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Abstract. Epitaxial self-assembled quantum dots (SAQDs) are of interest for nanostructured
optoelectronic and electronic devices such as lasers, photodetectors and nanoscale logic. Spa-
tial order and size order of SAQDs are important to the development of usable devices. It is
likely that these two types of order are strongly linked; thus, a study of spatial order will also
have strong implications for size order. Here a study of spatial order is undertaken using a
linear analysis of a commonly used model of SAQD formation based on surface diffusion. An-
alytic formulas for film-height correlation functions that characterize quantum dot spatial order
and corresponding correlation lengths that quantify order are found. Initial atomic-scale ran-
dom fluctuations result in relatively small correlation lengths (about two dots) when the effect
of a wetting potential is negligible; however, the correlation lengths diverge when SAQDs are
allowed to form at a near-critical film height. The present work reinforces previous findings
about anisotropy and SAQD order and presents as explicit and transparent mechanism for or-
dering with corresponding analytic equations. In addition, SAQD formation is by its nature
a stochastic process, and various mathematical aspects regarding statistical analysis of SAQD
formation and order are presented.
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1 INTRODUCTION
Epitaxial self-assembled quantum dots (SAQDs) represent an important step in the advancement
of semiconductor fabrication at the nanoscale that will allow breakthroughs in optoelectronics
and electronics. [1–21] Most frequent optoelectronic applications are high efficiency lasers with
exotic wavelengths or photodetectors. [1,3–8,10–12] The quantum confinement of SixGe1−x/Si
SAQDs also allows for Si based optoelectronic devices. [13–21] SAQDs are the result of a
transition from 2D growth to 3D growth in strained epitaxial films such as SixGe1−x/Si and
InxGa1−xAs/GaAs. This process is known as Stranski-Krastanow growth or Volmer-Webber
growth. [1, 22–24]. The analysis presented here applies primarily to systems with 4-fold sym-
metry such as SixGe1−x/Si, but extension to other systems such as InxGa1−xAs/GaAs is also
discussed.

In applications, order is a key factor. There are two types of order, spatial and size. Spa-
tial order refers to the regularity of SAQD dot placement, and it is necessary for nano-circuitry
applications. Size order refers to the uniformity of SAQD size, which determines the volt-
age and/or energy level quantization of SAQDs. It is reasonable to expect that these types of



order are linked, and it is important to understand the factors that determine SAQD order. Fur-
ther understanding should help in the design and simulation of both spontaneous “bottom up”
self-assembly and directed or guided self-assembly to enhance SAQD order. [25–32] Here, an
elaboration of and further application of a linear analysis of SAQD order [33] is presented. The
work reported here forms the basis of a non-linear theory and modeling of SAQD order that will
be reported in future work.

In Ref. [33] it was reported that one could calculate a correlation function using a linearized
model of SAQD formation. This correlation function included two correlation lengths that
could be used to describe SAQD order. It was also found that one effect of a hypothesized
wetting potential was to enhance SAQD order when growth occurs near the critical film height
for 3D growth. Here, these results are expanded to create a more rigorous linearized theory of
SAQD order that will inform non-linear theories. In particular, the model is generalized to any
model that combines local energy effects such as surface energy density and non-local elastic
destabilization, and the procedure for predicting order based on any linear theory with peak
wavelengths is presented. The hypothesized effect of elastic anisotropy in Ref. [33] is verified
with calculations using linear anisotropic elasticity theory. [34, 35] Details such as statistical
fluctuation and convergence are also addressed along with a discussion of the possible forms of
linear anisotropic terms in SAQD growth kinetics, and the effect of an atomic-scale cutoff in the
continuum theory is addressed. Finally, the order enhancing effect of growing near the critical
threshold is explored in more detail using calculations appropriate to Ge/Si SAQDs.

In the literature, two modes of SAQD formation are generally discussed, the thermal nu-
cleation mode and the nucleationless mode. [36–38] In the thermal nucleation mode, a 2D film
surface is metastable, and the formation of individual quantum dots is thermally activated. [36]
This growth mode leads to the formation of individual quantum dots as uncorrelated or loosely
correlated discrete events at essentially random locations. In the nucleationless mode, the 2D
film surface transitions from stable (or metastable) to unstable. In this mode, dots form every-
where at once appearing at first as a crosshatched ripple-like disturbance on the 2D film surface
and then maturing into recognizable individual dots. [36,37,39–41] These two modes are prob-
ably connected via an encompassing conceptual and mathematical model, and perhaps some
of what is observed experimentally is in fact a hybrid mechanism. It is possible that there is
a transition from stable to metastable and finally to unstable growth. The analysis presented
in Ref. [42] would appear to support such a view where the film height acts as the control pa-
rameter driving the transition. There is also some controversy regarding whether all dot growth
is nucleationless or not. [41, 43] In agreement with intuition, it appears that the nucleationless
mode leads to a more ordered dot pattern than the thermal nucleation mode that is dominated
by randomness (compare various figures in Refs. [23, 38, 40, 44, 45]). The analysis presented at
present applies only to the nucleationless mode.

There are various implementations of nucleationless growth models [27, 37, 43, 46–49], al-
though, there is also a great deal of commonality among these models. In particular, they all
include a non-local elastic effect and local surface energies and/or local wetting energies. Here,
a linear analysis of quantum dot order resulting from this class of model is presented. Partic-
ular note is taken of the effects of stochastic initial conditions crystal anisotropy in general,
elastic anisotropy in particular, and the effect of varying film height as a control parameter as
first introduced in Ref. [42]. A simple model similar to Refs. [27, 37, 46, 47, 49] is presented to
produce numerical examples and explore the effects of the average film height. Concurrently, a
more abstract and general model is presented and analyzed that includes non-local elastic strain
effects, and a local combined surface and wetting energy. The linear model with stochastic ini-
tial conditions and deterministic film height evolution will pave the way for more sophisticated
analysis involving a non-linear model of stochastic film height evolution.

As previously stated, one of the goals in the present work is to further explore the role
of the wetting potential during growth near the stability threshold in film height. A wetting



potential has been included in the analysis and simulations in Ref. [37, 42, 46, 47]. Although
somewhat controversial, the wetting potential plays an important phenomenological role. It
ensures that growth takes place in the Stranski-Krastanow mode: that a 3D unstable growth
occurs only after a critical layer thickness is achieved, and that a residual wetting layer persists.
The physical origins and consequences of the wetting potential are discussed in Refs. [37, 50].
The analysis presented here is usable in models that neglect the wetting potential by simply
setting it to zero. Another possibility is simply that the wetting potential an approximation to
the stabilizing effect of intermixing. [51] That said, if the wetting potential is real, the present
analysis shows that it is beneficial to SAQD order to grow near the critical layer thickness.

The presented analytic formulas and linear analysis are intended to complement existing
numerical models of SAQD order [46, 52–54] and to form a basis for future non-linear analytic
analysis of SAQD order. The current findings agree with previous work on the beneficial effects
of elastic anisotropy to enhance in-plane order.

The linear analysis, of course, represents a simplification of the film evolution, and it applies
only to the initial stages of SAQD formation when the nominally flat film surface becomes
unstable and transitions to three-dimensional growth. However, the small surface fluctuation
stage of SAQD growth determines the initial seeds of order or disorder in an SAQD array;
thus, the small fluctuation stage should have an important influence on the final outcome. At
later stages when surface fluctuations are large, there is a natural tendency of SAQDS to either
order or ripen. [42,46,48,55,56] Ordering systems tend to evolve slowly due to critical slowing
down [48], while ripening tends to diminish order further. [46] Thus, it is possible that the
linear model could, in fact, yield good predictions of SAQD order. The simplification and
linearization facilitates the development of analytic solutions that are most transparent, easily
portable to multiple material systems and have no effective limit on system size. Finally, it is
virtually impossible to have a thorough understanding of the full non-linear model without first
having a thorough understanding of the linear behavior.

The remainder of the paper is organized as follows. Section 2 presents the physical as-
sumptions and mathematical approximations used to model film growth. Section 3 discusses
the stochastic initial conditions and the resulting correlation functions and correlation lengths.
Section 4, presents a procedure for estimating SAQD order with an application to Ge dots on a
Si substrate. Section 5 presents conclusions, while Appendices A-F present additional calcula-
tional details.

2 MODELING
The formation of SAQDs is modeled as a deterministic surface diffusion process with stochastic
initial conditions. The resulting equations and ultimately the sought after correlation functions
are different depending on whether the film surface is treated as one-dimensional isotropic,
two-dimensional isotropic or two-dimensional anisotropic. The 1D and 2D isotropic cases are
discussed first, and then the essential differences of the 2D anisotropic model are presented.
The stochastic initial conditions need to be expressed in terms of the correlation functions that
are also used to analyze order; consequently, the discussion of the initial conditions is deferred
to Sec. 3.2.

It should be noted that the results presented here are fairly general. There has been a good
deal of recent work refining the modeling of nucleationless growth processes to incorporate
various phenomenological aspects of SAQD growth. For example, the inclusion of orientation-
dependent surface energy [47], strain-dependent surface energy [43] and explicit modeling of
atomic species segregation and film-substrate inter diffusion. [57] Two models are presented
here. One is a simple concrete example. It is the simplest model one can use including elastic
effects surface energy and wetting energy. The second model is more abstract and describes the
general case of a local potential energy that depends on both the film height and film height gra-
dient. One effect that is not examined here is that of mixed 4-fold and two-fold symmetry. Such



a mixing can occur due to diffusional anisotropy or surface energy anisotropy. (Sec. 2.2.1.2 and
Appendix D). However, a similar analysis procedure should work for these cases as well. The
general procedure for possible application to other models is discussed in Sec. 3.5.

The following discussion will use abstract vector notation, e.g. k instead of ki, etc. Also,
because it is sometimes computational expedient to perform one-dimensional modeling [26,
33, 48, 51], the case of a one dimensional surface with a two dimensional volume is discussed
along with the case of an isotropic 2D surface. To facilitate this combined discussion, the
dimensionality of the surface will be denoted as d. In Secs. 3.3 and 3.4, d = 1, 2 will be
substituted as appropriate. Finally, much of the calculation involves reciprocal space. The
convention used for the Fourier transforms is

f(x) =
∫

ddk eik·xfk, and fk = (2π)−d

∫
ddx e−ik·xf(x),

following the example of Ref. [37].

2.1 1D and 2D isotropic model
This discussion pertains to both the 1D model and the 2D isotropic model. The formation of
SAQDs is modeled as a surface diffusion process where the film height is a function of the lateral
position and time. The system is treated as deterministic with stochastic initial conditions.
First, the general non-linear governing equations are presented. Then, the linearized form is
presented. Finally, the key behavior is reviewed.

The mathematical model uses film height, H(x, t) as the dependent variable and the hori-
zontal position x and time t as the independent variables. The film height evolves over time due
to surface diffusion driven by a diffusion potential µ(x, t) and a flux of new material Q. The
surface velocity is thus

vn = nz∂tH = −∇S · D∇Sµ(x, t) + Q (1)

where nz is the vertical component of the surface normal nz = [1 + (∇H)2]−1/2, ∇S is the
surface gradient, D is the diffusivity, and ∇S · is the surface divergence.

2.1.1 Energetics

The diffusion potential µ(x, t) must produce Stranski-Krastanow growth. Thus, it must contain
an elastic term that destabilizes film growth, a surface energy term that stabilizes planar growth
and a wetting energy that ensures a wetting layer. The diffusion potential can be derived from a
total free energy.

F = Felast + Fsurf. + Fwet

=
∫

volume
dV ω +

∫
surface

dAsurf. γ +
∫

dA W (H)

where ω is the elastic energy density, γ is the surface energy density, W (H) is the wetting
energy density. The last integral corresponds to Fwet, and whether the integral should be taken
over the film surface or the substrate is ambiguous. The “simple” model (Sec. 2.1.1.1) assumes
that the integral is over the substrate, while the “general” model (Sec. 2.1.1.2) can accommodate
both cases.



