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Statistical mechanics of Fermi-Pasta-Ulam chains with the canonical ensemble
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Low-energy vibrations of a Fermi-Pasta-Ulam-b ~FPU-b! chain with 16 repeat units are analyzed with the
aid of numerical experiments and the statistical mechanics equations of the canonical ensemble. Constant
temperature numerical integrations are performed by employing the cubic coupling scheme of Kusnezovet al.
@Ann. Phys.204, 155 ~1990!#. Very good agreement is obtained between numerical results and theoretical
predictions for the probability distributions of the generalized coordinates and momenta both of the chain and
of the thermal bath. It is also shown that the average energy of the chain scales linearly with the bath
temperature.@S1063-651X~97!06603-8#

PACS number~s!: 05.45.1b, 05.20.2y, 02.60.Cb, 46.10.1z
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Thermodynamics constitutes functions of the state,
statistical mechanics establishes the bridge between the
tribution functions and the functions of the state. Until t
paradigm shift in 1955 created by Fermi, Pasta, and U
~FPU! @1#, these working definitions had been thought to
valid only in the case of a mechanical system contain
very large number of degrees of freedom~DOF! for which
ergodicity is very likely satisfied. Theraison d’être of the
so-called FPU analysis was to test the ergodicity for a sys
with a considerably smaller number of DOF. This analy
necessitates numerical experiments. These ‘‘experimen
are basically numerical integrations of the equations of m
tion of the system under consideration. The mechanical
tem used in the original FPU study is a one-dimensio
chain consisting of 64 repeat units~masses!. The historical
perspective of the developments since then may be foun
an excellent review by Ford@2#, with his personal reflections
For the mechanical systems with relatively small DOF, co
sensus has been established in that there exists a thre
energy for each mechanical system above which the sys
satisfies equipartition. Inasmuch as the system equilibra
the laws of statistical mechanics and thermodynamics m
be utilized.

Some modifications in the equations of statistical mech
ics are necessary when we deal with small systems. Hill@3#
was the one who generalized the differential equations
macroscopic thermodynamics so as to consider small~micro-
scopic! systems. Berdichevsky and his collaborators@4–6#
have taken a different path, along which they have stud
Henon-Heiles@5# and FPU problems@6# both numerically
and theoretically. Theoretical formulations are based on
work of Berdichevky@4#. In this work, the author showe
that the laws of statistical mechanics based upon the mi
canonical ensemble must be slightly modified for small s
tems. In the applications, ergodicity was checked with
aid of numerical simulations@5,6#. And it has been shown
that numerical and theoretical probability distribution fun
tions are in very good agreement when ergodicity is achie
during the numerical studies.

Numerical experiments performed on FPU systems
date may be viewed as microcanonical formulations. In t
study, we consider canonical dynamics formulations@7–19#.
Andersen@7# proposed that the interaction with a therm
551063-651X/97/55~3!/3727~4!/$10.00
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bath may be simulated by stochastization of the system. T
may be achieved by the Brownian dynamics~BD! technique
which guarantees an approach to equilibrium. The BD te
nique includes a phenomenological dissipation coeffici
and a Gaussian white-noise forcing term, two of which a
related via fluctuation-dissipation theorem. With these t
ingredients, BD simulations takes account of the interact
with a thermal bath, which resembles infinite degrees of fr
dom.

Nosé @8#, in his pioneering work, demonstrated that t
interaction of a finite-dimensional system with a therm
bath can be simulated by simply adding a single degree
freedom to the original system. The new system which c
sists of the original system and an additional degree of fr
dom is referred to as an extended system. It is possibl
show that canonical ensemble of the original system
equivalent to the microcanonical ensemble of the exten
system, provided that dynamics of the extended system
ergodic on the constant energy surface. The main difficu
in Nosé’s scheme was the predictability of ergodicity as p
forward by Hoover@9#, who also derived a computationall
amenable form of the Nose´ equation. Hoover and his col
laborators@10# demonstrated the inadequate thermalizat
when they applied the Nose´-Hoover equation to the one
dimensional harmonic oscillator. Later, Cho and Joanno
ulos @11# showed that a Lennard-Jones potential system
be ergodic, but on very large time scales. It should also
noted that one cannot modify the couplings of the system
the temperature bath in Nose´’s scheme.

