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Abstract

Heteroepitaxial self-assembled quantum dots (SAQDs) will allow breakthroughs in electronics and op-

toelectronics. SAQDs are a result of Stranski-Krastanow growth whereby a growing planar film becomes

unstable after an initial wetting layer is formed. Common systems are GexSi1−x/Si and InxGa1−xAs/GaAs.

For applications, SAQD arrays need to be ordered. The role of crystal anisotropy, random initial condi-

tions and thermal fluctuations in influencing SAQD order during early stages of SAQD formation is studied

through a simple stochastic model of surface diffusion. Surface diffusion is analyzed through a linear and

perturbatively nonlinear analysis. The role of crystal anisotropy in enhancing SAQD order is elucidated. It

is also found that SAQD order is enhanced when the deposited film is allowed to evolve at heights near the

critical wetting surface height that marks the onset of non-planar film growth.
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I. INTRODUCTION

Heteroepitaxial self-assembled quantum dots (SAQDs) represent an important step in the ad-

vancement of semiconductor fabrication at the nanoscale that will allow breakthroughs in opto-

electronics and electronics.1,2,3,4,5,6,7,8,9,10,11,12,13,14 SAQDs are the result of a transition from 2D

growth to 3D growth in strained epitaxial films such as SixGe1−x/Si and InxGa1−xAs/GaAs. This

process is known as Stranski-Krastanow growth or Volmer-Webber growth.3,15,16,17. In applica-

tions, order of SAQDs is a key factor. There are two types of order, spatial and size. Spatial order

refers to the regularity of SAQD dot placement, and it is necessary for nano-circuitry applications.

Spatial order might also play a role in the optical spectra of coupled quantum dots that are dis-

cussed in refs.1,2. Size order refers to the uniformity of SAQD size which determines the voltage

and/or energy level quantization of SAQDs. It is reasonable to expect that these type of order are

linked, and it is important to understand the factors that determine SAQD order. Further under-

standing should help in the design and simulation of both spontaneous “bottom up” self-assembly

and directed or guided self-assembly to enhance SAQD order.18,19,20,21,22,23,24,25 Order prediction

inherently involves the modeling of stochastic processes. Recently, SAQD order has been mod-

eled using a deterministic model with stochastic initial conditions in the linear approximation.26,27

This model was based on previous nucleationless models of SAQD formation.28,29,30,31 Here, this

method of modeling SAQD order is improved by incorporating stochastic thermal fluctuations in

the surface diffusion. Thus, the previously deterministic governing equations become stochastic.

The final order predictions are qualitatively the same as for the previous linear model, but they are

quantitatively different. Additionally, preliminary non-linear modeling results are presented. One

non-linear model approximates a 1D surface, but incorporates the stochastic thermal fluctuations.

The second non-linear model is of a 2D surface, but it is only implemented as a deterministic

model at present.

In the previous work using a linear deterministic model with stochastic initial conditions26,27, it

was found that peaks in the linear dispersion relation can be used to predict and explain order. It

was also found that only anisotropic models give rise to dispersion relations with discrete peaks,

thus explaining why elastic anisotropy contributes to SAQD order as previously reported.30,32,33,34

The dispersion relation was then used to generate a spectrum function in the linear approximation,

and the spectrum function in turn could be used to define and predict two correlation lengths that

grow as the square root of time. These correlation lengths were identified as the key quantities
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describing SAQD order. Using equations for these correlation lengths, it was found that growth of

SAQDs with an average film height near the critical 2D-3D transition height might enhance order,

although practical limitation of producing ordered arrays of SAQDs were also noted. Although

the incorporation of a wetting potential is possibly controversial, it appears to produce the correct

phenomenology, and it may possibly be a mathematical surrogate for more complicated processes

such as stabilization by intermixing.35 See refs.27,28,29,30,31,36 for further discussion. In ref.27, it was

also shown that the modeling/order prediction method could easily be applied to a large class of

models, but the simplest model that produced Stranski-Krastanow growth was used as an example.