2.1.1.1 Simple form The simplest possible model results if the integral corresponding to
Fwet is taken over the lateral positions x rather than over the actual free-surface. In concrete

terms, one can use dV = d2xdz and dAsurf. = d2x
[
1 + (∇H(x))2

]1/2

to obtain

F =
∫

volume
d2xdz ω[H](x, z) +

∫
x-plane

d2x
{[

1 + (∇H(x))2
]1/2

γ + W (H(x))
}

, (2)

where the “ω[H]” indicates that the elastic energy density is a non-local functional of the film
height, H. The diffusion potential µ can be found, similar to Ref. [24], by differentiating F
with respect to the surface motion (Appendix A.1), µ(x) = ΩδF/δH(x). Doing so for Eq. (2)
(Appendix A.2),

µ(x) = Ω [ω(x)− γκ(x) + W ′ (H(x))] . (3)

where Ω is the atomic volume, ω(x) is the elastic energy density at the film surface (implicitly

ω[H] (x,H(x))), κ = ∇ ·
{

∇H(x)
[
1 + (∇H(x))2

]−1/2
}

is the total surface curvature, and

W ′(H) = ∂H(x)W (H(x)) is the derivative of W (H(x)) evaluated at x.

2.1.1.2 General form It should be noted that Eq. (3) is not the same diffusion potential used
in Ref. [47]. The wetting potential used there can be derived by taking W (H) as an energy
density of the free surface, not a density in the x-plane. Expressions like Eq. (3) and Eq. (1) in
Ref. [47] are part of a larger class of surface evolution models with more or less the same linear
behavior.

The surface and wetting energy can be combined and incorporated into a more general form,
with a total free energy Fsw and a free energy density Fsw(H,∇H) that depends on the film
height H(x) and the film height slope or orientation ∇H(x). The total free energy is thus

F = Felast. + Fsw (4)

=
∫

volume
d2xdz ω[H](x, z) +

∫
x−plane

d2xFsw (H(x),∇H(x)) .

Fsw may not necessarily be the sum of separate surface energy and wetting energy contribu-
tions. It need only be a local function of H and ∇H. The corresponding diffusion potential
is

µ(x) = Ω
[
ω(x) + F (10)

sw (x)−∇ · F(01)
sw (x)

]
, (5)

where F
(mn)
sw indicates the mth derivative with respect to H and the nth derivative with respect

to ∇H. F
(10)
sw (x) = ∂H(x)Fsw (H(x),∇H(x)) and each vector component of F(01)

sw (x) is[
F(01)

sw (x)
]

i
= ∂[∇H(x)]i

Fsw (H(x),∇H(x)). One can obtain the results of the simple model
(Eqs. (2) and (3)) by setting

Fsw =
[
1 + (∇H(x))2

]1/2

γ + W (H(x)) . (6)

A diffusion potential like Eq. (1) in Ref. [47] can be obtained by setting

Fsw =
[
1 + (∇H(x))2

]1/2

[γ (∇H(x)) + W (H(x))] .

This is different from Eq. (6) in two ways. First, the surface energy density depends on the

surface orientation. Second, the Jacobian, J =
[
1 + (∇H(x))2

]1/2

multiplies both the surface
energy density and the wetting potential. Despite these differences, the common form of the
diffusion potential (Eq. (5)) among different models suggests that they might all lead to similar
linearized forms and behavior.



2.1.1.3 Linearization The diffusion potential is now linearized about the average film height
H̄. In general, one can control the amount of deposited material, and thus the average film
height H̄. It is therefore useful to decompose H(x) into the spatially averaged mean value and
fluctuations about the average. Similar to Ref. [37],

H = H̄+ h(x, t). (7)

In the present calculation, H̄ is specified as constant in time. This assumption corresponds
physically to a fast deposition and then an anneal. It is not too difficult to generalize to a time
dependent H̄, but that is beyond the scope of this manuscript. In Refs. [47, 58], deposition and
evaporation is explicitly modeled.

All terms in µ(x, t) are now kept to only linear order in h(x, t). The elastic energy density
ω is a non-local functional of h(x, t) [49]; however, the equations generating ω(x) are trans-
lationally invariant. Thus, it is convenient to use reciprocal space for the linearization. The
curvature is trivially linearized as κ(x) → ∇2h(x) in real space or κk → −k2hk in reciprocal
space. The linearized elastic strain energy ω can be found in reciprocal space as in Ref. [24] to
be ωk = −2M(1 + ν)ε2mhk, where M = E/(1 − ν) is the biaxial modulus, E is the Young
modulus, ν is the Poisson ratio, and εm is the film-substrate mismatch strain. This formula
neglects possible differences in elastic moduli between the film and substrate as in Ref. [37],
but a similar method of analysis should apply to that case as well. Linearizing Eqs. (3) and (5)
in reciprocal space, µk is proportional to hk with a proportionality coefficient that depends on
k and H̄.

µlin,k = f(k, H̄)hk (8)

where f(k, H̄) for three different isotropic cases, corresponding to Eqs. (3) and (5), and an
abstracted general form, is given by

f(k, H̄) =


Ω
[
−2M(1 + ν)ε2mk + γk2 + W ′′(H̄)

]
; case a (Eq. (3))

Ω
[
−2M(1 + ν)ε2mk + F

(02)
sw k2 + F

(20)
sw

]
; case b (Eq. (5))

−ak + bk2 + c ; case c (general)

. (9)

Due to isotropy, f(k, H̄) is independent of the direction of k, and only the wave number, k =
‖k‖, appears in the right hand side. F

(20)
sw is the second derivative of Fsw with respect toH, and

F
(02)
sw the second derivative of Fsw with respect to ∇H. F

(20)
sw and F

(02)
sw depend on H̄ only;

thus they are constants in the present analysis. See Appendix B.2 for more precise definitions
and the derivation of f(k, H̄). Using Eq. (6), produces F

(02)
sw = γ and F

(20)
sw = W ′′(H̄)

which is identical to case a of Eq. (9). Case c, labeled as “general” where a, b, and c depend
implicitly on H̄ shows that f(k, H̄) for cases a and b have the same relatively simple form. It
also emphasizes the dynamic effects as opposed to the physical causes. There is a destabilizing
term, −ak, a short wavelength cutoff term, bk2, and a term that stabilizes the entire spectrum,
c.

Despite the label “general,” there are of course limitations to the application of Eqs. (8)
and (9). For example, there has been recent work on the effects of strain-dependent surface
energies. [43] The second form can not represent such an effect because the derivation assumes
that the surface energy only depends on local quantities, (H and ∇H) whereas the strain effect
is non-local. However, it is reasonable to conjecture that a more detailed analysis of the effects
of a strain dependent surface energy term would produce a coefficient function f(k, H̄) not very
different from the case c “general” form of Eq. (9). Thus, the following analysis may very well
apply to this more exotic model, but more study is needed to be certain.



Table 1. Characteristic wave-numbers, characteristic times and associated dimensionless vari-
ables for the three cases addressed in Eq. (9).

kc tc α β

case a 2M(1+ν)ε2m
γ

γ3

16DΩM4(1+ν)4ε8m
k/kc

γW ′′(H̄)
4M2(1+ν)2ε4m

case b 2M(1+ν)ε2m
F

(02)
sw

(F (02)
sw )3

16DΩM4(1+ν)4ε8m
k/kc

F (02)
sw F (20)

sw

4M2(1+ν)2ε4m

case c a/b b3/(DΩa4) k/kc cb/a2

2.1.2 Dynamics

As discussed in Sec. 2.1.1, the dynamics are derived assuming no flux of new material (Q = 0)
and keeping only terms to linear order in the height fluctuation, h(x, t). Under these assump-
tions, Eq. (1) can be decomposed into a trivial equation for H̄ and an equation for the film height
fluctuation by inserting Eq. (7).

dH̄/dt = 0 (10)
∂th(x) = −∇ · D∇µlin(x) (11)

where µlin(x) is the inverse Fourier transform of Eqs. (8) and (9), and it depends implicitly on
the average film height H̄. Note that in most equations the time dependence is implicit while
the coordinate dependence is explicit. The explicit coordinate dependence serves to distinguish
between h(x) and its Fourier transform, hk. Assuming that the diffusivity D is constant, the
Fourier transform of Eq. (11) gives the linearized differential equation for the evolution of each
Fourier component.

∂thk = −Dk2µk = −Dk2f(k, H̄)hk. (12)

Solving Eq. (12),

hk(t) = hk(0)eσkt; (13)
σk = −Dk2f(k, H̄). (14)

The surface evolves in reciprocal space as an initial condition, hk(0) multiplied by an envelope
function, eσkt. For most values of H̄, this envelope function has a peak. As time passes, this
peak narrows and can be approximated by a gaussian. To analyze this behavior, appropriate
dimensionless variables are defined. Then, the stability of the film is discussed. Finally, σk is
expanded about its peak to aid analytic calculations.

The time dependent behavior of the film height fluctuations is facilitated by using a charac-
teristic wave number, characteristic time and related dimensionless variables. For the “general”
case c of Eq. (9), the characteristic wavenumber is kc = a/b, and the characteristic time is tc =
1/(DΩbk4

c ) = b3/(DΩa4). These characteristic dimensions can be used to define a dimension-
less wave vector, α = k/kc and a dimensionless wetting parameter β = c/(bk2

c ) = cb/a2.
One can also define a dimensionless time, τ = t/tc. To obtain the corresponding characteristic
scales for cases a and b, one merely has to plug in the appropriate substitutes for a, b and c and
follow the pattern. For example, for case a, make the substitution a → Ω2M(1 + ν)ε2m, etc.
Table 1 summarizes these values for all three cases. For all three cases, f(k, H̄) and the growth
constant σk reduce to the following forms:

f(k, H̄) = f(kcα, H̄) = Ωbk2
c

(
−α + α2 + β

)
(15)

σk = σkcα = t−1
c α2

(
α− α2 − β

)
, (16)

where α = ‖α‖ = k/kc is the dimensionless wave number. These forms are plotted in Figs. 1a
and 2. Fig. 1a shows f(k, H̄)/Ωbk2

c vs. α for an isotropic or one dimensional surface. Figs. 2
shows tcσk vs. α for a 2D anisotropic surface (Sec. 2.2). However, the curves marked 0◦ are
identical to the dispersion relation for a 1D or 2D isotropic surface (compare Eqs. (9) and (23)).
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Fig. 1. Dimensionless diffusion potential prefactors vs. dimensionless wave number. (a)
The one dimensional or isotropic case with β = 0.3. (b) The elastically isotropic case with
anisotropy εA = 0.1 (see Eq. (22)).

2.1.3 Peaks

The peak growth rate and the corresponding wavenumber k can be found from Eq. (16). σk has
a peak at k0 = kcα0 where

α0 =
1
8

(
3 +

√
9− 32β

)
. (17)

Expanding σk about this peak to second order in k − k0,

σk ≈ σ0 −
1
2
σ2(k − k0)2

The two constants are
σ0 =

1
4
t−1
c α2

0 (α0 − 2β) , (18)

and
σ2 = t−1

c k−2
c (3α0 − 4β) . (19)

Inserting this approximation for σk into Eq. (13),

hk(t) = hk(0)eσ0te−
1
2 σ2t(k−k0)

2
. (20)

The individual initial surface fluctuation components grow with a gaussian shaped envelope.
An example of this envelope is plotted in Fig. 3a. Notice that in two dimensions, the envelope
forms a ring as the peak is about the wave-number k0 but not about any particular point in the
k-plane.
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Fig. 2. Dimensionless growth constant vs. dimensionless wave number. Curves are plotted for
the elastically anisotropic case, but the curves marked 0◦ are the same as for the isotropic cases.
In (a), β = 0. In (b) β = 0.2.

2.1.4 Stability and wetting potential

Stranski-Krastanow growth is marked by a transition from stable two-dimensional growth to
unstable three-dimensional growth once a critical height Hc is reached. [1] Eqs. (17), (18)
and (20) are useful for analyzing the transition from stable to unstable growth. In order for
this transition to occur, there must be some stabilizing term in the diffusion potential. In the
present model, this means that there must be some surface energy-like term that varies strongly
with film height. This condition equates to stating that W ′′(H̄) or F

(20)
sw or c (Eq. (9)) must

be rather large if H̄ < Hc. However, as H̄ increases, these terms are reduced. Finally, when
H̄ > Hc, this term is no longer capable of stabilizing the film against fluctuations of all possible
wavelengths.

