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Abstract

We have developed a mathematical framework for rep-
resenting and testing hypotheses about gene, protein, and
signaling molecule interactions. It takes a hierarchical,
contradiction-based approach, and can make use of mul-
tiple data sources to assess hypothesis viability and to gen-
erate a viability partial order over the space of hypotheses.
We have developed an event-based formal language for the
expression of such hypotheses. This language seamlessly in-
tegrates regulatory diagrams (graphical inputs) and struc-
tured English (text input) to maximize flexibility. We have
developed a mathematical formalism that allows us to make
precise statements about hypothesis similarity and the con-
vergence of iterative refinements of a base hypothesis. To
this, we add mathematical machinery that allows us to make
precise statements about control and regulation.

1. Introduction

The representation of diverse data and biological pro-
cesses in a single formalism is a major challenge in bioin-
formatics [4], because of the variety of available data and
the varying levels of detail at which biological processes
can be considered [1]. Biologists are in a situation similar
to the one engineers faced when they needed to analyze dy-
namical systems for which existing empirical means proved
inappropriate[11]. We extend symbolic dynamics methods
that have been applied to engineering problems, in order to
develop an event-based representation scheme that can han-
dle the nonlinearity and complexity of biological systems.
Our scheme performs data fusion on the logical level, al-
lowing us to incorporate heterogeneous data (a stumbling
block for previous biological systems modeling efforts[4]).

We have modified and extended Discrete Event Systems
control theory [5] to allow for the discovery of control
mechanisms for gene regulatory networks. We have devel-
oped an event-based description language for representing
biological processes and data from different experimental
sources at varying levels of resolution, and use this language

to support qualitative reasoning about biological systems.
We have constructed a contradiction-based hypothesis test-
ing framework to aid in the discovery of gene regulatory
control mechanisms.

2. Hypothesis Representation

To permit computer-aided composition and evaluation
of hypotheses, we must be able to specify hypotheses in
a well-defined and machine-understandable way. We have
designed a formal grammar for hypothesis composition and
a formal mathematical structure for the space of all express-
ible hypotheses. We have developed both graphical and
structured text representations for our hypothesis language,
and have specified the context-free grammar that generates
this language.

LetG be a context free grammar [10] of the general form:

Clause→ Subject . Verb . Object
Clause→ Subject . Verb . Object . Context
Subject→ (Actor | Context| Clause)
Verb→ (PhysicalOperator| BiologicalOperator|
LogicalOperator)
Object→ (Actor | Context| Clause)
Actor→ (Gene| Protein| SignalingMolecule . . . )
Context→ (PhysicalContext| TemporalContext|
ExperimentalContext)
PhysicalContext→ (InsideCell| InsideNucleus . . . )
TemporalContext→ (ObservationTime1 . . . )
ExperimentalContext→ (Treatment1| Treatment2 . . . )

. . . where the lists of terminals for Contexts, Genes, Pro-
teins, Signaling Molecules, and Operators are system de-
pendent. These terminals may be taken from any of the
large (and growing) number of ontologies currently under
development[2, 8, 9] for biological systems.

This sample grammar specifies a structured text repre-
sentation for a hypothesis composition language. A graph-
ical representation may be specified as follows: Let Actors
be represented by points in the plane. Let Operators be rep-
resented by directed line segments or arcs. Let Contexts be



represented by closed curves in the plane. An Operator that
terminates on an Actor, or that terminates within a Context,
specifies that Actor or Context as the Object of an assertion.
Similarly, the origin of the Operator specifies the Subject.
The assertion will be evaluated within the context corre-
sponding to the smallest region that completely encloses all
of its elements.

2.1. Hypothesis Space

Let X be a set, andP(X) be the set of all subsets ofX.

Definition 2.1 (Filter Basis). A collectionB ⊆ P(X) is a
filter basis for X if

1. ∅ /∈ B, and

2. For allB1 ∈ B, for all B2 ∈ B, there existsB3 ∈ B,
such that(B3 ⊆ (B1 ∩B2))

Definition 2.2 (Filter). A collectionF ⊆ P(X) is afilter
for X if

1. ∅ /∈ F
2. For allF1, F2 ∈ F , ((F1 ∩ F2) ∈ F)

Definition 2.3 (Filtering). A filtering is the set of all filters
of an underlying space. LetX be a set. We writeΦX to
denote the set of all filters ofX.

Definition 2.4 (Evaluation Rule). Let H be the set of all
sententials of the grammarG.

An evaluation rule is any mapping that takesH to
{TRUE,FALSE}.

Let R denote the set of evaluation rules for a set of hy-
pothesis about a specific biological system. Evaluation rules
are grouped into families. LetRi,j denote an evaluation
rule taken fromR. The first subscript denotes the family
to which the given sorting rule belongs, and the second in-
dexes a rule from that family.