Additionally, various mathematical issues such as convergence and precise definitions of the cor-

relation functions as either spatial averages or ensemble averages was treated. Readers interested

in these more technical details are referred to ref.27.

The new result presented here is mainly the mentioned incorporation of thermal fluctuation

to seed quantum dot formation, as opposed to the somewhat artificial assumption of a random

roughness initial condition that is chosen more or less arbitrarily. One product of the present work

is a formula to choose this initial roughness to give a nearly equivalent disordering effect as thermal

fluctuations; however, a deterministic model will never be a true substitute for a stochastic one.

The outcomes of the stochastic model are qualitatively similar to the previous deterministic model,

but quantitatively distinct. In addition to the stochastic linear model of SAQD order, preliminary

results of non-linear models are presented. These models appear to corroborate the linear model

predictions but also give a more complete picture of the time evolution of SAQD order. The

current model predicts that order will be fairly poor under most growth conditions. This seems to

be in agreement with most experiments, for example refs.16,37,38,39,40. The basic phenomenology

appears to be more or less in agreement with observations; however, more quantitative reporting

of experimentally observed order would facilitate future comparisons.

The rest of this article is organized as follows. Section II presents the stochastic governing

equations and physical causes of SAQD formation. Section III presents the linearization of the

model presented in Sec. II along with the extraction of order predictions and application to growth

near the critical film height using parameters appropriate to Ge/Si SAQDs. Section IV presents

preliminary non-linear modeling results. Section V presents the conclusion. Finally, Appendix A

presents the derivation of the time evolution equation of the spectrum function.
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II. PHYSICAL MODEL

The formation and growth of SAQDs is modeled in a fashion similar to refs.20,28,29,30,41. The

film surface is described by the film height as a function of the lateral position, H(x). The film

height evolves via surface diffusion that is driven by a diffusion potential, µ(x). The film surface

grows with a velocity normal to its surface that is given by

vn(x) = nz(x)
∂H(x)

∂t

= ∇s ·
[
D∇sµ(x) +

√
2ΩDkbTη(x, t)

]
. . .

· · ·+ nz(x)Q, (1)

where D is the surface diffusivity; nz(x) is the z−component of the surface normal vector, n̂(x);

∇S is the surface gradient; ∇S· is the surface divergence; Q is the flux of new material onto

the surface; and
√

2ΩDkbTη(x, t) is the fluctuation of the surface diffusion. Note that the sur-

face diffusivity is assumed to be a scalar; thus, it is isotropic. A limited discussion of diffu-

sional anisotropy appears in ref.27, and full development is in progress. The surface diffusion

fluctuation is chosen to give a steady state that is consistent with the Gibbs distribution for a

quadratic potential.42 In ref.42, there is a slope-dependent intensity factor, but here that factor is

neglected for simplicity and because it has no effect to linear order. η(x, t) is a time fluctuating

white noise (or the derivative of a Brownian process)43,44 so that it has zero mean 〈η(x, t)〉 = 0,

where 〈. . . 〉 denotes the ensemble average, and it has a sharply peaked correlation function,

〈η(x, t)η(x′, t′)〉 = Ĩδ2(x − x′)δ(t − t′). Ĩ is the rank 2 identity matrix, and δ(x) is the Dirac

Delta function. Eq. 1 is interpreted as an Îto stochastic differential equation.54

The diffusion potential is derived from the total free energy. The details of the derivation are

covered in ref.27, and only the most important points are reviewed here. The total free energy

is assumed to have two parts, elastic energy and a term that is a combined surface energy and

substrate wetting energy F = Felast. +Fsw. The second part Fsw is an integral over the horizontal

coordinate x of an areal energy density,

Fsw =

∫
x−plane

d2xFsw (H(x), ∇H(x)) .