The critical value Hc can be found using the analysis from Ref. [42]. By inspection of
Eqs. (8), (9) and (12), modes with f > 0 increase the total free energy F as they grow; thus,
they are stable and decay with time. Modes with f < 0 decrease the total free energy F as they
grow; thus, they are unstable and grow with time. This growth and decay rule is easily verified
by inspection of Eq. (14). Thus, stable growth occurs when f(k, H̄) > 0 for all values of k,
and unstable growth occurs when f(k, H̄) < 0 for some values of k. Thus, the transition from
stable to unstable growth occurs when the minimum value of f(k, H̄) just becomes negative.
Using the same dimensional analysis as in the previous section and following the discussion
of Ref. [42], one finds that the minimum value, fmin = Ωbk2

c (β − 1/4), occurs at kmin/kc =
αmin = 1/2. fmin first becomes negative, and the transition to unstable growth occurs when
the dimensionless wetting parameter (Table 1) drops to a critical value, β = 1/4 . β > 1/4
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Fig. 3. Exponential Envelope eσkt as function of α for β = 0.208 and t/tc = 100. (a) 2D
isotropic surface. (b) 2D anisotropic surface with εA = 0.1236.



gives stable 2D growth, and gives β < 1/4 unstable 3D growth. It is reasonable to suppose that
W (H̄), W ′′(H̄), and thus β are positive monotonically decreasing functions of H̄ so that the
interface becomes less important for large values of H̄. For example, in Ref. [59] it is assumed
that W (H) = B/H, where B is constant. When β → 0, corresponding to large H̄, the case
discussed in Ref. [37] is obtained. A similar analysis can be done for cases b and c once one
specifies how the terms F

(20)
sw and F

(02)
sw or a, b and c depend on H̄.

Using a guessed form for a wetting potential, one can find the critical film height Hc by
setting β = 1/4 . Applying this condition to case a in Eq. (3)

W ′′(Hc) = γk2
c/4.

Using the wetting potential of Ref. [59] as an example, W (H) = B/H,

Hc = 3
√

8B/(γk2
c ) = 3

√
8Bγ/(2M(1 + ν)ε2m)2. (21)

Conversely, one can fit a wetting potential to an observed or reasonable critical layer thickness
from the same condition. Using the example wetting potential from Ref. [59],

B =

[
2M(1 + ν)ε2m

]2H3
c

8γ
,

as stated in Ref. [59].

2.2 2D Anisotropic case
Crystal anisotropy leads to a dispersion relation σk that is both quantitatively and qualitatively
different from the isotropic case. Here the effect of elastic anisotropy is discussed in most detail.
Other sources of anisotropy are the surface and wetting energies. For example, in Ref. [47] the
surface energy density is orientation dependent which introduces a possible anisotropy in the
dispersion relation. Possible sources of anisotropy are an anisotropic elastic stiffness tensor, an
orientation dependent surface energy or wetting potential or anisotropic diffusion. As discussed
below, the form of anisotropy to linear order in the height fluctuation, h, is somewhat restricted.
Results are presented for 4-fold symmetric surfaces, that is surfaces that have invariant dynamic
evolution laws when rotated by 90◦. Possible complications arising from 2-fold symmetric
anisotropic terms (with 180◦ rotational symmetry) are also discussed. As for the isotropic case,
first the energetics are discussed, then the dynamics, and finally the expansion about the peaks
in the dispersion relation, σk.

2.2.1 Energetics

The discussion of energetics will first treat the effects of elastic anisotropy and then anisotropy
resulting from surface or wetting like terms.

2.2.1.1 Elastic anisotropy One would like to obtain a simple symbolic expression for the
elastic energy density at the free surface, ωk, to first order in hk for the elastically anisotropic
case. Similar discussions can be found in Ref. [34,35]. For the isotropic case, ωk = −2M(1 +
ν)ε2mkhk. For the anisotropic case,

ωk = −Eθk
khk

where the prefactor Eθk
is the decrease in elastic energy at the surface per unit wave number

(k → 1) and unit amplitude (hk → 1) . It is not constant, but instead depends on the θk,
the angle that k makes with the x−direction. The case of a cube-symmetric elastic stiffness
tensor such as for Si is considered where one must specify three elastic constants c11, c12 and



k
Fig. 4. Plot of Eθk

/(Mε2m) for various materials. Symbols indicate values calculated using
Appendix C. Solid lines are the interpolation (Eq. (22)) using the values from Table 2.

c44. [60]. Growth on a (100) surface will produce an elastic energy prefactor Eθk
that is four-

fold symmetric (symmetric upon rotations by 90◦). A procedure similar to Refs. [34, 35] based
on a first order perturbation analysis is followed (Appendix C). A relatively simple interpolation
formula [33] is hypothesized and then verified numerically.

The interpolation procedure, suggested in Ref. [33] uses the lowest possible order expan-
sion in sin(θk) and cos(θk) that has the appropriate four-fold symmetry and then interpolates
between θk = 0◦ and θk = 45◦. Thus,

Eθk
= E0◦

(
1− εA sin2 (2θk)

)
(22)

where εA = (E0◦ − E45◦)/E0◦ is an anisotropy factor. This lowest order form turns out to be
a very good fit to numerical calculations (Fig. 4). Table 2 gives values of E0◦ and εA for some
systems of interest. In the elastically isotropic case, E0◦ = E45◦ = 2M(1 + ν) so that εA = 0.

Table 2. Elastic constants [60] and calculated values (see Appendix C) for various materials of
interest at T = 300K.

c11 c12 c44 M E0◦
Mε20

E45◦
Mε20

εA

1011 erg
cm3 1011 erg

cm3 1011 erg
cm3 1011 erg

cm3

Ge 12.60 4.40 6.77 13.93 2.16 1.906 0.1176
Si 16.60 6.40 7.96 18.07 2.22 1.997 0.1005

InAs 8.34 4.54 3.95 7.94 2.09 1.779 0.1488
GaAs 11.90 5.34 5.96 12.45 2.15 1.87 0.1302

There are two important differences from the elastically isotropic case. The first is obvious,
that Eθk

depends on angular orientation, θk. The second is that the peak value of σk is not the
same as that for the elastically isotropic case because in general, E0◦ 6= 2M(1+ν). In Ref. [33],
where the purpose was simply to investigate the mechanism by which elastic anisotropy effects
order, this second difference was neglected.

2.2.1.2 Surface and wetting energy anisotropy The surface energy and wetting potential
can be additional sources of anisotropy if they depend on the surface orientation so that γ →



γ(∇H) or W (H) → W (H,∇H) (for example, Refs. [47, 61]). Then, to first order in h ,

µsurf.,k = Ω
(
γk2 + k · γ̃′′ · k

)
hk

where γ̃′′ is the (2× 2) matrix or Hessian matrix that results from taking the second derivatives
of γ(∇H) with respect to the two components of ∇H (Appendix B.1). Similarly

µwet,k = Ω
(
W (20) + k · W̃(02) · k

)
hk

where W (20) and W̃(02) are the second derivatives of W (H,∇H) with respect to H and ∇H
(Appendix B.1). For both µsurf.,k and µwet,k, the first term is isotropic, and the second term
contains any possible anisotropy.

The rank of the γ̃′′ and W̃(02) matrices greatly restricts the possible forms of the addi-
tional anisotropy. These (2 × 2) matrices must be either two-fold symmetric or perfectly
isotropic. Thus, if the surface energy and wetting potential are four-fold symmetric as Eθk

is, then γ̃′′ → γ′′, a scalar, and W̃(02) → W (02), a scalar, and neither one contributes any
additional anisotropy. They do, however, help to stabilize or further destabilize the 2D surface
as they add terms proportional to k2. The effect of these additional terms is indistinguishable
from the effect of varying the value of the surface energy density, γ. [40, 61]

It should be noted that the (100) surface of a diamond or zinc-blend structures allows for
anisotropy that is only 2-fold symmetric (rotations by 180◦). Thus, they could “break” the
four-fold symmetry that occurs when one considers the elastic anisotropy alone. However, this
“broken” symmetry is somewhat dubious because even the diamond and zinc-blend structures
have a screw symmetry (rotations by 90◦ and translation in the [100] direction by half a lattice
vector). Thus, if for example, W (H,∇H) is anisotropic with two-fold symmetry to linear or-
der, there must be a fast oscillation with changes in the film heightH. In Appendix D, a similar
term related to anisotropic diffusion is discussed. There does not appear to be any evidence for
this two-fold symmetry in the case of (100) surfaces of IV/IV systems such as Ge/Si, but in
III-V/III-V systems the four-fold symmetry of the (100) surface may indeed be “broken” in this
way corresponding to either a surface energy anisotropy or a diffusional anisotropy. [62, 63].
Further analysis of such terms in any more detail would greatly complicate the present discus-
sion, so it is left for future work. Most of the modeling literature avoids this complication by
not including the symmetry-breaking of the zinc-blend surface, for example, Refs. [34, 35, 47].

One can perform a similar analysis of the combined surface and wetting potential, Fsw(H,∇H)
(case b). To linear order the resulting anisotropic diffusion potential is (Appendix B.2)

µsw,k = Ω
(
F (20)

sw + k · F̃(02)
sw · k

)
hk.

Again, F̃(02)
sw is a rank 2 tensor, and all of the same symmetry considerations apply here as well.

Because the two-fold symmetry anisotropic terms are excluded from the current discussion,
and isotropic terms simply “renormalize” the effective surface energy, there will be no further
consideration of anisotropy resulting from the surface energy or wetting potential in this dis-
cussion. Further calculations will proceed assuming that neither the surface energy density, γ,
nor the wetting potential, W (H), depend on ∇H or similarly that Fsw(H,∇H) has a purely
isotropic dependence on ∇H. This assumption can be made without affecting any of the quali-
tative results.

2.2.1.3 Total diffusion potential Having dispensed with the discussion of the various sources
of anisotropy, the total diffusion potential is stated for the case of 4-fold symmetric elastic



Table 3. Characteristic wave-numbers, characteristic times and associated dimensionless vari-
ables for the three cases addressed in Eq. (9)

kc tc α β

case a E0◦/γ γ3/(DΩE4
0◦) k/kc γW ′′(H̄)/E2

0◦

case b E0◦/F
(02)
sw

(
F

(02)
sw

)3

/(DΩE4
0◦) k/kc F

(02)
sw F

(20)
sw /E2

0◦

case c a/b b3/(DΩa4) k/kc cb/a2

anisotropy and a completely isotropic surface energy and wetting potential. µk = f(k, H̄)hk

with

f(k, H̄) =


Ω
[
−E0◦

(
1− εA sin2(2θk)

)
k + γk2 + W ′′(H̄)

]
; case a (Eq. (3))

Ω
[
−E0◦

(
1− εA sin2(2θk)

)
k + F

(02)
sw k2 + F

(20)
sw

]
; case b (Eq. (5))

−a
(
1− εA sin2(2θk)

)
+ bk2 + c ; case c (general)

. (23)

2.2.2 Dynamics

The dynamics is governed by surface diffusion, just as for the fully isotropic case. It is assumed
that the diffusivity is isotropic as was done for the surface energy and the wetting energies; thus,
all anisotropy in the film evolution dynamics comes from elastic effects alone. The possibility
and effects of an anisotropic diffusion potential is discussed in Appendix D (also see Ref. [63]).
The time dependence of the surface perturbations simply follows Eqs. (13) and (14), but with
Eq. (23) used for f(k, H̄). As for the isotropic case, appropriate characteristic wave numbers
(kc) and time scales (tc) can be found for each of the three cases along with the associated di-
mensionless wave vector α and dimensionless wetting parameter β. These are listed in Table 3.
The dispersion relation, σk can be expressed in terms of these dimensionless variables (α and
β), giving

σk = σkcα = t−1
c α2

[
α
(
1− εA sin2(2θk)

)
− α2 − β

]
. (24)

The stability behavior is essentially the same as for the isotropic case with a transition occurring
at β = 1/4 corresponding to H̄ = Hc.

2.2.3 Expansion about peaks

σk has 4 peaks at (k, θk) = (k0, π[n − 1]/2) with k0 = kcα0 (Eq. (17)) and n = 1 . . . 4. In
vector form, there are four peaks at

kn = k0 {cos [π(n− 1)/2] i + sin [π(n− 1)/2] j} .

Similar to the isotropic case, σk can be expanded about individual peaks so that in the vicinity
of peak n, σk ≈ σn with

σn = σ0 −
1
2
σ‖(k − k0)2 −

1
2
σ⊥k2

0(θk − nπ/2)2,

where σ0 is given by Eq. (18), σ‖ = σ2 given by Eq. (19), and

σ⊥ = 8εAα0t
−1
c k−2

c .

In terms of the vector components parallel and perpendicular to kn, k‖ and k⊥ respectively,

σn = σ0 −
1
2
σ‖(k‖ − k0)2 −

1
2
σ⊥k2

⊥,

k‖ = cos[π(n − 1)/2]kx + sin[π(n − 1)/2]ky , and k⊥ = − sin[π(n − 1)/2]kx + cos[π(n −
1)/2]ky . The time evolution of hkin the vicinity of one of the kn is

hk(t) ≈ hk(0)et(σ0− 1
2 σ2(k‖−k0)

2− 1
2 σ⊥k2

⊥).