Kusnezovet al. @12# introduced another scheme which
called a cubic coupling scheme and activates the couplin
the thermal bath with two additional degrees of freedom. T
authors also demonstrated that their scheme suffices
achieve ergodicity of the extended system. The main diff
ence between the studies of Nose´ @8# and Kusnezovet al.
@12# is that the former is a Hamiltonian dynamics, which
ergodic in the subspace, while the latter is canonical dyna
ics, which is non-Hamiltonian and ergodic in the extend
space.

In this work, we follow the work of Kusnezovet al. @12#
and perform canonical numerical experiments on a FPUb
chain. We compare the results from simulations with t
theoretical calculations from the statistical mechanics form
3727 © 1997 The American Physical Society
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FIG. 1. Normalized probability distributions of the~a! displacement of the free end~q16!, ~b! velocity of the free end~p16!, ~c! thermal
bath coordinate~z!, and~d! thermal bath momentum~j!. Solid lines denote the theoretical predictions@Eqs.~3! and~4!# and dashed lines are
obtained from numerical experiments.
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lations of the canonical ensemble. It is found that the th
retical and numerical probability distributions are in ve
good agreement and the average energy of the FPU c
varies linearly with the bath temperature.

A one-dimensional chain containingN number of repeat
units is considered. Adjacent repeat units communicate w
each other via an interaction potential. The interaction pot
tial consists of quadratic and quartic functions of the diff
ence between the generalized coordinates of the consec
units. This model is usually referred to as the FPU-b model.
Its total energy~Hamiltonian! may be written as

E~q,p!5(
i51

N
1

2
pi
21(

i51

N
1

2
~qi2qi21!

21
1

4
~qi2qi21!

4,

~1!

whereqi andpi are the generalized coordinate and the m
mentum of thei th repeat unit. We takeq050. The first sum
in this equation is the kinetic energy and the second sum
the potential energy of interactions, which can be symb
cally shown asU(q).

Constant DOF, volume, and energy (N,V,E) ensemble
~microcanonical ensemble! integration of the FPU-b system
-
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has been performed successfully and compared with th
nite DOF thermodynamics by Berdichevsky and his collab
rators@6#. It was shown that as the number of DOF increas
~N>32! the relative error in probability distributions be
tween the numerical results and the theoretical estimates
comes less pronounced due to accurate achievement o
godicity. Nevertheless, for a smaller number of DOF, t
error grows exponentially. This makes the use of t
(N,V,E) ensemble inappropriate for theoretical calculatio
on small systems.

For the FPU-b chains containing a number of repeat un
less than 32, constant DOF, volume, and tempera
(N,V,T) ensemble~canonical ensemble! may be utilized for
theoretical estimations. However, another computatio
scheme is then necessary for constant temperature nume
integrations of the equations of motion. Here we utilize t
cubic coupling scheme of Kusnezovet al. @12#. According to
this scheme, the following extended system needs to be
tegrated:

q̇i5pi2jqi
3,
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ṗi52
]U

]qi
2z3pi ,

ż5aS (
i51

N

pi
22NTD ,

j̇5gS (
i51

N

qi
3 ]U

]qi
23T(

i51

N

qi
2D , ~2!

where z and j represent the infinite DOF that bath cons
tutes. Herez andj may be referred to as the bath coordina
and the bath momentum, respectively. In Eq.~2!, T is the
bath temperature, anda andg are free parameters that ma
be taken as 1/T and 1/T2, respectively@12#. Kusnezov and
his collaborators@13–15# have made further comments o
the best choices of free parameters in different physical m
els. The thermal unnormalized probability distributions th
follow from this scheme are

f ~pi !5e2pi
2/2T, f ~z!5e2z2/2Ta,

f ~q1 ,...,qN!5e2U~q!/T, f ~j!5e2j4/4Tg. ~3!

These theoretical distributions are compared with those
sulting from the numerical integrations of Eq.~2!.