The areal energy density, Fsw, is in turn a function of the film height, H(x) and the film height

gradient, ∇H(x). From this total free energy, one can find the diffusion potential µ(x) by taking
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the variational derivative with respect to film height and multiplying by the atomic volume, Ω,

µ(x) = Ω
[
ω(x) + F (10)

sw (x)−∇ · F(01)
sw (x)

]
. (2)

ω(x) is the elastic energy density at the film surface. F
(mn)
sw indicates the mth derivative with

respect toH and the nth derivative with respect to ∇H. F
(10)
sw (x) = ∂H(x)Fsw (H(x), ∇H(x)) and

each vector component of F
(01)
sw (x) is

[
F

(01)
sw (x)

]
i
= ∂[∇H(x)]i

Fsw (H(x), ∇H(x)). This diffusion

potential (Eq. 2) is a general form for any surface diffusion model that incorporates the non-local

elastic energy density and a local areal energy density such as a surface energy (even one with

orientation dependence/faceting29) and a wetting energy.29,30,31,3655 In refs.26,27 a simple model is

analyzed that includes elastic anisotropy, a constant surface energy density, γ, and a substrate

wetting energy density, W (H). For this simple model, Fsw =
[
1 + (∇H(x))2]1/2

γ + W (H(x)),

and the resulting diffusion potential is

µ(x) = Ω [ω(x)− γκ(x) + W ′(H(x))] , (3)

where κ(x) is the total curvature, and W ′(H) is just the derivative of the wetting potential. A more

extensive discussion of different possibilities for Fsw is discussed in ref.27.

III. LINEAR STOCHASTIC MODEL

Stochastic terms that fluctuate in time lead to stochastic differential equation that are often

difficult so solve with either analytic techniques or numerical simulation.43,44 Linear stochastic

differential equations, however, are much easier to solve. In fact, their solution is not very different

from the solution of linear deterministic (or ordinary) differential equations with stochastic initial

conditions. The linear model is naturally more approximate than the non-linear model, but it

represents an important first step, and its solution can facilitate the development and interpretation

of non-linear models.

To model the development of SAQD order, the growth dynamics are linearized producing a

linear dispersion relation (Sec. III A). Then, the spectrum function is calculated based on the gov-

erning linear equations and the dispersion relation (Sec. III B). The expression for the spectrum

function is then applied to the simple diffusion potential (Eq. 3) for a (100) surface of a cubic

crystal (Sec. III C). Application of this method generally (to other surfaces or crystals) is outlined

in ref.27. In this part of the calculation, crystal anisotropy can play an important role in the dif-

fusion dynamics and development of SAQD order.26,27,30,45 For simplicity, it is assumed that only
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Figure 1: Evolving film surface. Total height is average (H̄) plus fluctuations h.

elasticity has a strong anisotropic effect. A more detailed analysis of other anisotropic effects can

be very cumbersome.27 Using the specific dispersion relation, formulas for the correlation lengths

that quantify SAQD order and the real-space correlation function or derived. Finally, the corre-

lation function and the correlation lengths are applied to a numerical example of Ge dots on a Si

substrate. In this example, order predictions and dependence of order on average film height is

compared with previous deterministic models.

A. Linearized Model

Eqs. 1 and 2 are linearized about the average film height (denoted H̄) for the case of zero

deposition rate (Q = 0). Thus, the following analysis would correspond to a fast deposition and

then an anneal. Other growth cases such as constant deposition rate can be analyzed in a similar

fashion, but they are beyond the scope of the present work. Following refs.31,46, the total film

height is the average film height plus small fluctuations (Fig. 1),

H(x, t) = H̄ + h(x, t).

Due to translational invariance of the governing equations, the Fourier components of h(x, t)

evolve independently in the linear model. Also, the non-local nature of the elastic energy makes

calculations using Fourier components (spectral methods) easier than using h(x, t). Fourier trans-

forms use the convention, f(x) =
∫

d2k eik·xfk and fk = (2π)−2
∫

d2x e−ik·xf(x). hk is the

Fourier transform of h(x), where k is the corresponding wave vector.