Fig. 5. CA
k and Ck for Ge/Si as discussed in Sec. 4. (a,b) 2D isotropic surface. Eq. (42) is used

for Ck. (c,d) 2D anisotropic surface. Eq. (43) is used for Ck.

3 CORRELATION FUNCTIONS
Correlation functions and associated constants such as correlation lengths can be very useful
for characterizing order. In particular, the autocorrelation function (Eq. (25)) and its Fourier
transform (Eq. (26)) also known as the spectrum function can give a very good characterization
of dot order (Figs. 5a and c and 6b, e and h). The autocorrelation function is denoted CA(∆x)
where ∆x is the difference vector between two points in the x−plane. The spectrum function
is a function of k, and it is denoted CA

k . The goal here is to be able to predict these two
functions and to describe them quantitatively in a manner that can be used to characterize SAQD
order with just a few numbers. The autocorrelation function is the result of a spatial average
over one experiment or one simulation (numerical experiment). It is regular and repeatable
because it is closely tied to the correlation function and spectrum function that results from an
ensemble average (Eqs. (32) and (33)). These are denoted as C(∆x) and the spectrum Ck

respectively. Note that the ensemble averaged functions do not have a superscript “A.” These
ensemble average correlation functions are useful in the analysis of stochastic ordinary and
partial differential equations. [64, 65]. From a strictly technical viewpoint, the spatial average
and the ensemble average are not exactly the same; however, they are closely enough connected
that it is reasonable to use one as a substitute for the other (Sec. 3.1 and Appendix 3).

In the following, the analysis of SAQD order via autocorrelation and correlation functions
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Fig. 6. Film heights and real-space correlation functions for Ge/Si as discussed in Sec. 4. All
units are in nm or nm2. (a-c) show respectively example h(x) , corresponding CA(∆x) and
calculated C(∆x) for the 2D isotropic surface with β = 0.208 and t/tc = 306. Fig. c uses
Eq. (48) because the corresponding formula for C(∆x) with finite Lcor is not available. (d-f)
show the same for the 2D anisotropic surface with β = 0.208 and t/tc = 430. Eq. (50) is used
for plot (f). (g-i) show the same for β = 0 and t/tc = 40.3. Eq. (50) is used for plot (i).

is discussed (Sec. 3.1). Then, the stochastic initial conditions are discussed (Sec. 3.2). Then,
the prediction of the Fourier transforms of the correlation functions is discussed (Sec. 3.3).
The real-space correlation functions are presented (Sec. 3.4). Finally, there are some notes
regarding generalizing the analysis method to any dispersion relation that has peaks (Sec. 3.5),
for example, peaks related to broken four-fold symmetry or growth on a miscut substrate.

3.1 Correlation functions and SAQD order
Auto-correlation functions are well-suited for investigating SAQD order. The autocorrelation
function is defined as

CA(∆x) =
1
A

∫
d2x′ h(∆x + x′)h(x′)∗. (25)

Its Fourier transform sometimes called the spectrum [65], spectrum function or power spectrum
is

CA
k =

1
(2π)d

∫
d2∆x e−ik·∆xCA(∆x) =

(2π)d

A
|hk|2 , (26)

where A is the projected area of the film in the x − y−plane. A periodic array of SAQDs
leads to a periodic auto-correlation function. A nearly periodic array leads to a range-limited
periodic auto-correlation function. The ensemble-mean of these autocorrelation functions can
be calculated, and it is a good predictor of a SAQD order.



3.1.1 Periodic array

Consider a perfectly periodic height fluctuation corresponding to a perfect lattice of SAQDs,

h(x) =
h0

N

N∑
n=1

exp [ikn · (x− xO)] (27)

plus higher order harmonics, where the dots have a height proportional to h0, N is the degree
of symmetry, probably, 4-fold or 6-fold, xO is a random origin offset.

kn = k0

(
cos
(

2π(n− 1)
N

)
i + sin

(
2π(n− 1)

N

)
j
)

,

In a linear analysis, the higher order harmonics do not come into play, so they are neglected
here. In reciprocal space,

hk =
h0

N

N∑
n=1

e−ikn·xOδd(k− kn)

plus higher order harmonics. The autocorrelation function is found by plugging Eq. (27) into
Eq. (25) and simplifying,

CA(∆x) =
(

h0

N

)2 N∑
n=1

exp [ikn ·∆x] (28)

plus higher order harmonic. In finding Eq. (28), the relation∫
d2x′ ei(km−kn)·x′ = Aδkmkn

= (2π)dδd(km − kn) (29)

has been used. δkk′ is the Kronecker delta, and δd(k − k′) is the Dirac delta. Eq. (29) will be
helpful whenever it is necessary to take an areal average or sum over Dirac delta functions. In
reciprocal space,

CA
k =

(2π)2

A

h2
0

N2

N∑
m,n=1

δ2(k− km)δ2(k− kn)

=
h2

0

N2

N∑
i=1

δ2(k− ki) (30)

plus higher order harmonics, where δd(k − kn) = (A/(2π)d)δkkn
(see Eq. (29)) has been

used to help with summation. Thus, the order of the SAQD lattice manifests itself as periodic
functions in real-space (Eq. (28)) and sharp peaks in reciprocal space (Eq. (30)).

3.1.2 Nearly periodic array

A nearly periodic arrays shows deviation from perfect order. This deviation shows itself as
a broadening of the peaks of the spectrum function, CA

k , and by range limited periodicity of
the real-space autocorrelation function, CA(∆x). These two measure of disorder are naturally
related.

The disorder in lateral dot size, ∆size, and spacing, ∆spacing, are related to each other and
to the broadening of the peaks in CA

k (Fig. 5a and c). Prior to ripening, the size and spatial
order should be related, as the volume of a dot should be proportional to the amount of nearby



material. If the SAQDs have nearly uniform size and spacing (peak-to-peak distance) L0, the
reciprocal space autocorrelation function will be tightly clustered around the wavenumber char-
acterizing the dot spacing k0 = 2π/L0. There are a number of such peaks depending on the
system symmetry (Fig. 5a and c), but consider just one. Since the order is not perfect, the peak
will have a finite width. Consequently, there will be a scatter in the dot size. Since L0 = 2π/k0,
the scatter in dot spacing (∆spacing) is related to the scatter in Fourier components (∆k). Taking
the derivative of the spacing-wavenumber relation and rearranging,

∆spacing

L0
≈ ∆k

k0
.

It is reasonable to expect that the fractional disorder in size (∆size /Lsize) is given by a similar
(if not exactly the same) number.

Another way to view spatial order (periodicity) is not by dot-dot distances, but the distance
over which the dot array can be considered periodic. This limited periodicity is evident in the
film height autocorrelation function (Eq. (25) and Figs. 6b, e and h). Consider two distant dots.
Their position will be completely uncorrelated, so it will be completely random as to whether
one position corresponds to a peak or a valley. Thus, for a large differences in position the
autocorrelation function tends to zero.

CA(∆xlarge) = 0

Similarly, the mean-square fluctuation of the film height can be large so that

CA(∆x = 0) � 0.

The distance over which the autocorrelation function, CA(∆x) decays to 0 is the correlation
length, Lcor. Thus, Lcor is a reasonable measure of spatial order.

The two measures of order ∆spacing and Lcor are intrinsically linked. The well known rule
of Fourier transforms states that the product of the real-space and reciprocal space widths must
be greater than or equal to unity. Thus, ∆kLcor ≥ 1, or ∆spacing ≥ 2πL2

0/Lcor. Similarly, one
can expect that ∆size ∼ L2

size/Lcor. Thus, assuming that dot size is governed by the amount
of nearby material, small dispersions in dot size are only possible if there is long correlation
length.

3.1.3 Ensemble correlation functions / ergodicity

SAQDs are seeded by random fluctuations. Consequently, each experiment or simulation must
be treated as just one possible realization, and the autocorrelation function will be different
for each realization. Thus, for analytic predictions, one must rely on ensemble averages. In
Ref. [33], it was assumed that the ensemble average correlation function was a good description
of a SAQD order, an assumption that was born out by numerical calculations. Now, this relation
is put on a more solid ground. In particular, it is found that the ensemble correlation functions
provide good estimates of the autocorrelation function and spectrum function produced by any
particular realization. First, it is shown that the mean value of the film-height fluctuation is zero.
Then the method to calculate the ensemble-averaged autocorrelation function and spectrum
function is presented. Additional mathematical details are presented in Appendix 3.

3.1.3.1 Mean fluctuation It is fairly straightforward to show that the ensemble mean film-
height fluctuation is zero. The governing dynamics (Eq. (12)) is invariant upon the substitution
h(x, t) → −h(x, t). Thus, assuming that one does not bias the initial conditions the mean
fluctuations must be zero for all time,

〈h(x, t)〉 = 〈−h(x, t)〉 = 0, and 〈hk(t)〉 = 0.



This is a common situation, and it is most appropriate to characterize the film height fluctuations
using the two-point correlation function (or simply “the correlation function”). [64]

3.1.3.2 Correlation function The autocorrelation function can be estimated by its ensemble
average. Furthermore, this ensemble average is equivalent to the correlation function that can be
easily calculated analytically. These relations are first discussed for the real-space correlation
functions and then their Fourier transforms. First, the statistical properties of the autocorrelation
function are discussed, and then the statistical properties of the spectrum function. The main
results are reported here, and details of derivations are reported in Appendix E.

First it is noted that the autocorrelation function averaged over all realizations is equal to
the ensemble correlation function.〈

CA(∆x)
〉

= C(∆x), where C(∆x) = 〈h(∆x)h(0)〉 , (31)

where 〈. . . 〉 indicate an ensemble average. Eq. (31) assumes that the model of film-growth is
translationally invariant, but one will find that most models of self-assembly are. To analyze
patterned or directed self-assembly will require some modification of these statistical measures.
This relationship is fortunate, in that it allows one to predict the “typical” autocorrelation func-
tion using analytic tools that apply only to ensemble averages.

Second, it is noted that as the area that is used to calculate the autocorrelation function
becomes large, the autocorrelation function tends towards it mean value,

CA(∆x) ≈ C(∆x) + O[A−1/2], (32)

where O[A−1/2] indicates statistical fluctuations about the mean value that become smaller and
smaller as the area in an experiment or the simulation area in a numerical experiment becomes
larger. These fluctuations or noise die out as A1/2. For example, the autocorrelation functions
in Figs. 6e and h are very close to the ensemble average autocorrelation functions (Figs. 6f
and h) but have random fluctuations that are most visible far from the origin. This property, that
averaging over a parameter such as position is equivalent to averaging over all realizations, is
known as ergodicity. Individual realizations are tightly distributed about a “typical” behavior.
This tight distribution lends credibility to the notion that one can have representative experi-
ments or simulations. Unfortunately, the “demonstration” of Eq. (32) in Appendix E is not as
general as one might like. Rigorously, it applies when the Fourier components of film height
(hk) are independent and normally distributed; however, it is reasonable to conjecture that a
relationship like Eq. (32) holds whenever the statistical distribution of film heights is suitably
bounded as the boundedness of CA

k plays an important role in the derivations.
In reciprocal space, one finds that the ensemble-mean spectrum function is〈

CA
k

〉
= Ck, (33)

where Ck is defined as the prefactor appearing in the reciprocal-space two-point correlation
function.

Ckk = 〈hkh∗k〉 = Ckδd(k− k′) = Ck
A

(2π)d
δkk′ , (34)

where Eq. (29) has been used. This form for the two-point correlation function in reciprocal
space occurs if and only if the system is translationally invariant. Eq. (33) is valuable because
one can solve for Ck analytically in the linear case or using various analytic approximations in
the non-linear case. Unlike the autocorrelation function, the spectrum function fluctuates greatly
about its mean. In fact, the fluctuations are about 100% (Appendix E.2). These large fluctua-
tions result in the commonly observed speckle pattern for the spectrum function CA

k (Figs. 5a
and c). Contrast this pattern with ensemble-mean spectrum function Ck shown in Figs. 5b and d.



These speckles can be removed by a smoothing operation, and a relation similar to Eq. (32) re-
sults (Appendix E.2.2). Finally, it should be noted that just as CA

k is the Fourier transform of
CA(∆x), Ck is the Fourier transform of C(∆x) (Appendix E.1).

