolis algorithm is used. This algorithm samples film

height configurations in discrete steps. A particular configuration h will be sampled with a frequency proportional to its

Gibbs factor, GF = exp
{[−u(h)+∑{i, j} mi, jhi, j

]
/(kbT )

}
. Film heights at individual lattice sites are randomly selected

and then randomly raised or lowered. If the change raises, the Gibbs factor, it is accepted. If it lowers the Gibbs factor, it

is accepted with a probability equal to the ratio of the Gibbs factors, paccept = GFnew/GFold. If a film height is proposed

to be lower than zero, the step is rejected. Further details of the Metropolis algorithm can be found in one of the many

treatments, for example Ref.44
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Figure 4. Film Height and Moduli vs. wetting chemical potential (|mw|) from Monte Carlo Series 1 (Sec. 3.2.3). (a) Film height. (b)

Wetting Modulus. (c) Tilt Moduli, where solid line is w(2)
x , and dashed line is w(2)

y . In all plots, gray shading indicates estimated

statistical error in the Monte Carlo simulations. In (b) and (c), the thick film (|mw| = 0) value is indicated for comparison as a horizontal

dashed line with statistical simulation error shown in gray. In (c), only w(2)
x is shown for |mw| = 0. w(2)

y is not shown, but close in value.

The Monte Carlo simulation is run for a around 105NxNy steps, and statistics are gathered. Dimensionless variables are

used: H =
[
h−1

0

]
h, HK =

[
h−1

0

]
hk, X =

[
a−1

s
]

x, K = [as]k. The average film height (〈H0〉) and spectrum (〈|Hk|2〉) are

calculated by averaging over the entire simulation run. Every 10NxNy Monte Carlo steps, the dimensionless film height

and spectrum are recorded and the surface moduli are found using a least squares fit to a dimensionless version of Eq. 15.

At the end of the simulation, the random errors in these numbers are estimated by guessing that the error is proportional to

the square root of the number of steps.

3.2.3 Monte Carlo results

To keep the calculations as simple as possible, the second nearest neighbor interaction is neglected, eSNN = 0, leaving four

parameters that specify each simulation condition, the x- and y- step-edge energies, the wetting chemical potential, and the

temperature (ex,ey, |mw|,T ). mw is always ≤ 0, so |mw| is reported. There are, however, only three parameters needed,

as one can divide through by any parameter to obtain the exact same simulation, for example, (1,ey/ex, |mw|/ex,T/ex).
Here, the full complement of four parameters is used to keep a clear link with the material system of interest, GexSi1−x/Si.

To further simplify calculations, for most simulation series, an isotropic step-edge energy is used, that corresponds to eSB

for Ge0.34Si0.66/Si, ex = ey = eSB = 41.0 meV. The corresponding predicted roughening temperature is TR = 539 K. The

simulation size is relatively small, Nx = Ny = 32, as opposed to Nx = Ny = 512, a typical value; however, significant results

are obtained.

Three series of simulations were run:

1. First, a roughened isotropic film surface is studied with varying wetting chemical potential (ex = 41.0 meV, ey =
41.0 meV, |mw| = 0 meV/Å

3
. . .12.58×10−3 meV/Å

3
, T = 595 K). For the case of a thick film, |mw| = 0 meV/Å

3
,

and h0 → ∞, the resulting wetting modulus is w(2,0) = 1.3±1.0
(
10−3

)
meV/Å

4
, which is sufficiently close to zero,

as expected. The tilt moduli are w(2)
x = 34.4 ± 0.7 meV/Å

2
and w(2)

y = 33.7 ± 1.0 meV/Å
2
. w(2)

x and w(2)
y are

expected to be equal since the step-edge energy is isotropic (ex = ey), and they are to within statistical error from

the MC simulation. The corresponding dimensionless tilt moduli are W (2)
x = [h2

0/(kbT )]w(2)
x = 1.28 ± 0.03 and

W (2)
y = [h2

0/(kbT )]w(2)
y = 1.25±0.04 which are fairly close to unity; thus, kbT/h2

0 appears to be a reasonable order

of magnitude estimate of the tilt modulus near the roughening temperature. Fig. 4 shows the film height and other

moduli for other values of the wetting chemical potential. As |mw| increases, the film height decreases, and the

wetting modulus and tilt moduli increase. Within statistical error, the x− and y− tilt moduli remain equal as expected.

The low film height for |mw| = 6.29 × 10−6 meV/Å
3

is probably a statistical anomaly. For such small wetting

chemical potentials, the film heights fluctuate quite a bit. This data point should be checked with longer runs and

larger simulations.
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Figure 5. Tilt Moduli of anisotropic thick film surfaces as a function of ex for simulation series 2 (Sec. 3.2.3). Solid line shows w(2)
x .

Dashed line shows w(2)
y . The inset shows the tilt moduli ratio (w(2)

x /w(2)
y ) as function of the step-edge energy ratio (ex/ey).

2. Next, a thin faceted film (T < TR) is studied (ex = 41.0 meV, ey = 41.0 meV, |mw| = 252× 10−6 meV/Å
3
, T =

476 K). The mean film height was h0 = 2.76 Å which is equal to the simulation starting value prior to the equilibra-

tion period. The faceted film cannot fluctuate enough to change its mean height. Consequently, it never finds it’s true

equilibrium value. The resulting wetting and tilt moduli are w(2,0) = 1.03±0.01 meV/Å
4
, w(2)

x = 62.3±0.3 meV/Å
2

and w(2)
y = 62.2±0.3 meV/Å

2
. Note that the tilt moduli are about a factor of two greater than the tilt moduli found

for the roughened films. Moreover, the wetting modulus is enormous, about 103 times that of a similar roughened

film, and form that 105 times larger than the ratio |mw|/h0 which has the same dimensions and should have the same

order of magnitude. This discrepancy is due to the fact that the wetting energy ww(h) is not a monotonically varying

function for a faceted film. Huse45 suggested that it is a corrugated potential, ww
(
h
)≈ Ah

−n +Bcos(2πh/h0). Thus,

the wetting modulus w(2,0) is essentially measuring the curvature of the ww
(
h
)

near the minimum of an oscillation.