A FPU-b chain with 16 repeat units is considered. O
end of the chain is fixed, the other is free. Initial conditio
with different energies are assigned. The initial energy giv
to the chain is well below the threshold energy of the syste
Thus, the FPU-b system cannot satisfy equipartition wit
this energy level. However, in the (N,V,T) formulation, re-
gardless of the value for the excitation energy, the aver
energy of the chain converges to a constant value. T
makes it possible to study the low-energy vibrations~lower
than the threshold value! of the FPU chains. Equations of th
motion in the extended system, consisting of the FPUb
chain and the bath@Eqs. ~2!# are integrated numerically b
the Bulirsch-Stoer method@20#. This method conserves th

FIG. 2. Kurtosis of the displacements for each repeat unit
culated using Eq.~5!. It is realized that the probability distribution
becomes flatter as a repeat unit departs from the fixed end, and
at the same flatness after the first half of the chain.
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energy at each time step; therefore, the (N,V,E) integration
of the extended system is accomplished successfully.

The normalized probability distributions of the free en
coordinate,q16, and the free end momentum,p16, are shown
in Figs. 1~a! and 1~b!, respectively. The normalized probabi
ity distributions of the bath coordinate,z, and the bath mo-
mentum,j are shown in Figs. 1~c! and 1~d!, respectively.
Dashed lines are used for the results obtained from nume
integrations by using 104 data points. Solid lines, on th
other hand, are calculated using theoretical results@Eqs.~3!#.
The probability distribution of thej th generalized coordinate
is calculated using the following integral:

f ~qj !5E
2`

`

e2U~q1 ,...,qN!/Tdq1dq2•••dqj21dqj11•••dqN .

~4!

In order to perform the integration, the transformati
e j5qj2qj21 is used. For the linear case, after applying t
saddle-point approximation, the result is simplyf (qj )

5Ce2qi
2/2jT. For the general case, however, the closed fo

solution cannot be obtained due to the inability of evaluat
the integral*2`

` e2@(1/4)e41(1/2)e2#/T2aede ~a.0 is a constant!
in closed form. This integral is also evaluated numerica
Very good agreement between the theoretical and nume
results is observed. It is common in all curves in Fig. 1 th
the fluctuations in the numerical results are amplified arou
the maximum point of the probability distributions of th
generalized coordinates and momenta. Longer simulation
riods would definitely smoothen the fluctuations.

In Fig. 2, Kurtosis of the displacements for each rep
unit along the chain is shown. The definition of the Kurtos
for the j th unit is

K~qj !5F 1N (
i51

N S qj~ i !2q̄ j
s j

D 4G23, ~5!

whereq j
( i ) stands for the generalized coordinate of thej th

unit at thei th time step, andN is the number of time steps
Here, q̄ j is the mean andsj is the standard deviation of th
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FIG. 3. Average energy of the chain with respect to the therm
bath temperature. Solid circles represent the points obtained
merically. The solid line is to guide the eye.
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values qj
(1) ,qj

(2) ,...,qj
(N) . Kurtosis quantifies the relative

peakedness or flatness of a distribution. Herein the23 term
makes the Kurtosis zero for a normal distribution. Posit
and negative Kurtosis represent the character of the distr
tion with respect to peakedness and flatness, respective
is recognized that the probability distribution becomes sh
lower immediately after the fixed end. And it converges to
limiting distribution after the seventh unit from the fixed en
with an almost constant value21.42.

We observe that the average energy of the FPU-b chain—
irrespective of its initial value—converges to a consta
value ^E&. In Fig. 3, the average energy is shown to
linearly proportional to the bath temperature. Solid circ
designate the results from numerical experiments; the s
line is to guide the eye. log-log axes are employed so a
o

y,

. A
e
u-
. It
l-
a

t

s
id
to

show clearly the numerical results for both lower and high
ends of the temperature spectrum.

Two main conclusions can be drawn from this study:~1!
probability distributions for the generalized coordinates a
momenta of FPU chains can be evaluated accurately with
aid of statistical mechanics laws. Those chains may con
of small number of repeat units, and energy levels for
initial excitation can be lower than the threshold energy;~2!
the average energy of the FPU chain studied converges
constant value independent of its initial value, and it chan
linearly with the bath temperature for all ranges of the te
perature spectrum.
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