3.2 Stochastic initial conditions
To model or simulate the formation of SAQDs, it is absolutely essential to include some sort
of stochastic effect. An initially flat film h(x, 0) = 0 is in unstable equilibrium. Thus, to seed
the formation of quantum dots, it is necessary to perturb the flat surface. The simplest method
to do this is to use stochastic initial conditions with deterministic evolution. One can tenuously
suppose that white noise initial conditions do not “bias” the ultimate evolution of the film. [66]
Thus, the initial conditions are taken from an ensemble with zero mean,

〈h(x, 0)〉 = 0. (35)

and a two-point spatial correlation function,

C(x,x′, 0) = 〈h(x, 0)h(x′, 0)∗〉 = ∆2δd (x− x′) , (36)

where the brackets 〈. . . 〉 indicate an ensemble average, ∆ is the noise amplitude, and δd(x)
is the d−dimensional Dirac delta function. White noise conditions have an infinite amplitude
which is not physical. Thus, a minimum modification can be made to “cut off” the infinite
fluctuations.

C(x,x′, 0) =
∆2

(2πb2
0)d/2

exp

(
− (x− x′)2

2b2
0

)
(37)

In the limit b0 → 0, this correlation function reverts to the white noise correlation function.
C(x,x′, 0) depends only on the difference between x and x′; thus,

C(∆x, 0) = C(∆x,0, 0) =
∆2

(2πb2
0)d/2

exp

(
− (∆x)2

2b2
0

)

In reciprocal space,

Ckk′(0) = 〈hk(0)h∗k′(0)〉

= (2π)−2d

∫
ddx

∫
ddx′ e(−ik·x+ik′·x′)C(x,x′, 0)

=
∆2

(2π)d
e−

1
2 b20k2

δd(k− k′)

Letting b0 → 0, the white noise reciprocal space correlation function is obtained. The initial
spectrum function is the coefficient multiplying the Dirac delta function,

Ck(0) =
∆2

(2π)d
e−

1
2 b20k2

.

The atomic-scale has a small and short-lived influence on the final film morphology (Ap-
pendix F), but the cutoff procedure is useful for choosing a reasonable value of ∆2. It seems
reasonable to choose ∆2 so that the initial r.m.s. fluctuation

√
C(0, 0) = 〈h(0, 0)h(0, 0)∗〉1/2is

one monolayer (1 ML). Also, choosing b0 = 1 ML as the atomic scale cutoff,

∆2 = (2π)d/2(1 ML)2+d, (38)

where the natural unit 1 ML is, of course, material dependent.



Using stochastic initial conditions, one can integrate individual initial conditions to obtain
representative samples and then average over many realizations, the Monte Carlo approach, or
one can calculate analytically, the statistical measures of the ensemble. The ensemble statistical
measures are strongly related to the statistical measures of order for an individual realization,
so the second approach is opted for here. Thus, the predicted SAQD order is ultimately stated
in terms of ensemble correlation functions.

3.3 Reciprocal space correlation functions
The reciprocal space correlation function, Ckk′ , and spectrum function, Ck, are calculated for
the 1D and 2D isotropic case and then for the 2D anisotropic case. Generally Ck includes the
length scales introduced in Sec. 2.1.3 as well as the atomic scale cutoff b0.

Ckk′ = 〈hk(t)h∗k′(t)〉 = e(σk+σk′ )t 〈hk(0)hk′(0)∗〉

=
∆2

(2π)2
e(σk+σk′ )t− 1

2 b20k2
δ2(k− k′). (39)

Without much error, b0 can be neglected in the exponential (Appendix F). Using Eq. (34), the
spectrum function is then identified as

Ck =
∆2

(2π)d
e2σkt. (40)

Ck is now calculated for each model: 1D isotropic, 2D isotropic and 2D anisotropic.

3.3.1 One-dimensional

The one dimensional surface is the simplest, so it is treated first. The spectrum function is
simply

Ck =
∆2

2π
e2σ0t− 1

2 (2σ2t)(k−k0)
2
.

Ck has a peak at k = ±k0i. One can easily read off the correlation length as

Lcor =
√

2σ2t = k−1
c

√
2(3α0 − 4β)(t/tc). (41)

so that

Ck =
∆2

2π
e2σ0t− 1

2 L2
cor(k−k0)

2
.

This approximation is valid when k0Lcor � 1. In terms of kx,

Ck =
∆2

2π
e2σ0t

(
e−

1
2 L2

cor(kx−k0)
2
+ e−

1
2 L2

cor(kx+k0)
2
)

3.3.2 2D isotropic

The 2D isotropic case is very similar;

Ck =
∆2

(2π)2
e2σ0t− 1

2 L2
cor(k−k0)

2
, (42)

where Lcor is the same as in Eq. (41). It has maximum that forms a ring in the k−plane as
graphed in Fig. 5b.
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Fig. 7. 1D isotropic surface in real space for Ge/Si as discussed in Sec. 4. (a) Example of h(x)
plotted over a length of 8Lcor. (b) corresponding real space correlation functions plotted for
range ±4Lcor. Filled plot is an example of CA(∆x). Solid line is C(∆x) (Eq. (46)).

3.3.3 Anisotropic

The anisotropic spectrum function is

Ck =
∆2

(2π)2
e2σ0t

4∑
n=1

e−
1
2 L2

‖(k‖−k0)2− 1
2 L2

⊥k2
⊥ , (43)

where

L‖ =
√

2σ‖t = k−1
c

√
(6α0 − 8β)(t/tc), (44)

L⊥ =
√

2σ⊥t = k−1
c

√
16εAα0(t/tc), (45)

k‖ = cos[π(n−1)/2]kx+sin[π(n−1)/2]ky , and k⊥ = − sin[π(n−1)/2]kx+cos[π(n−1)/2]ky

and it is graphed in Fig. 5d. This approximation is valid when k0L‖ � 1 and k0L⊥ � 1.
Loosely speaking, one can argue that the isotropic case is similar to letting εA → 0 in

Eq. (45) so that the perpendicular correlation length is always zero regardless of time. A more
conservative approach would be to argue that L⊥ ≈ 2π/k0 for the isotropic model via inspec-
tion of Figs. 5a and b. Even still, the more conservative result guarantees that the perpendicular
correlation length will always be the same as the dot spacing; thus, it will always limit SAQD
order to the first nearest neighbor at best.

3.4 Real space correlation functions
The real space correlation functions C(∆x) are now calculated for the 1D and 2D isotropic
cases and the 2D elastically anisotropic case.

3.4.1 One-dimensional

In one dimension,

C(∆x) =
∫ ∞

−∞
dkx eikx∆xCk

=
∆2

√
2π

1
Lcor

e2σ0t− 1
2∆x2/L2

cor2 cos (k0x) . (46)

Thus, C(∆x) has a damped periodicity indicating that it is imperfectly periodic (Fig. 7).



3.4.2 2D isotropic

In two dimensions with elastic isotropy,

C(∆x) =
∫

d2k eik·∆xCk

=
∆2

(2π)2
e2σ0t

∫ 2π

0

dθk

∫ ∞

0

dk kei(k∆x cos(θk−θ∆x)e−
1
2 L2

cor(k−k0)
2
.

Performing the angular integration first,

C(∆x) =
∆2

2π
e2σ0t

∫ ∞

0

dk kJ0(k∆x)e−
1
2 L2

cor(k−k0)
2
,

where J0 is the zeroth Bessel function. In general, this integral is best performed numerically;
however, it can be solved in two important cases: ∆x → 0 and Lcor → ∞ (corresponding to
long times). In the first case,

C(∆x = 0) =
∆2

2π
e2σ0t

∫ ∞

0

dk ke−
1
2 L2

cor(k−k0)
2
.

Under the same conditions that Eq. (42) is valid (k0Lcor � 1), the lower limit of the integral
can be approximated as −∞ so that

C(∆x = 0) =
∆2k0√
2πLcor

e2σ0t. (47)

This function gives the mean square surface height fluctuation. In the second case where Lcor →
∞, e−

1
2 L2

cor(k−k0)
2 → (2π)1/2L−1

cor δ(k − k0), so that

C(∆x) =
∆2k0√
2πLcor

e2σ0tJ0 (k0∆x) . (48)

This correlation function is the most ordered case for a 2D isotropic surface. It is graphed in
Fig. 6c.

3.4.3 Anisotropic

To find the real-space correlation function for the elastically anisotropic case, it is best to find
the contribution from each peak and then sum so that

C(∆x) =
∆2

(2π)2
e2σ0t

4∑
n=1

Cn(∆x) (49)

where
Cn(∆x) =

∫
d2k eik·∆xe−

1
2 L2

‖(k‖−k0)2− 1
2 L2

⊥k2
⊥ .

∆x can be decomposed into the directions parallel and perpendicular to kn, so that ∆x‖ =
cos(π(n− 1)/2)∆x + sin(π(n− 1)/2)∆y, and ∆x⊥ = − sin(π(n− 1)/2)∆x + cos(π(n−
1)/2)∆y. Thus,

Cn(∆x) =
(∫

dk‖ eik‖∆x‖− 1
2 L2

‖(k‖−k0)2
)(∫

dk⊥ eik⊥∆x⊥− 1
2 L2

⊥k2
⊥

)
=

2π

L‖L⊥
e−

1
2 (∆x2

‖/L2
‖+∆x2

⊥/L2
⊥)eik0x‖ .



Plugging into Eq. (49),

C(∆x) =
∆2

πL‖L⊥
e2σ0t

[
e−

1
2 (∆x2/L2

‖+∆y2/L2
⊥) cos(k0∆x) + e−

1
2 (∆x2/L2

⊥+∆y2/L2
‖) cos(k0∆y)

]
.

(50)

3.5 Generalizability
The dynamics and analysis used here were for a specific model, but the general procedure for
analyzing the order resulting from a linearized model should hold for any model with well-
separated peaks in the dispersion relation, σk. The procedure to follow is:

1. Generate the dispersion relation, σk as some function of k.

2. Find the peaks in the dispersion relation, kn, (n = 1 . . . N )

3. Expand about the peaks to generate the peak values, σn, and local Hessian matrix,(
H̃n

)
ij

=
∂2

∂ki∂kj
σk

∣∣∣∣
k=kn

.

The spectrum function is then approximately

Ck(t) ≈ ∆2

(2π)2

N∑
n=1

e2σnt exp
[
t (k− kn) · H̃n · (k− kn)

]
. (51)

4. Find the Eigenvalues of the local Hessian matrix, (Hn)I and (Hn)II . They should be
negative if there is a peak at kn.

5. Use the eigenvalues to determine the correlation lengths, (Ln)I =
√

2 |(Hn)I | t and
(Ln)II =

√
2 |(Hn)II | t. The real-space correlation function is

C(∆x, t) ≈ ∆2

(2π)

N∑
n=1

1
4t
√

(Hn)I (Hn)II

e2σnt exp

(
∆x · H̃−1

n ·∆x
4t

)
eikn·∆x.

(52)

The “goodness” of these approximate forms requires that (Ln)−1
I and (Ln)−1

II be much less
than the spacing between peaks in the correlation function so that the gaussians do not overlap
greatly. A reasonable test for this no-overlap condition is ‖kn‖ (Ln)I � 1 and ‖kn‖ (Ln)II �
1, assuming that the peaks are not large in number or very closely spaced.

4 ORDER PREDICTIONS
The real-space correlation function formulas (Eqs. (46), (47), and (50)) and correlation length
formulas (Eqs. (41), (44) and (45)) can now be used to estimate the order of SAQDs. Ge on Si
is chosen for this example because this system has received the most attention from theoretical
work [27,34–36,40,47,48,50,67, and others], and it is the simplest since it involves the diffusion
of a single species. The procedure described below tries to predict the amount of order when
an initial atomic-scale fluctuation becomes “large”. “Large” is taken to be greater than atomic-
scale. Beyond this point, one would expect non-linear terms to become important. An example
is presented for Ge on Si at 600K to compare and contrast the 2D anisotropic results with the 1D
isotropic and 2D isotropic results. The predictions are also compared with a linear numerical
calculation on a discrete reciprocal-space grid to test the approximations made and to illustrate
the relation between the surface profile (h(x)), the example autocorrelation functions (CA(x)
and CA

k ) and the ensemble correlation functions (C(∆x) and Ck). Figs. 5, 6 and 7 show these
results. Finally, the relation between average film height and order is investigated.



4.1 Ge at 600K
The formulations for the three discussed cases are implemented for Ge/Si at 600K. The cor-
relation lengths are estimated for the end of the linear regime where fluctuations become large
(greater than atomic scale). First, appropriate physical constants are used to give the corre-
sponding correlation length and correlation functions vs. time. These include an initial average
film height H̄ and a white noise amplitude ∆ (Eq. (38)). These initial conditions approximate
a film at the beginning of an anneal that immediately follows a rapid deposition. The time
tlarge is found by solving for the time where the mean-square fluctuations are atomic scale,〈
h(x, t)2

〉
= C(∆x = 0) = 1 ML2. At this point, the correlation lengths are calculated.