Definition 2.5 (Hypothesis Space).Let G be a grammar.
LetH be the set of all sententials generated according toG.
Let R be a set of evaluation rules.

We useH = (H, R), to denote thehypothesis space
formed by the application of the given rules to the given
productions.

Definition 2.6 (Forbidden Set). Let Ci,j denote the set of
expressible hypotheses that are contradicted by the partic-
ular rule: Ri,j . This is theforbidden set with respect to
Ri,j .

Definition 2.7 (Useless Rule).An evaluation rule that con-
tradicts no hypotheses is auseless rule.

Definition 2.8 (Pointless Rule). An evaluation rule that
contradicts all possible hypotheses is apointless rule.

Definition 2.9 (Hypothesis Valuation Filter Basis). Let
Ri,j be a set of evaluation rules, such that no rule is use-
less and no rule is pointless. LetCi,j be the set of hy-
potheses contradicted by rule:Ri,j (i.e. the function returns
“FALSE”). Let Ai,j = H \ Ci,j . LetA!

i = ∩ (Ai,·)
Then, we defineAfb

i = A!
i ∪j Ai,j to be thehypothe-

sis valuation filter basis(i.e. the hypotheses that each rule
within the family “j” fails to contradict, along with the hy-
potheses that contradictno rules from this family).

Lemma 2.1. The hypothesis valuationAfb
i is a filter basis.

Proof. The union of sets of hypotheses is a subset ofP(H).
Condition 1 is satisfied by the assumed absence of pointless
and useless rules. Condition 2 is satisfied by the definition
of Ai to include∩{Ai,·}.

Thus, the set of all hypotheses accepted by the rules at a
given level, together with the set of hypotheses accepted by
all rules at that level, form a filter basis. Further, the set of
all accepted hypotheses at any given level, plus all of their
intersections, form a filter, as we now show.

Definition 2.10 (Hypothesis Valuation Filter). Let Ri,j

be a set of evaluation rules, such that no rules is useless
and no rule is pointless. LetAi,j be the set of hypotheses
accepted by ruleRi,j . LetA!!

i =
⋃
AS⊂Ai,·

(∩AS
)
.

We defineAi = A!!
i ∪j Ai,j , the set of all possible inter-

sections of hypotheses accepted by rulesRi,· together with
the accepted hypotheses, to be thehypothesis valuation fil-
ter.

Lemma 2.2. The hypothesis valuationAi is a filter.

Proof. Condition 1 follows as before. Condition 2 is satis-
fied by the inclusion of all possible intersections.

2.2. Hypothesis Similarity Relationships

We wish to be able to formulate and test, in a rigorous
sense, statements about the similarity of hypotheses.

LetH be the set of all hypotheses.
Roughly speaking, the neighborhood of hypothesisx ∈

H, denotedN (x), indicates which other hypotheses that are
“close to” hypothesisx. More formally:

Definition 2.11 (Neighborhood Function). A neighbor-
hood function is a function from a set to the neighborhoods
of points in that set, such that the entire set is in the furthest
(largest) neighborhood of each point (Property N0).

A neighborhood of a point in hypothesis space inherits
theisotonicity andsublinearity properties of collections in
a straighforward manner:



Definition 2.12 (Isotonicity (Property N1)). A neighbor-
hood functionN (·) is isotoneif the following holds true:

∀x, ∀N ∈ N (x), N ⊆ N ′ =⇒ N ′ ∈ N (x) (1)

Definition 2.13 (Sublinearity (Property N2)). A neigh-
borhood functionN (·) is sublinear if the following is true:

∀x,∀N ∈ N (x),∀N ′ ∈ N (x), (N ′ ∩N) ∈ N (x) (2)

We also define:

Definition 2.14 (Expansiveness (Property N3)).We say
that a neighborhood functionN (·) is expansiveif the fol-
lowing holds true:

∀x, ∀N ∈ N (x), x ∈ N (3)

2.3. Hypothesis Neighborhoods

Suppose a hypothesis is found to be in error, but the er-
ror is of a sort that is repairable given information from the
knowledge base. In other words, there is a hypothesis that
is “close to” the original hypothesis, for which more com-
plete agreement with the experimental characterization of
the system may be observed. We want to report back to
the hypothesis’ composer both a diagnosis of the hypothe-
sis and an alternate hypothesis suggestion that rectifies the
contradiction.

We therefore wish to be able to ascertain, in a rigorous
manner, which hypotheses are “close to” other hypotheses
according to the structure imposed by the evaluation rules.
We wish to define a neighborhood structure on the set of
expressible hypotheses that is based on the satisfaction of
the evaluation rules, as follows:

Let v(·, ·) be a valuation relation.
We will defineN (·) to be a generalized neighborhood

function mappingX to P(P(X)), such that (minimally)
for all x ∈ X, (X ∈ N(x)).