The linearized diffusion potential is calculated following ref.27. Linearizing the surface-wetting

part of the diffusion potential, Eq. 2 and taking the Fourier transform, one gets26

µsw,lin,k = Ω
(
F (20)

sw + k · F̃(02)
sw · k

)
hk,
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where the F
(mn)
sw terms are the derivatives of Fsw(H, ∇H), evaluated for a perfectly flat surface of

height H̄. They are constants in the following analysis because they depend only on the average

film height H. The first superscript indicates the mth derivative of Fsw with respect to H. The

second index indicates the nth derivative with respect to ∇H. Evaluated for a perfectly flat surface

of height H̄, F
(mn)
sw = ∂m

H∂n
∇HFsw (H, ∇H)|H=H̄, ∇H=0 . The elastic energy density at the film

surface is calculated as in refs.27,47,48, where the bimaterial (film + substrate) is approximated as an

elastically homogeneous material to simplify calculations.56 The resulting elastic energy density

to linear order is ωlin,k = −Eθkkhk so that the elastic energy is proportional to the wavenumber

k = ‖k‖ and the Fourier component hk, and it has a prefactor that depends on the wave vector

direction, θk. Thus, the total linearized diffusion potential in reciprocal space is

µlin,k = Ω
(
−Eθkk + F (20)

sw + k · F̃(02)
sw · k

)
hk. (4)

Linearizing the dynamic evolution, Eq. 1, and plugging in Q = 0 and µlin,k,

∂thk(t) = σkhk(t) +
√

2ΩDkbT [ik · ηk(t)] ; (5)

σk = −k2DΩ
(
−Eθkk + F (20)

sw + k · F̃(02)
sw · k

)
, (6)

where ηk(t) is the Fourier transform of η(x, t). It has zero ensemble mean, 〈ηk(t)〉 = 0), and a

sharply peaked two-point correlation function, 〈ηk(t)ηk′(t
′)∗〉 = (2π)−2δ2(k−k′)δ(t− t′).57 The

growth rate of each Fourier component, σk, is dubbed the dispersion relation.

B. Spectrum Function

Eqs. 5 and 6 can be solved as a system of uncoupled linear stochastic ordinary differential

equations with constant coefficients43,44 because the Fourier components, hk, evolve independently

to linear order. One could assume that there are both stochastic initial conditions and thermal

fluctuations; however, the purpose here is to analyze the impact of just the thermal fluctuations on

order. It is assumed the film is perfectly flat at t = 0, and that the instability is seeded by just the

thermal noise. Thus, initially, hk(0) = 0 for all k, and to linear order, the ensemble average film

height fluctuation remains zero for all time. However, the spectrum function, Ck(t) provides the

lowest order non-trivial statistical description of film height fluctuations, and it is used to predict

the order of SAQD arrays in a fashion similar to refs.26,27. By taking the inverse Fourier transform

of the spectrum function, one can predict the real-space correlation function (Sec. III C 1). A more

9



complete picture of the interrelations between the spectrum function, the real-space correlation

functions and other correlation functions is presented in ref.27.

Taking the ensemble average of Eq. 5,

∂t 〈hk(t)〉 = σk 〈hk(t)〉+
√

2ΩDkbT [ik · 〈ηk(t)〉] .

The surface diffusion thermal fluctuation is mean-zero (Sec. III A), and the initial surface height

fluctuation is mean-zero,〈hk(0)〉 = 0; thus, 〈hk(t)〉 = 0 for all time.

Starting from the linearized governing equation and initial conditions, an evolution equation

for the spectrum function can be derived that is both linear and deterministic (Appendix A),

∂tCk(t) = 2σkCk(t) +
k2

(2π)2
(2ΩDkbT ) . (7)

Using the initial condition that Ck(0) = 0,

Ck(t) =
DΩkbT

(2π)2σk

k2
(
e2σkt − 1

)
. (8)

The spectrum function Ck(t) is the average value one would expect if one extracts from a simula-

tion or experiment the film height power spectrum, (2π)2 |hk(t)|2 /Area ≈ Ck(t).27