Physical constants for the 2D anisotropic calculation are taken as follows. The elastic con-
stants for Ge at 600 K are c11 = 1.199 × 1012 dyn/cm2, c12 = 4.01 × 1011 dyn/cm2(from
cS = 3.991 × 1011 dyn/cm2), c44 = 6.73 × 1011 dyn/cm2. [60] Using aGe = 0.5658nm and
aSi = 0.5431nm, it is found that εm = 0.0418. Using the procedure from (Appendix C),
M = 1.332× 1012dyn/cm2. E0◦ = 4.96× 109erg/cm3, and E45◦ = 4.35× 109erg/cm3 , giving
εA = 0.1236. The atomic volume is Ω = 2.27 × 10−23 cm3. The estimated surface energy
density is γ = 1927 erg/cm2. The wetting potential is estimated by picking a plausible criti-
cal surface height, Hc ≈ 4 ML = 1.132 nm and setting W (H) = E2

0◦H3
c/(8γH) = 2.315 ×

10−6/H erg/cm2. The resulting characteristic wave number is kc = 0.257 nm−1. The initial
film height is taken to be H̄ = Hc +0.25 ML = 1.203 nm and then allowed to evolve naturally.
Thus, β = 0.208, α0 = 0.5658, k0 = 0.1456 nm−1, σ0 = 0.1192/tc, σ‖ = 0.864/(k2

c tc),
σ⊥ = 0.559/(k2

c tc), L‖ = 0.744k−1
0 (t/tc)1/2, and L⊥ = 0.599k−1

0 (t/tc)1/2. The unspecified
diffusivity has been absorbed into the characteristic time tc. From Eq. (38), ∆2 = 0.0403 nm4,
and Eq. (50) gives

C(0) =
(
1.223× 10−3tc/t

)
e0.02385t/tc nm2.

The initial infinitely rough surface undergoes a smoothing described by the tc/t factor. Then
the surface roughens due to the exponential. The initial divergent roughness is an artifact of the
non-physical white noise with the atomic scale cutoff b0 neglected (Appendix F). The time for
the fluctuations to become “large” again are found by setting

C(0) = h2
large (53)

where hlarge = 1 ML = 0.283 nm. The solutions are t1 = 0.01527tc or t2 = 430tc. The
first solution is discarded since it is due to the non-physical white noise. At tlarge = t2, L‖ =
105.8 nm, and L⊥ = 85.2 nm. Taking L⊥ as more limiting, the correlation spans about n =
k0L⊥/π = 3.95 islands across. The corresponding reciprocal space (Eq. (43)) and real-space
correlation function (Eq. (50)) are shown in Figs. 5d and 6f respectively.

A corresponding numerical experiment is performed. A periodic surface of size l = 96(2π/k0)
is used. Random initial conditions consistent with Eq. (38) are used for k−space points on a
square grid bounded by kx, ky = ±2k0. The relation between discrete and continuous Fourier
components is used, (hk)discrete = [(2π)d/A]hk. Eqs. (13) and (14) are used without any ad-
ditional approximation to find hk at time t = tlarge. The resulting CA

k , a portion of the height
profile h(x) and CA(∆x) are plotted in Figs. 5c, 6d and 6f respectively.

Similar calculations can be performed for the one-dimensional and two-dimensional elas-
tically isotropic cases. Isotropic values used previously [33, 67] are about E = 1.361 ×
1012 dyn/cm2 and ν = 0.198 giving M = E/(1 − ν) = 1.697 × 1012 dyn/cm2 and E =
2M(1+ν) = 7.10×109 erg/cm3. Using the same critical surface height,Hc = 4 ML, W (H) =
4.74 × 10−6/H erg/cm2. The resulting characteristic wave number is kc = 0.368 nm−1. If
the film is grown to H̄ = Hc + 0.25 ML = 1.203 nm and then allowed to evolve naturally,
β = 0.208; thus, α0 = 0.5658, k0 = 0.208 nm−1, σ0 = 0.1192/tc, σ2 = 0.864/(k2

c tc), and
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Fig. 8. tlarge and L⊥ vs. β for Si/Ge using the 2D anisotropic model as described in Sec. 4. Units
are normalize to characteristic time tc and predicted number of correlated dots (n = k0L⊥/π).

Lcor = 0.744k−1
0 (t/tc)1/2. In one dimension, Eq. (46) is used to find the mean square height

fluctuation. Using Eq. (38) with d = 1, ∆2 = 0.0568 nm3, and

C(0, t) = 0.01271(t/tc)−1/2e0.0238t/tc .

Setting C(0, t) = (1 ML)2 = 0.0801 nm2, t1 = 0.0252tc, and t2 = 186.9tc. At t2, Lcor =
48.8 nm, and n = k0Lcor/π = 3.24, so about 3 dots in a row should be well correlated.
The corresponding numerical calculation of size l = 96(2π/k0) is performed. A portion of
h(x), CA(∆x) and C(∆x) are shown in Fig. 7. In two dimensions, Eq. (47) is used to find〈
h(x, t)2

〉
,

C(0, t) = 9.40× 10−4(t/tc)−1/2e0.0238t/tc .

Setting C(0, t) = 0.0801 nm2, t1 = 1.376 × 10−4tc, and t2 = 306tc. At t2, Lcor = 62.4 nm,
and n = k0Lcor/π = 4.14, and correlation is expected to extend about 4 dots. However, it
should be noted that this correlation is not lattice-like. Corresponding numerical results and
ensemble correlation functions are shown in Figs. 5 and 6a-c.

4.2 General case of β

In Ref. [33] it was suggested that allowing the film to evolve with β close to the stability thresh-
old could enhance the SAQD correlation. It is interesting to note what happens for different
values of β. Similar analytic and numerical calculations are performed for the large film-height
limit, β = 0, for the 2D anisotropic Ge/Si surface. For β = 0, tlarge = 40.3tc, L⊥ = 30.0 nm,
and n = k0L⊥/π = 1.84, so one to two dots in a row are expected to be well correlated.
h(x) and real-space correlation functions are shown in Figs. 6g-i. The range of order is sig-
nificantly less than for the case β = 0.208 (Sec. 4.1). For Si/Ge at 600K, the 2D anisotropic
predictions for tlarge and L⊥ are shown in Fig. 8. In general, the closer β is to the critical value
0.25, the longer the correlation length. One can manipulate equation (53) to find that tlarge/tc
varies approximately but not exactly as (β − 1/4)−1 × ln[h2

large
√

εA/(∆2k2
c )]. Consequently,

L⊥ ∼ (β− 1/4)−1/2. Furthermore, the appearance of hlarge and ∆2 inside the logarithm shows
that the final order estimates are not overly sensitive to the guesses for ∆2 and h2

large. The diver-
gence of L⊥ with β−1/4 is initially encouraging, but it is clear that for the parameters used for
Ge/Si, subatomic control of the film height is needed to yield significantly enhanced long range



correlations. Also as one approaches this threshold, one can probably expect thermal activa-
tion to nucleate subcritical SAQDs whose effect on supercritically formed SAQDs is uncertain.
There should be some interesting phenomena at the the H → Hc.

5 DISCUSSION AND CONCLUSIONS
The order of epitaxial self-assembled quantum dots during initial stages of growth has been
studied using a common model of surface diffusion with stochastic initial conditions. It has
been shown that correlation functions of small surface height fluctuations can be predicted an-
alytically using corresponding ensemble average correlation functions. These correlation func-
tions are characterized by correlation lengths that can be predicted by analytic formulas given
certain reasonable assumptions about the diffusion potential and the height and lateral scale of
initial atomic scale random fluctuations. Thus, the linear model of film surface height evolution
via surface diffusion has enabled analytic predictions of epitaxial SAQD order that are valid for
small film height fluctuations. To what extent the initial degree of order persists into later stages
of growth remains to be studied, but the order of initial stages should certainly have a strong in-
fluence on final outcomes. Furthermore, the linear analysis should provide insight into the less
tractable non-linear behavior. These predictions of SAQD order have been used to investigate
the role of crystal anisotropy and initial film height.

Crystal anisotropy has been shown to play an important role in enhancing SAQD order
as observed in previous numerical simulations continuum and atomistic numerical simula-
tions. [46, 52–54] If a four-fold symmetry is assumed for the governing dynamics, the effect
of crystal anisotropy to linear order is felt through elastic anisotropy alone. It is shown that
elastic anisotropy is required to produce a lattice-like structure of SAQDs. The enhanced spa-
tial order should in turn lead to enhanced size order, a consequence that must be confirmed with
non-linear studies, but appears to be true based on the present available literature.

The role of initial film height has been shown to greatly influence order. Growth near the
critical film height for dot formation can enhance order. This order enhancement comes from
increasing the duration of the linear small-fluctuation stage of growth. In fact, the predicted
correlation lengths diverge when the initial film height approaches the critical film height from
above. Achieving large correlation lengths in this manor is of course practically limited by
ability to control film heights to subatomic accuracy. Additionally, one should be careful when
interpreting the continuum model in such a context, as the effect of atomic discreteness might
be greater at the transition film height. Finally, it is likely that additional randomizing effects
of thermal activation will effectively cut off this divergence when the critical film height is
approached from below during deposition.

Finally, the presented method may be useful as a first step in the analysis of methods to
enhance SAQD order. It is reasonable to suppose that under some circumstances initial growth
stages will be very important while for others they will not. For example, prior work on vertical
stacking appears to confirm the presented ordering mechanism. [53] Vertical stacking not only
achieves vertical correlation of dots, but each layer is more ordered horizontally than the one
below. Additionally, a “growth window” was found, whereby to achieve enhanced order, the
evolution of each layer be terminated before ripening begins. The reported simulation [53] sup-
ports the following scenario for SAQD order development. Order is enhanced during the small
fluctuation stage as described here. Once the fluctuations are sufficiently large, the seeded dots
evolve towards their equilibrium shapes. Finally, the dots begin to ripen and order diminishes.
Order is transfered via strain to the next layer so that the next layer gets a head start on its initial
ordering. Thus, the multiple layers of dots effectively draws out the linear growth stage. It may
be possible to modify the present model to predict the correlation length of each SAQD layer.



APPENDIX A: DIFFUSION POTENTIAL
The diffusion potential is calculated in terms of the film height H that is a function of the in-
plane coordinates x = xi+yj. The elastic and surface energy portions of the diffusion potential
can be found in Ref. [24].

µelast(x) = Ωω(x), and µsurf. = −Ωγκ(x),

where Ω is the atomic volume, ω(x) is the elastic energy density at the film surface, γ is the
surface energy density, and κ is the total surface curvature. However, other calculations need to
be included:

1. µwet for the two wetting potential cases, Eq. (3) and (5),

2. and µsurf. and µwet when the surface energy density γ and wetting energy density W also
depend on surface orientation.

Before these case are addressed, a general form for the diffusion potential is justified.

A.1 General form µ = ΩδF/δH(x)

The diffusion potential, µ(x), is the change in free energy, F , when a particle is added at a
position, x. Note that µ(x) and F are relative energies. They can be used to compare the
binding energy of one site on the surface with that of another site, but should not be interpreted
as an absolute binding energy or total formation energy of the surface. If a particle has a volume
Ω, then the diffusion potential at x is related to the variation of free energy with volume,

δF = Ω−1

∫
ddxµ(x)δV (x), (54)

where δV (x) is the volume variation at x. Calculating δV (x), V =
∫

ddxH(x).Therefore,
δV (x) = δH(x). Substituting into δF (Eq. (54)), δF = Ω−1

∫
ddxµ(x)δH(x) or µ(x) =

ΩδF/δH(x).

A.2 Simple model
Starting from Eq. (2), µ(x) is found by taking the variational derivative,

µelast.(x) = Ω
δ

δH(x)

∫
volume

ddxdz ω[H](x, z) = Ωω (x)

where the “[H]” indicates that the elastic energy, ω, is a nonlocal functional of the film height
H, and ω(x) = ω[H] (x,H(x)), the elastic energy density evaluated above lateral position x
at the free surface (z = H(x)). See Ref. [24] for details of the derivation. The surface energy
diffusion potential is

µsurf.(x,t) = Ω
δ

δH(x)

∫
ddx

[
1 + (∇H(x))2

]1/2
γ

= −Ω∇ ·
[
1 + (∇H(x))2

]1/2
γ = −Ωγκ(x).