Remark2.15. One notion of a “neighborhood” can be con-
structed as follows:

N (x) = ∩{F ∈ ΦH, ((F, x) ∈ v)} (4)

Remark2.16. We choose a neighborhood function forH
such that:

1. The hypothesis space is in the furthest neighborhood
of every hypothesis, so that N0 is valid.

2. The addition of any hypothesis to a neighborhood of
hypothesis generates a new, larger neighborhood (i.e.
isotoninity holds).

3. Any given hypothesis is located within every
hypothesis-neighborhood of itself, so that N2 is sat-
isfied.

4. A hypothesis is in every neighborhood of itself, satis-
fying theexpansivenessproperty.

Definition 2.17 (Pre-topological Space).A space whose
associated generalized neighborhood function satisfies the
isotonicity, sublinearity, and expansiveness properties con-
stitutes apre-topological space[7].

Fact 1. The Neighborhood Valuation Filter induces a pre-
topology upon the space of all expressible hypotheses.

As a hypothesis is composed and then iteratively refined,
it may approach some underlying essential assertion in a
manner analogous to the way in which a sequence con-
verges to a limit value. The specification of a pre-topology
allows us to make precise statements about the convergence
and continuity of sequences of hypotheses. Fortunately,
convergence has been defined for structures that include fil-
ters [7].

Definition 2.18 (Convergence).Let c ∈ (P(X)×X), and
let F ∈ ΦX.

The filterF converges tox underc if the following con-
ditions hold true:

1. (F, x) ∈ c

2. ∀G ∈ P(X), (F ⊆ G =⇒ (G, x) ∈ c)

We will test for convergence of hypotheses with respect
to relations derived from constraints enforced by the knowl-
edge model and by the available data.

3. Constraints and Control Determination

In addition to testing hypotheses against existing data,
we will rank hypotheses with respect to domain expert
knowledge as well. To accomplish this, we specify a tem-
poral logic for the expression of constraints. This logic
includes the following operators: (Disjunction), (Conjunc-
tion), (Until), (Awaits), (Since), (Back to), (Next), (Hence-
forth), (Eventually), (Previous), (Weak Previous), (Always
in the past), (some time in the future), and (negation).

To determine the control mechanisms that are operating
in a given network, we must first define what conditions a
control mechanism must satisfy to evidence that it is con-
trols a given system for which we have experimental obser-
vations.

The classical formalism for determining control in dis-
crete event systems [5] was developed by Ramadge and
Wonham. They assume an alphabet,Σ, which is a set of
symbols. In the Ramadge-Wonham framework, these sym-
bols correspond toatomic eventsof the dynamical sys-
tem. In the Ramadge-Wonham paradigm, atomic events
are considered to occur spontaneously (with no auxiliary
forcing mechanism), asynchronously (without reference to



a timescale), and instantaneously (events may not be subdi-
vided or interrupted).

In the standard controls paradigm, asupervisor is con-
structed, that restricts a model of the physical system (the
plant) to displaying only desirable behaviors. Both plant
and supervisor are described by regular languages overΣ
and the question of control is phrased as a property of these
languages:

Definition 3.1 (Controllability). Let M be a finite state
automaton plant model andS be a supervisor forM . Let L
be the language generated byM , and letK be the language
of S controllingM . Then we say thatS controlsM if and
only if the following statement holds:

∀s ∈ Σ∗∀u ∈ Σu

(
s ∈ K =⇒ (

su ∈ L ⇐⇒ su ∈ K
))

The Ramadge-Wonham model of control is insufficient
for several reasons. The only control mechanic available
is the distinction between uncontrollable (Σu) and control-
lable (Σ \ Σu) events. There is no way to tell if a process
is actually being actively controlled, only that it isable to
be controlled. Experimental events are not asynchronous.
Regulatory events are neither instantaneous, nor necessar-
ily spontaneous. The Ramadge-Wonham model imposes a
strict separation of the “controller” and the “plant model”
which is not always applicable to biological systems. Reg-
ular languages are insufficient to express cyclic and chain
reaction relationships. Finally, determining controllability
for a hypothesis says nothing about the controllability of
variants of that hypothesis. Accordingly, we extend the dis-
crete event formalism to include a more physically based
notion of control:

Definition 3.1 (Controlling Action). A controlling action
A is a hypothesis event for which a neighborhood of accept-
able observed behaviorsNa has been specified.

We note that controlling actions may be subdivided, ac-
cording toG, and may, in fact, constitute auxiliary forcing
mechanisms for other events.