C. Application to (100) surfaces

The spectrum function time dependence, Eq. 8, is now applied to a (100) surfaces of cubic

crystals using the simple diffusion potential, Eq. 3. Anisotropy plays an important role in order

development, and for simplicity only elastic anisotropy is included. From this analysis, the two

correlation lengths are found, and then the correlation function. Finally, a numerical example of

Ge dots on a Si substrate is presented. The dependence of order on film height is investigated and

compared and contrasted with the similar dependence from the previous deterministic model.27

1. Spectrum and Correlation function

If σk is peaked at wave vectors, kn, corresponding to some reciprocal lattice vectors, then

a quasiperiodic arrangement of SAQDs can form during the initial stages of growth.26,27 This

quasiperiodicity is demonstrated by applying the linearized simple diffusion potential, Eq. 3,

along with elastic anisotropy ω(x) to Ge deposited on Si with a (100) substrate surface. For a
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(100) surface of a crystal with cubic symmetry, ωlin,k = −E0◦
(
1− εA sin2(2θk)

)
khk is a very

good fit to a full elasticity calculation, where E0◦ is the elastic energy prefactor for θk = 0◦, and

εA = (E0◦ − E45◦) /E0◦ is an elastic anisotropy factor.27 The resulting linear diffusion potential in

reciprocal space is27

µlin,k = Ω
[
−E0◦

(
1− εA sin2(2θk)

)
k + γk2 + W ′′(H̄)

]
hk,

where γ is the surface energy density, and W ′′(H) is the second derivative of the wetting potential.

One can see that this is a special case of Eq. 4.

The corresponding dispersion relation is

σk = DΩk2
[
E0◦

(
1− εA sin2(2θk)

)
k − γk2 −W ′′(H̄)

]
,

assuming that diffusivity is isotropic as in refs.26,27.

From this dispersion relation, characteristic lengths and times can be found along with details

of the early film evolution behavior. A characteristic wavenumber and time can be defined, kc =

E0◦/γ and tc = γ3(DΩE4
0◦). Also, the strength of the wetting term W ′′(H̄) can be expressed as a

dimensionless variable, β = γW ′′(H̄)/E2
0◦ . A detailed analysis26,27,29,31 shows that a large value

of W ′′(H̄) such that β > 1/4 stabilizes a flat film to linear order in hk, while a small value of

W ′′(H̄) such that β < 1/4 is insufficient to stabilize a flat film for all possible fluctuations, hk.

For sufficiently small β, σk has 4 peaks along the four 〈100〉 directions, corresponding to θk =

0◦, 90◦, 180◦ and 270◦ and k = α0kc. α0 =
(
3 +

√
9− 32β

)
/8 is a convenient dimensionless

quantity. Thus, the four peaks occur at k1 = α0kci, k2 = α0kcj, k3 = −α0kci and k4 = −α0kcj.

Expanding σk in the vicinity of peak n,

σk ≈ σ0 −
1

2
σ‖(k‖ − α0kc)

2 − 1

2
σ⊥k2

⊥, (9)

where k‖ is the component of k parallel to kn, and k⊥ is the component of k perpendicular to kn.

σ0 = 1
4
t−1
c α2

0 (α0 − 2β), σ‖ = t−1
c k−2

c (3α0 − 4β), and σ⊥ = 8εAα0t
−1
c k−2

c .

Eq. 9 is used to find an approximate expression for the spectrum function Ck(t). σk appears

inside an exponential; thus, for sufficiently large values σ0t, the exponential term in the vicinity

of the peaks will dominate over all other contributions to the spectrum function. Thus, Ck(t) will

have the approximate form of four gaussians each centered around the four peak locations, kn. For

11



sufficiently narrow gaussians, the prefactor can be approximated by its value at the peak. Thus,

Ck (t) ≈ DΩkbT

(2π)2σ0

(α0kc)
2 e2σ0t . . .