The wetting energy diffusion potential is

µwet(x) = Ω
δ

δH(x)

∫
ddxW (H(x))

= ΩW ′(H(x))

Putting these three terms together, one obtains Eq. (3)



A.3 General model
Consider the general form for the combined surface energy and wetting potential,

Fsw =
∫

ddxFsw(H(x),∇H(x))

as in Eq. (4) so that the free energy is an integral over the x−plane of an energy density that
depends on H(x) and ∇H(x) locally. The corresponding diffusion potential is

µ(x) = Ω
δFsw

δH(x)
= Ω

[
F (10)

sw (H(x),∇H(x))−∇ · F(10)
sw (H(x),∇H(x))

]
APPENDIX B: LINEARIZED DIFFUSION POTENTIAL AND ANISOTROPY
The linearized diffusion potential µlin, k is found by finding µ(x) to first order in height fluctu-
ations (h), to get µlin(x) and then taking the Fourier transform to get µlin,k. The linearization
of the simple isotropic diffusion potential corresponding to Eqs. (2) and (3) was discussed in
Sec. 2.1.1.1. Here, the more general diffusion potential corresponding to Eqs (4) and (5) is
linearized and then applied to the anisotropic simple model and the anisotropic general model.
Only the surface and wetting parts of the diffusion potential are discussed in this appendix. See
ref. [24], Sec. 2.2.1.1 and Appendix C for discussion of µelast..

B.1 Linearizing the simple model
Consider a wetting potential and diffusion potential that both depend on the film height gradient
∇H, γ → γ(∇H) and W (H) → W (H,∇H). Starting from Eq. (6) and expanding to second
order in the film height fluctuation using H(x) = H̄+ h(x) (Eq. (7)),[
1 + (∇H)2

]1/2

γ(∇H) =
(

1 +
1
2

(∇h)2 + . . .

)(
γ + γ′ ·∇h + γ̃′′ : ∇h∇h + . . .

)
= γ + γ′ ·∇h +

1
2
γ (∇h)2 +

1
2
γ̃′′ : ∇h∇h + O[h3]

where γ is γ(0), and the primes indicate the derivatives with respect to the surface height
gradient.

γ′ = ∂∇Hγ(∇H)|∇H=0 , and γ̃′′ = ∂∇H∂∇Hγ(∇H)|∇H=0 .

Taking the derivative with respect to ∇H results in a tensor of rank equal to the order of the
derivative because ∇H is a vector (tank 1 tensor). Taking the variational derivative, µsurf.(x) =
ΩδFsurf./δh(x),

µsurf., lin(x) = Ω
[
−γ∇2h(x)− γ̃′′ : ∇∇h(x)

]
The term with γ′ vanishes because it is the divergence of a constant (∇ ·γ′). Taking the inverse
Fourier transform,

µsurf., lin,k = Ω
(
γk2 + k · γ̃′′ · k

)
hk. (55)

The first term is isotropic. The second term is parameterized by a rank 2 symmetric tensor.
Going through the same process, one finds essentially the same result for an orientation

dependent wetting energy. The step details are so close to the details for linearizing the more
general form, Fsw(H,∇H), they are deferred to (Appendix B.2). One finds that

µwet,lin,k = Ω
(
W (20) + k · W̃(02) · k

)
. (56)

where W (mn) = ∂m
H∂n

∇HW (H,∇H)|H=H̄,∇H=0 is the mth and nth derivative of the wetting
energy density with respect toH and ∇H evaluated for a perfectly flat film of height H̄. W (mn)

is a tensor of rank n.



B.1.1 Isotropic case

In the isotropic case, γ̃′′ → γ′′Ĩ, where Ĩ is the identity operator, and γ′′ is a scalar. Similarly,
W̃(02) → W (02)Ĩ. One thus gets for the combined surface and wetting parts of the diffusion
potential,

µsw,lin,k = Ω
[(
−γ + γ′′ + W (02)

)
k2 + W (20)

]
hk.

Thus, in the isotropic case, the linear order effect of introducing a surface orientation to either
the surface energy or the wetting potential is simply to change the apparent surface energy
density by γ → γ − γ′′ −W (02).

B.1.2 Anisotropic case

The surface and wetting parts of the diffusion potential (Eqs. (55) and (56)) can admit only a
limited anisotropy. They both contain rank 2 symmetric tensors, γ̃′′ and W̃(02) in the x−plane.
For a two-dimensional surface, this means that they can either have two-fold-symmetric (rota-
tions by 180◦) anisotropy or none at all. Thus, for the case considered in Sec. 2.2.1.2, four-
fold-symmetric anisotropy , the surface and wetting parts of the diffusion potential must be
completely isotropic. As discussed in Sec. 2.2.1.2, the (100) surface of zinc-blend structures,
such as the mentioned Ge, Si, InAs and GaAs present a rather complicated situation. For sim-
plicity, it is assumed here that the surface and wetting energies are at least four-fold symmetric.
Consequently, they are completely isotropic.

Finally, it should be noted that if Fsw depends on higher order derivatives, then the discus-
sion is greatly complicated and a larger class of anisotropic terms is admissible. For example,
when Fsw → Fsw(H,∇H,∇∇H,∇∇∇H, . . . ) is expanded about H(x) = H̄ to quadratic
order in h, it would contains tensors of rank 6 and maybe even higher.

B.2 Linearizing the general model
The elastic part of the linearized diffusion potential was discussed in Sec. 2.2.1.1 and Ap-
pendix C. Eq. (56) can be found by using all of the following steps with the substitution
Fsw → W . The surface-wetting part of the diffusion potential µ(x) is found by expanding
Fsw to second order in the film-height fluctuation, h, and then taking the variational derivative.
Expanding Fsw about h = 0 and ∇h = 0,

Fsw(H̄+ h, ∇h) = F (00)
sw + F (10)

sw h + F(01)
sw ·∇h + hF(11)

sw ·∇h . . .

· · ·+ 1
2
F (20)

sw h2 +
1
2
F̃(02)

sw : ∇h∇h + O[h3].

Note that in this expansion, all the F
(mn)
sw terms are constant with respect to h and depend

implicitly on the average film height, H̄. The first index indicates the mth derivative with respect
to H. The second index indicates the nth derivative with respect to ∇H. The derivatives are
evaluated for a perfectly flat surface of height H̄. Thus,

F (mn)
sw = ∂m

H∂n
∇HFsw (H,∇H)|H=H̄, ∇H=0 .

Since ∇H is a vector in the x−plane, F
(mn)
sw is a tensor of rank n. Taking the variational

derivative of Fsw =
∫

ddxFsw(H,∇H) and keeping terms to order h1,

δF
δh(x)

= F (10)
sw −∇ · F(01)

sw + F (20)
sw h−∇ ·

(
F̃(02)

sw ·∇h
)

.

Note that the F
(00)
sw term vanishes because it is constant, and the F(11)

sw term vanishes upon sim-
plification. Additionally, the F

(10)
sw can be neglected if one enforces the condition that the film-

height fluctuations do not add or subtract material from the surface, namely that
∫

ddx δh(x, t) =



0. Alternatively, one can discard it in anticipation of taking the gradient of the diffusion poten-
tial, since it is a constant. The term ∇ · F(01)

sw = 0 for the same reasons, or because F
(01)
sw is a

constant. Multiplying through by the atomic volume,

µlin(x) = Ω
[
F (20)

sw h− F̃(02)
sw : ∇∇h

]
. (57)

B.2.1 Isotropic case

In the isotropic case, F̃(02)
sw must be proportional to the identity so that F̃(02)

sw = F
(02)
sw Ĩ; thus,

µsw,lin(x) = Ω
[
F (20)

sw h(x)− F (02)
sw ∇2h(x)

]
.

Taking the inverse Fourier transform of this equation,

µsw,lin,k = Ω
[
F (20)

sw + F (02)
sw k2

]
hk.

This gives case b in Eq. (9).

B.2.2 Anisotropic case

If the surface is anisotropic, then F̃(02)
sw in Eq. (57) is a rank 2 symmetric tensor in the x−plane.

Thus, it can have two distinct eigenvalues, and automatically has 2-fold rotational symmetry
(rotations by 180◦). If any other symmetry is assumed such as 4-fold symmetry (rotations by
90◦), then F̃(02)

sw must be fully isotropic. Taking the inverse Fourier transform,

µsw,lin,k = Ω
[
F (20)

sw + k · F̃(02)
sw · k

]
hk.

In Eq. (23), case b, it is assumed that there is four-fold symmetry, resulting in a surface-wetting
part of the diffusion potential that is completely isotropic.

APPENDIX C: ELASTIC ANISOTROPY
In principal, the anisotropic elastic energy ωk is found in the same fashion as the isotropic
elastic energy. [24] The flat film, initially in a state of biaxial stress, is perturbed by a small
periodic surface fluctuation of amplitude h0. An appropriate elastic field is added to satisfy
the perturbed traction-free boundary condition at the free surface. Finally, the elastic energy
is evaluated at the free surface to first order in h0. To linear order, one may use the principal
of superposition, thus, the response to the periodic perturbation can be used to give ωk for
general surface perturbations. The equations themselves are cumbersome and best solved using
a numeric implementation, so an abstract procedure for calculating ωk is outlined here. Fig. 4
and Table 2 were generated using k = 1 but arbitrary θk.

Let the surface have a height variation

h(x) = h0e
ikx.

To first order in h0, the surface normal is

n(x) = −ikh0e
ikxi + k.

The elastic energy needs to be calculated to first order in h0. To find the elastic energy, it is
necessary to find the perturbing elastic field to first order in h0.



The initial unperturbed stress state is

σ̃m =

 σm 0 0
0 σm 0
0 0 0

 ,

where σm =
(
c11 + c12 − 2c2

12/c11

)
εm. Note that this stress state is isotropic in the x − y-

plane and thus independent of rotations about the vertical axis. Under this stress state, a flat
surface is traction-free. With the height perturbation, the traction is

tj = (n · σ̃m)j = −ikh0Mεmδj1e
ikx. (58)

Next to find the perturbing elastic fields. These are not isotropic in the x − y−plane, and
it is necessary to take into account the angle. First, the 3 × 3 × 3 × 3 elastic stiffness tensor
cijkl is constructed for the cube orientation from the compact 9 × 9 matrix cij . The tensor
representation aids in rotation. The stiffness tensor is then passively rotated in the x− y−plane
by an angel θk,

cijkl(θk) =
3∑

m,n,p,q=1

R(θk)imR(θk)jnR(θk)kpR(θk)lqcmnpq

where

R(θk) =

 cos(θk) sin(θk) 0
− sin(θk) cos(θk) 0

0 0 1

 .

This passive rotation of cijkl is equivalent to actively rotating the wave vector k = ki by θk.
The appropriate form for the perturbing displacement field is found. Assume a displacement

of the form
ui(x, y, z) = Uie

k(ix+κz),

where κ can have a complex value. The elastic equilibrium equations are

3∑
i,k,l=1

∂

∂xi
cijkl(θk)

∂

∂xk
ul = 0; j = 1 . . . 3.

(
3∑

l=1

Cjl(θk, κ)Ul

)
k2ek(ix+κz) = 0 (59)

where

Cjl(θk, κ) =
3∑

i,k=1

cijkl(θk)(iδi1 + δi3κ)(iδk1 + δk3κ).

Factoring out k2ek(ix+κz) in Eq. (59), the part in parenthesis must be identically zero.
To obtain a non-trivial solution, the determinant of Cjl(θk, κ) to zero. Six complex values

of κ are found. The values of κ with Re[κ] < 0 are discarded since the corresponding dis-
placements blow up as z → −∞. Each of the remaining values κ = κp with p = 1 . . . 3 is
substituted back into Cjl(θk, κ), and Eq. (59) is solved to find the corresponding eigenvectors,
Up

l . The total displacement is thus

ul(x, y, z) = iεmh0

3∑
p=1

ApU
p
l ek(ix+κpz),



where it is assumed that the perturbing elastic displacement field is proportional to h0and σm,
and the factor of i is put in for convenience. The coefficients Ap can be found from the traction-
free boundary condition at the free surface. The traction formula is

tj =
3∑

i,k,l=1

nicijkl(θk)
∂

∂xk
ul(x, y, z)

= ikεmh0

3∑
i,k,l,p=1

nicijkl(θk)ApU
p
l (iδk1 + κpδk3)ek(ix+κpz) (60)

The traction is already proportional to h0. Thus, all terms in the sum must be kept to zeroth
order in h0 so that

h(x) = 0, and n(x) = k.