It is also interesting to note that the surface modulus is not infinite as suggested by Eqs. 1 and 2. This discrepancy is

due to the fact that Eqs. 1 and 2 are asymptotic approximations appropriate to large slopes (∇h), while the expansion

in the surface energy (Eq. 4) is applicable to the case of small slopes. This last point would be merely academic,

except that it raises the question of what happens during partial monolayer coverage. For example, at h0 = 2.5h0,

the oscillating wetting energy would be a maximum, leading to a negative surface modulus. The film surface would

then be hypersuceptible to an instability such as the ATG instability. At slightly greater than h0 = 2.25h0, the wetting

modulus should vanish. Can this fact be used to predict a transition from stable 2D growth to unstable 3D growth for

some film height corresponding to near 25% coverage, h0 = (n + 0.25)h0? If so, this would be essentially a fourth

mechanism, an ATG instability for faceted crystal surfaces.

3. Finally, a roughened anisotropic thick film surface is studied with varying x-step-edge energy, ex (ex = 4.10 meV . . .41.0 meV,

ey = 41.0 meV, |mw| = 0 meV/Å
3
, T = 595 K). The ratio of ex/ey varies from 0.1 . . .1. For the roughened thick

film, the wetting modulus is zero. Fig. 5 shows the resulting tilt moduli and their ratios. The lower value of ex has

two effects. First, it changes the ratio of the tilt moduli. Although not exact, w(2)
x /w(2)

y ∼ ex/ey. Second, it lowers

the value of both tilt moduli. It is obvious that x-tilt modulus should be lower when ex is decreased, but the y-tilt

modulus is lower because steps in the y-direction have a lower free energy due to the greater ease of producing kinks

whose energy is proportional to ex.

4. CONCLUSIONS
Three different models of the free energy of a (001) crystal surface I. faceted, II. thermally roughened, and III. antifaceted

give rise to three different epitaxial self-assembled quantum dot (SAQD) growth mechanisms, respectively, I. nucleation

and growth, II. Asarro-Tiller-Grinfeld (ATG) instability and III. non-linear instability. The distinction between these mod-

els depends on the energy and free energy of strained step-edges on the (001) surface. A simplified strain-dependent free
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energy model for monolayer steps in GexSi1−x/Si surfaces was developed that was based on prior modeling that indicated

that these step-edges have strain-dependent energies23 and a step-edge free energy model.39, 40 Although very approximate,

this step-edge free energy model yielded a phase diagram in the composition (x) – temperature (T ) plane that has four re-

gions, three of which correspond to the three SAQD growth mechanisms (I-III), with the status of region III remaining

somewhat ambiguous. The fourth is simply the freeze-out region where diffusion is extremely slow. For a selected value of

the step-edge strain sensitivity, strong agreement with experimental observations of GexSi1−x/Si growth20 was observed.

Based on these findings, a simplified Solid-On-Solid (SOS) model was applied to the case of thermally roughened surfaces

(II) to calculate the surface moduli (resistance to deformation) from the step-edge energy. An entropic contribution to

the wetting potential was identified, and the tilt-moduli that are related to the surface free energy density were calculated.

Additionally, a possible fourth mechanism was proposed where a faceted surface with an incomplete monolayer might

be susceptible to the ATG instability. Finally, the effects of step-edge energy anisotropy were investigated, and it was

found that the tilt moduli show an anisotropy that is nearly proportional to the step-edge energy anisotropy, a finding with

applications to III-V or II-VI semiconductor films such as InxGa1−xAs/GaAs.

The models presented here were constructed to be as simple as possible and still generate qualitatively correct and

quantitatively reasonable results. Additionally, there was a great deal of statistical error and possibly error from small sim-

ulation size. It will be worthwhile to increase the simulation size and run for longer times, but only after more sophisticated

simulations corresponding to the diamond or zinc-blend structure are developed. It might also be important to incorporate

surface tension effects directly.46 Despite these limitations, the findings from these simple small models are clear, they

help to clarify a situation that has been ambiguous for some time, and they will form the foundation of a more rigorous

modeling effort.

APPENDIX A. STANDARD STATISTICAL MECHANICS RELATIONS
Start from a general partition function obtained from multiple complex configurational variables (h = {hi}) and general

complex chemical potentials m = {mi},

Z = ∑
h

exp

[
− 1

kbT

(
u(h)−a∑

i
(m∗

i hi +mih∗i )

)]
.

a is a constant, and ∑h indicates a sum over all possible values of the variables, {hi}. From this partition function, the

following relations can be derived, and they are used in Sec. 3:

hi = 〈hi〉 =
kbT

a
∂ lnZ
∂m∗

i
.

f = −kbT lnZ +a∑
i

(
m∗

i hi +mih
∗
i

)
.

1

a
∂ f

∂h
∗
i

= mi.

1

a
∂ 2 f

∂h j∂h
∗
i

=
∂mi

∂h j
=

kbT
a

[〈
h∗i h j

〉−h
∗
i h j

]−1
,

where [ ]−1 should be interpreted as the matrix inversion. When hi and h j are Fourier components, i = k1, and j = k2, and

hi = h j = 0, one can use translational symmetry to show that

1

a
∂ 2 f

∂hk2
∂h

∗
k1

=
kbT δk1−k2

a
〈
|hk1

|2
〉 .
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