· · · ×
4∑

n=1

e−
1
2
L2
‖(k‖−k0)

2
− 1

2
L2
⊥k2

⊥ , (10)

where

L‖ =
√

2σ‖t = k−1
c

√
(6α0 − 8β)(t/tc), (11)

L⊥ =
√

2σ⊥t = k−1
c

√
16εα0(t/tc). (12)

L‖ and L⊥ are the two correlation lengths that arose from models with deterministic evolution

and stochastic initial conditions. They are measures of how spatially ordered an array of SAQDs

is. The distance over which one can expect an array of SAQDs to appear periodic is about twice the

smaller of the two correlation lengths, usually L⊥.26,27 Fig. 2 shows an example of a film surface

with the correlation length indicated. The approximate spectrum function, Eq. 10, is only valid

when α0kcL‖ � 1, and α0kcL⊥ � 1. Of course, when this is not the case, order will be very poor.

Thus, Eqs. 10–12 are useful for quantifying order when it is good, and they are able to indicate

when order is poor.

The spectrum function, Eq. 10, is very similar to the spectrum function for the deterministic

case with stochastic initial conditions characterized by a noise amplitude ∆2.26,27 If the noise

amplitude is set to be

∆2 = DΩkbT (α0kc)
2 /σ0,

then the two cases are equivalent to linear order, when one performs these similar expansions. Of-

ten, one uses deterministic evolution equations with stochastic initial conditions as approximations

to stochastic evolution equations. By performing a suitable linear analysis as done here, perhaps

one can find an appropriate initial condition for such approximations. Note that ∆2 has dimensions

of [length]4, and the size of fluctuations in a discretization procedure changes with the discretiza-

tion length scale. The spectral methods used here handle this problem fairly easily as one can

coarse-grain a model by simply discarding fast oscillating noise components. A spatial discretiza-

tion such as finite differencing or the finite element method makes quantitative implementation of

white noise more complicated.

As with the deterministic model26,27, one can take the inverse Fourier transform of the spectrum
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Figure 2: (a) Film height and (b) spectrum function of the H̄ = 1.1Hc simulation discussed in Sec. IV B

at the end time, t = 255tc. The drawn circle in (a) has a radius equal to L⊥ calculated from the spectrum

function (b).

function to obtain the real-space correlation function,

C(∆x) =
DΩkbT (α0kc)

2

πσ0L‖L⊥
e2σ0t . . . (13)

· · · ×
[
e−

1
2(∆x2/L2

‖+∆y2/L2
⊥) cos(α0kc∆x) . . .

· · ·+ e−
1
2(∆x2/L2

⊥+∆y2/L2
‖) cos(α0kc∆y)

]

13
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Figure 3: tlarge/tc and L⊥/L0 vs. the dimensionless wetting parameter β for Ge/Si at T = 600◦C as

discussed in Sec. III C 2

The correlation function, C(∆x), is a good predictor of the autocorrelation when the sampled or

simulated area is very large.27

2. Numerical Example and film height dependence

In ref.27, it was found that for reasonably soft wetting potentials, there can be some enhance-

ment to spatial order when annealing takes place for films with heights, H̄, that are only just above

critical film height for unstable 3D growth. This finding was based on an assumption that the order

that develops during the initial stages of growth is a meaningful order estimate. This assumption is

justified to an extent by published numerical simulations30,31,49,50,51 and is further justified by initial

non-linear modeling results in Sec. IV. In ref.27, the correlation lengths were found using param-

eters appropriate to Ge deposited on Si. A condition for the end of the linear evolution regime

was taken to be when the r.m.s. film height fluctuation exceeded the atomic scale, the height of

one monolayer. The r.m.s. height fluctuation is just hr.m.s. = [C (0)]1/2, using Eq. 13. The time at

which this condition was satisfied, tlarge, was recorded, and the smaller correlation length, L⊥ was

calculated for this time. These predicted tlarge values and the number of correlated dots in a row

were graphed vs. the dimensionless wetting potential strength for β = 0 . . . 0.25. It was found that

the calculated time tlarge and the calculated correlation length diverge as β → 0.25.