Thus, plugging z = 0 to Eq. (60),

tj = ikεmh0

3∑
p=1

3∑
l=1

(ic3j1l(θk) + κpc3j3l(θk))ApU
p
l eikx. (61)

Since the total traction (Eqs. (58) and (61)) must be zero, the coefficients Ap are found from

KjpAp = Rj ,

where

Kjp =
3∑

l=1

(ic3j1l(θk) + κpc3j3l(θk))Up
l ,

and
Rj = Mδj1

for j = 1 . . . 3. It is worth noting that only for the symmetry directions, θk = 0◦ and θk = 45◦

is the strain purely plane-strain as it is for the elastically isotropic case.
The elastic energy at the film surface is found to order O(h0). If the stress and strain are

expanded to first order in h0, σ̃ = σ̃0 + σ̃1, and ε̃ = ε̃0 + ε̃1, then

U =
1
2
ε̃ : c̃ : ε̃ =

1
2
σ̃0 : ε0 + σ̃0 : ε̃1 + O(h2

0).

Thus,
U = U0 + Mεm ((ε1)11 + (ε1)22)

(ε1)11 =
∂u1

∂x
= −εmkh0

3∑
p=1

ApU
p
1 .

(ε1)22 = ∂u2/∂y = 0. Thus,
U = U0 − Eθk

kh0e
ikx

where

Eθk
= Mε2m

3∑
p=1

ApU
p
1

where Apand Up
1 are implicitly functions of θk. This procedure has been used to find the values

of E0◦ and E45◦ for Table. 2 and Sec. 4.



APPENDIX D: DIFFUSIONAL ANISOTROPY
In general, the surface diffusivity can depend on the film heightH(x) and the surface orientation
∇H(x) so that the surface current is

JS(x) = D̃(H(x),∇H(x)) ·∇Sµ(x)

where ∇S is the surface gradient, and D̃ is a rank 2 tensor in the two-dimensional space tangent
to the film surface at x. Linearizing the surface current about a flat surface,

JS(x) = D̃(H̄) ·∇µlin(x)

where the diffusivity must be evaluated for h = 0 and ∇h = 0, since µlin(x) is already propor-
tional to h(x). The linearized diffusivity is a symmetric rank 2 tensor in the x−plane. Thus, it is
similar to F̃sw discussed in Appendix B.2.2. It is automatically either two-fold symmetry (ro-
tations by 180◦) or it is completely isotropic. In Eq. (23), four-fold symmetry of the surface is
assumed. Thus, the diffusivity must be completely isotropic; D̃ → D, a scalar. Section 2.2.1.2
and Appendices B.1.2 and B.2.2 contain discussions of the symmetry properties of the vari-
ous rank 2 tensors that appear in the linear evolution equations. A limited case of diffusional
anisotropy has been modeled via kinetic Monte Carlo technique. [63]

APPENDIX E: CORRELATION FUNCTIONS
E.1 Mean values
Equations (31) and (33) are central to the presented analysis. Here, they are derived. The two-
point correlation functions for a stochastic system are introduced. Then, the average of the
autocorrelation function is taken and expressed in terms of the two-point correlation functions.
Finally, this average is simplified using the translational invariance of the system (governing
equations and ensemble of initial conditions).

The two-point real-space space correlation function is

C(x,x′) = 〈h(x)h(x′)∗〉 ,

and the reciprocal space correlation function is

Ckk′ = 〈hkh∗k′〉 .

These are related by the double Fourier transform,

Ckk′ = 1
(2π)2d

∫
ddxddx′ e−ik·x+ik′·x′C(x,x′); (62)

C(x,x′) =
∫

ddkddk′ eik·x−ik′·x′Ckk′ . (63)

These ensemble correlation functions can be used to give the ensemble-mean autocorrela-
tion function and spectrum function. In real space,

〈
CA(∆x)

〉
=

1
A

∫
d2x′ 〈h(∆x + x′)h(x′)〉

=
1
A

∫
d2x′ C(∆x + x′,x′). (64)

〈
CA

k

〉
=

(2π)d

A
〈hkh∗k〉 =

(2π)d

A
Ckk. (65)



Fortunately, the translational invariance of the system simplifies these relations. Inspecting
the governing equations and invoking the translational invariance of the stochastic initial condi-
tions, the resulting ensemble and its statistical measures must also be translationally invariant.
Thus under the translation by x′,

C(∆x + x′,x′) = C(∆x,0) = C(∆x), (66)

so that the independent variable is reduced to just the difference vector ∆x = x − x′. This
relation can be used to simplify both the real and reciprocal space relations.

The real space relation simplifies as follows.Inserting Eq. (66) into Eq. (64),〈
CA(∆x)

〉
=

1
A

∫
d2x′ C(∆x,0) = C(∆x). (67)

The reciprocal space relation (Eq. (62)) simplifies to

Ckk′ = Ckδ2(k− k′) = Ck
A

(2π)d
δkk′ , (68)

where
Ck =

1
(2π)d

∫
d2∆x e−ik·∆xC(∆x).

One can see immediately from Eq. (67) that Ck is the Fourier transform of
〈
CA(∆x)

〉
=

C(∆x), or one can plug Eq. (68) into Eq. (65), to get
〈
CA

k

〉
= Ck.

E.2 Variance and convergence
The ergodic hypothesis is that an average with respect to a parameter such as position or time
tends towards an ensemble average. In this case,

CA
k ≈

〈
CA

k

〉
= Ck, (69)

and CA(∆x) ≈
〈
CA(∆x)

〉
= C(∆x).

when the surface area is very large. The ensemble average is a good substitute if the variance
about the average vanishes as the substrate area A becomes large. It is found that in reciprocal
space,

Var(CA
k ) =

〈(
CA

k

)2〉− 〈CA
k

〉2
= C2

k. (70)

Thus, the ergodic hypothesis does not hold for CA
k . In practice, CA

k is a speckled version of
Ck (Fig. 5) However, if one smooths CA

k by averaging over a small patch in reciprocal space of
size ksmooth = 1/∆s, so that

CA
k (∆s) =

(
∆2

s

2π

)d/2 ∫
ddk′ e−

1
2∆2

s(k′−k)2CA
k′ , (71)

then Var
(
CA

k (∆s)
)

diminishes as 1/A. For sufficiently large ∆s,〈
CA

k (∆s)
〉
≈ Ck, (72)

and

Var
(
CA

k (∆s)
)
≈ πd/2∆d

s

A
C2

k. (73)

Thus, the ergodic hypothesis (Eq. (69)) only holds for a smoothed version of CA
k .



In real space,

Var
(
CA(∆x)

)
=

〈(
CA(∆x)

)2〉− 〈CA(∆x)
〉2

=
(2π)d

A

∫
ddk

(
e2ik·∆xC2

k + C2
k

)
, (74)

where the integral is bounded (finite) provided that either t > 0 or the atomic scale cutoff
b0 > 0. Thus, the ergodic hypothesis holds for the real space autocorrelation function.

E.2.1 Eq. (70)

First,
〈
CA

k CA
k′

〉
is calculated.

〈
CA

k CA
k′
〉

=
(

(2π)d

A

)2

〈hkh∗khk′h
∗
k′〉 .

Assume that he distribution of hk is gaussian. Also, assume that h(x) is real so that hkh−k =
|hk|2. Then, 〈

hk1h
∗
k2

hk3h
∗
k4

〉
= Ck1Ck2δ

d(k1 − k4)δd(k2 − k3) . . .

. . . +Ck1Ck2δ
d(k1 + k3)δd(k2 + k4) . . .

. . . +Ck1Ck3δ
d(k1 − k2)δd(k3 − k4).

Thus,

〈
CA

k CA
k′
〉

=
(

(2π)d

A

)2 (
C2

k

[
δd(k− k′)

]2
. . .

. . . +C2
k

[
δd(k + k′)

]2
+ CkCk′

[
δd(0)

]2)
. (75)

= C2
k

(
δkk′ + δk(−k′)

)
+ CkCk′ , (76)

where Eq. (29) has been used liberally. Setting k = k′, results in Eq. (70).

E.2.2 Eq. (73)

Now consider CA
k smoothed over a length ∆s (Eq. (71)). The mean value is

〈
CA

k (∆s)
〉

=
(

∆2
s

2π

)d/2 ∫
ddk′ e−

1
2∆2

s(k′−k)2
〈
CA

k′
〉
.

=
(

∆2
s

2π

)d/2 ∫
ddk′ e−

1
2∆2

s(k′−k)2Ck′ .

For sufficiently small ksmooth, (sufficiently large ∆s), Eq. (72) results.
The variance of CA

k (∆s) is now calculated. First, it is necessary to calculate
〈[

CA
k (∆s)

]2〉
.

〈[
CA

k (∆s)
]2〉

=
(

∆2
s

2π

)d ∫
ddk′ e−

1
2∆2

s(k′−k)2 . . .

. . . ×
∫

ddk′′ e−
1
2∆2

s(k′′−k)2
〈
CA

k′C
A
k′′
〉
.



Using Eq. (75) and Eq. (29) as needed,

〈[
CA

k (∆s)
]2〉

=
(

∆2
s

2π

)d ∫
ddk′ddk′′ e−

1
2∆2

s(k′−k)2e−
1
2∆2

s(k′′−k)2
(

(2π)d

A

)2

. . .

· · · ×
{

C2
k

[
δd(k′ − k′′)

]2
+ C2

k

[
δd(k′ + k′′)

]2
+ CkCk′

[
δd(0)

]2}
=

∆2d
s

A

∫
ddk′

{
e−∆2

s(k′−k)2C2
k′ + e−

1
2∆2

s[(k′−k)2+(k′+k)2]C2
k′

}
. . .

· · ·+

[(
∆2

s

2π

)d/2 ∫
ddk′ e−

1
2∆2

s(k′−k)2Ck′

]2

The first integral is bounded (finite) because Ck is bounded. Let its finite value be denoted I .
The second integral is simply

〈
CA

k (∆s)
〉
.Thus,

Var(CA
k (∆s)) =

∆2d
s I

A
,

a finite value that decreases as A−1 as required for the ergodic hypothesis to hold. For suffi-
ciently small ksmooth (large ∆s), I ≈ (π/∆2

s)
d/2C2

k, and Eq. (73) results. It should also be noted
that the large ∆s required for this approximation also creates a more stringent requirement that
A be large.

E.2.3 Eq. (74)

Now, consider the real space auto-correlation function. First,
〈
CA(∆x)CA(∆x)

〉
is needed.

〈
CA(∆x)CA(∆x)

〉
=
∫

ddkddk′ ei(k+k′)·∆x
〈
CA

k CA
k′
〉

Proceeding in a fashion similar to the previous section (making use of Eqs. (75) and (29) as
needed) ,

〈
CA(∆x)CA(∆x)

〉
=

(2π)2d

A2

∫
ddkddk′ ei(k+k′)·∆x

(
C2

k

[
δd(k− k′)

]2
. . .

· · ·+ C2
k

[
δd(k + k′)

]2
+ CkCk′

[
δd(0)

]2)
=

(2π)d

A

∫
ddk

(
e2ik·∆xC2

k + C2
k

)
. . .

· · ·+
(∫

ddk eik·∆xCk

)(∫
ddk′ eik′·∆xCk

)
=

(2π)d

A

∫
ddk

(
e2ik·∆xC2

k + C2
k

)
+
〈
CA(∆x)

〉2
Thus, Eq. (74) results. For the variance to be vanishing, the integral in Eq. (74) must be bounded
(finite). If time, t > 0, the exponential in Eq. (77) guarantees that the integral is bounded. For
time t = 0, the integral is only bounded if the atomic scale cutoff b0 > 0.



APPENDIX F: ATOMIC SCALE CUTOFF
Starting from Eq. (39),

Ck =
∆2

(2π)d
e2σkt− 1

2 b20k2
. (77)

The effect of the small scale cutoff is both small and short-lived, as it only works to suppress
fluctuations with large wavenumbers. The most important fluctuations have wavenumbers be-
tween 0 and 2kc. Thus, the typical size of the cutoff term is about b2

0k
2
c . If a typical dot size or

spacing size 10 nm, and a typical atomic scale is 10−1 nm, a typical value for this term is about
10−3 − 10−2. To calculate the effect of the cutoff, it can absorbed into the time-dependent part
with the substitution

b → b

(
1 +

b2
0

4bDt

)
so that its effect lasts only as long as a perturbation with atomic scale curvature (κ = b0). Thus,
Eq. (40) is a good approximation.
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