Definition 3.2 (Controlled). We say a biological system
which has generated observational dataD(k) is controlled
by a hypothetical control mechanismH if:

∃Hi ∈ H, s.t.∀ej ∈ Hi, D(t′) ⊆ Na(e),

τ(ej+1) ≥ t′ ≥ τ(ej),

and
D(t0) 6⊆ Na(e), f.s.t0 ≤ τ(e) (5)

. . . whereHi are the paths through hypothesisH, and
τ(e) is the time point associated with the occurrence of hy-
pothesis evente.

A weaker version of this definition will also prove useful:

Definition 3.3 (De-Facto Controlled). We say a biological
system which has generated observational dataD(t) is de-
facto controlled by a hypothetical control mechanismH
if:

∃Hi ∈ H, s.t.∀e ∈ Hi, D(t′) ⊆ Na(e),

f.s.t′ ≥ τ(e) (6)

. . . whereHi are the paths through hypothesisH, andτ(e)
is the time point associated with the occurrence of hypoth-
esis evente.

Each hypothesis defines a target neighborhood of events
each time a “controlling” action appears in the hypothesis.

(For example: “A induces B” may define a
neighborhood of event streams as follows: All
genes aside from A and B are free to exhibit any
behaviors, and either: mRNA concentration in-
creases for A and for B, mRNA concentration is
stable for A and increases for B, or mRNA con-
centration decreases for A and B, for all microar-
ray trials involving A and B. Behaviors where A
decreases and B increases should not be in the
neighborhood. Note that many, many other neigh-
borhood specifications are possible, possibly in-
volving specific numerical thresholds and time
delays.)

Neighborhood boundary crossing from unexpected to ex-
pected behaviors generates a “controlled” judgment. Neigh-
borhood boundary crossing from expected to unexpected
behaviors generates an “uncontrolled” judgment, and can-
cels any prior “controlled” judgments. If the system event
stream trace remains entirely within the target neighbor-
hood at all times, “controlled” status is not contradicted,
but neither is it supported. In this case, the judgment of
“de-facto control” is applied. If the system event stream
trace remains entirely without the target neighborhood at
all times, “controlled” status is contradicted.

4. The Hypothesis Testing Process

Automata models and regular expressions are used to
“fill in” any of the required events that the user who is com-
posing the hypothesis has left out. This occurs when the
user is issuing specifications at a high level of abstraction,
is not well-versed in the specific system under study, or is
forgetting something. The specification of this abstraction
mechanic is inherited from the ontology.

Testing of hypotheses proceeds through several stages:
First, the hypothesis is checked for proper grammatical



structure. Next, all events the hypothesis requires (including
abstracted events) are extracted. Then, all individual events
along each critical path through the hypothesis are checked
for contradictions. Next, controlling and controlled rela-
tionships are compared to the available time-sampled ex-
perimental data to check for contradictions. Then, support
for all events along each path is assessed for each hypothe-
sis that is not contradicted, and the viability partial order is
established based upon the minimum support of all events
on the maximally supported path (so that any chain of infer-
ences is only as strong as its weakest link).

5. Future Work

We will expand upon the controlling action and con-
trolled event definitions presented above to develop a gen-
eral mathematical framework for the control of discrete
event processes that includes concepts of (topologically)
continuous mappings and control functions. We are writ-
ing the software tools to implement the approach out-
lined in this paper. We are designing a database and hy-
pothesis composition and evaluation tools needed to ap-
ply our methodology to the galactose metabolic pathway
in Saccharomyces cerevisiae[3]. We will then revise our
formal language and use data accumulated for the TAIR
project [6] to develop a hypothesis testing system for
the stress response network ofArabidopsis thaliana(see
http://www.arabidopsis.org).

6. Conclusions

We have developed a mathematical framework for the
ranking of hypotheses about gene regulation. This frame-
work has a unique combination of features which make it
well-suited for modeling large, complex systems that in-
volve many heterogeneous data sources.

We represent both data and hypotheses in an event-based
formalism, enabling us to perform data fusion at the logical
level. This allows us to easily extend our framework to in-
corporate new data types as they become available.

Our method is contradiction-based. Every piece of data
rules out some portion of the space of all expressible hy-
potheses. In this way, we are guaranteed not to waste in-
formation, and are prevented from generating flawed mod-
els. This turns the information overflow into an advantage:
the more data we have, the more structure we have for the
hypothesis space and the tighter our bounds on the sets of
allowable hypotheses.

Other Discrete Event frameworks mandate a strict sepa-
ration between the controller and the plant model – a sep-
aration that is not often valid in biological systems, where
structure and function are two sides of the same coin. We

have defined controlling and controlled events to allow for
pathway sharing and feedback regulation – features char-
acteristic of biological networks that cannot be represented
using standard Discrete Event models. We have developed
an ontology and operator language in conjunction with our
mathematical framework. Our hypothesis description lan-
guage enables a seamless transition between representation
and testing, and is has been designed to contain interopera-
ble graphical and structured-text representations.
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