The same procedure is now followed for the present model for Ge on Si with temperature T =

600◦ C. All values are the same as for the calculations in ref.27. The results are graphed in Fig. 3.
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When compared with the results from the deterministic model with stochastic initial conditions27,

one finds that the effect of thermal fluctuations in the surface diffusion are actually more disruptive

to order than assuming an initial surface with atomic scale roughness. The qualitative trends are

the same,however, and the divergence in correlation length as β → 0.25 is observed. As discussed

in ref.27, one should take care interpreting this result, and there are of course practical limitations.

The order enhancing effect of near critical growth has not been experimentally observed (or looked

for), and there may be practical limitation to implementing near critical growth as a method to

enhance order such as the requirement for precise deposition control.

IV. PERTURBATIVELY NON-LINEAR MODELS

The order estimates presented in refs.26,27 and Sec. III C 2 are based on the order that develops

before fluctuations become large. The significance of these calculations is based on the following

observations:

1. Order increases during the linear stage of growth as t1/2 (Eqs. 11 and 12).

2. Order does not increase forever. If it did, growing perfectly ordered arrays of dots would be

trivial. Also, qualitative analysis of numerical simulations bears this out.30,31,49,50,51

It is, of course, worthwhile to extend the method of quantifying and predicting order to non-linear

models. Non-linear stochastic modeling can be very cumbersome and difficult to implement, but

some preliminary results are presented here. The same system as in Sec. III C 2 and ref.27 is

modeled here, and the same parameters are used.

A. 1D Multiscale-Multitime Expansion

First, the results of a 1D non-linear model with stochastic evolution is presented. As a first

attempt at non-linear modeling, two approximations are made. First, the elastic and surface energy

parts are completely linearized. Second, the wetting potential, W (H) is treated using a multiscale-

multitime expansion.31,52 Full details of the model are omitted out of space considerations and

because these are preliminary results.

Based on ref.29, the wetting potential is chosen to be W (H) = 2.314 × 10−6/H erg/cm2 with

Hin cm. This gives a critical film height of 4 monolayers = 1.132 nm. The simulated film has an
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Figure 4: Time dependence of number of correlated dots Lcor/L0 vs. dimensionless time, t/tc for 1D

stochastic film evolution (Sec. IV A). Both linear model and multiscale expansion results are shown.

average film height of H̄ = 1.358 nm giving β = 0.1447. The simulation cell size is 19.68 µm,

large enough to hold 513 dots of average size L0 = 2π/k0 = 38.4 nm. The multiscale-multitime

expansion uses an expansion in a scale variable ε to create a perturbation-like series. Additionally,

fast oscillating Fourier components of W (H) are discarded so that the natural length scale is

the average size of a single dot, L0 . To fourth order in ε, one obtains a set of two coupled

partial differential equations.31,52 These equations are solved using Stochastic Euler numerical

integration43,44 implemented with Mathematica.53 Computational efficiency is greatly enhanced

by the multiscale-multitime expansion, but of course, accuracy and fidelity to the original model

is partially sacrificed. Correlation lengths are calculated from the peak widths of the spectrum

function (∆k), using Lcor = 1/∆k. The number of dots in a row that form a recognizably periodic

structure is #dots = 2Lcor/L0. The time evolution of this number is plotted for both the linear

model and the stochastic simulation (Fig. 4). The linear model has a correlation length that grows

indefinitely. The non-linear model has a correlation length that grows to a peak value and then

shrinks. In this case, the onset of ripening ruins the SAQD order. The onset of ripening in this

model corresponds to the “blow-up solution” in ref.31
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Figure 5: Dimensionless correlation length vs. dimensionless time for 2D non-linear deterministic model

with stochastic initial conditions. Results for two different average film height are reported, H̄ = 1.25Hc

and H̄ = 1.1Hc

B. 2D non-linear deterministic model

A similar result is obtained for a 2D deterministic non-linear model. This model treats the

surface energy and wetting energy in full non-linear fashion. The non-local elastic part is found

to cubic order in the film height fluctuation in h via a perturbation series. The stochastic ini-

tial conditions are sampled white noise with an initial atomic scale roughness, corresponding to

∆2 = 0.0403 nm4.27 The critical height for the 2D-to-3D-growth transition is Hc = 1.132 nm.

Two initial average film heights are used to investigate the trend predicted in Fig. 3, H̄ = 1.25Hc =

1.415 nm (β = 0.1280) and H̄ = 1.1Hc = 1.245 nm (β = 0.1878). The simulation cell size cor-

responds to 17 dots squared = 289 dots. The time evolution equations are solved using the native

numerical differential equation solver in Mathematica.53 The correlation lengths vs. dimensionless

time are plotted for both cases in Fig. 5. In both cases, the correlation length increases early on

while fluctuations are small, reaches a peak value and then decreases due to ripening. The peak

value of the correlation length is greater for the second case with β closer to the optimal value of

1/4. The 2D non-linear deterministic model further substantiates the theory that order develops

during the early growth stages and then is diminished during ripening. Furthermore, the trend

predicted by the linear order model is it least qualitatively corroborated because growth near the

critical threshold enhances the peak order of SAQDs according to the 2D non-linear model.
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V. CONCLUSIONS

A linear stochastic model of SAQD order has been presented as an extension of a previous linear

deterministic model of the order of epitaxial self-assembled quantum dots (SAQDs). In addition,

some preliminary results from non-linear stochastic and non-linear deterministic models have been

presented to substantiate the significance of, extend and clarify the linear models of SAQD order.

The presented numerical examples were based on a very simple SAQD model, and there has been

much advancement in SAQD growth modeling; however, the presented procedure should apply

equally well to a wide variety of models with various phenomenological assumptions and help to

augment them and quantitatively extract order predictions. The current stochastic model should be

augmented in the future to reflect these advances. Some adaptation of the method ought to apply

to attempts to engineer SAQD order as well, such as substrate patterning or growing multilayers of

SAQDs. As with the previous deterministic model, two correlation lengths are found, longitudinal

L‖ and transverse L⊥ . The transverse correlation length appears to be the most limiting, and thus

should be used to estimate order. It is found that if a wetting potential is incorporated that is suffi-

ciently soft, growth near the 2D-3D transition critical film height enhances SAQD order; however,

this enhancement would require very precise experimental control to implement. Nevertheless, it

demonstrates how the presented methods might apply to other attempts to optimize SAQD growth

and could help engineer those processes. It was also found that the previous deterministic model

can be made approximately equivalent to the present stochastic model by choosing the appropri-

ate initial conditions. Preliminary non-linear modeling appears to corroborate these claims, at

least qualitatively. A quantitative comparison is still needed. The method to extract SAQD order

should help with phenomenological model development as the correlation lengths and possibly

other statistical characterization should facilitate quantitative tuning of phenomenological models

to experiments. The models presented here apply to the nucleationless mode of SAQD formation;

however, the inclusion of thermal fluctuations in non-linear models should facilitate a conceptual

and/or mathematical unification of models of SAQD thermal nucleation and the nucleationless

mode.
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Appendix A: DERIVATION OF EQ. 7

The two-point correlation function in reciprocal space is

Ckk′(t) = 〈hk(t)hk′(t)
∗〉 .

Note that at time t = 0, Ckk′(0) = 〈hk(0)hk′(0)
∗〉 = 0. The time evolution of Ckk(t) can be found

using the stochastic chain rule (̂Ito’s lemma) and then taking the ensemble average.43,44

∂tCkk′(t) = (σk + σk′) Ckk′(t) . . . (A1)

· · ·+ k · k′

(2π)2
(2ΩDkbT ) δ2(k− k′). (A2)

The thermal fluctuations only contribute if k = k′. Since initially Ckk′(0) = 0, one can expect

Ckk′(t) to be non-zero only if k = k′. Thus, the two-point correlation function is determined

completely by the ensemble averaged spectrum function, Ck(t) as in ref.27,

Ckk′(t) = Ck(t)δ
2(k− k′). (A3)

This results is only strictly true for the linearized equation. From Eq. A1 the time evolution

equation of the spectrum function is found by inspection to be Eq. 7.
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