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Statistical mechanics of Fermi-Pasta-Ulam chains with the canonical ensemble
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Low-energy vibrations of a Fermi-Pasta-UlgBnFPU-8) chain with 16 repeat units are analyzed with the
aid of numerical experiments and the statistical mechanics equations of the canonical ensemble. Constant
temperature numerical integrations are performed by employing the cubic coupling scheme of Kigtrazov
[Ann. Phys.204, 155 (1990]. Very good agreement is obtained between numerical results and theoretical
predictions for the probability distributions of the generalized coordinates and momenta both of the chain and
of the thermal bath. It is also shown that the average energy of the chain scales linearly with the bath
temperature[S1063-651X97)06603-§

PACS numbe(s): 05.45+b, 05.20-y, 02.60.Cb, 46.10-z

Thermodynamics constitutes functions of the state, andbath may be simulated by stochastization of the system. This
statistical mechanics establishes the bridge between the disray be achieved by the Brownian dynami{B®) technique
tribution functions and the functions of the state. Until thewhich guarantees an approach to equilibrium. The BD tech-
paradigm shift in 1955 created by Fermi, Pasta, and Ulammique includes a phenomenological dissipation coefficient
(FPU) [1], these working definitions had been thought to beand a Gaussian white-noise forcing term, two of which are
valid only in the case of a mechanical system containingelated via fluctuation-dissipation theorem. With these two
very large number of degrees of freedd®OF) for which  ingredients, BD simulations takes account of the interaction
ergodicity is very likely satisfied. Theaison d’dre of the  with a thermal bath, which resembles infinite degrees of free-
so-called FPU analysis was to test the ergodicity for a systerdom.
with a considerably smaller number of DOF. This analysis Nose[8], in his pioneering work, demonstrated that the
necessitates numerical experiments. These “experimentsihteraction of a finite-dimensional system with a thermal
are basically numerical integrations of the equations of mobath can be simulated by simply adding a single degree of
tion of the system under consideration. The mechanical sydreedom to the original system. The new system which con-
tem used in the original FPU study is a one-dimensionakists of the original system and an additional degree of free-
chain consisting of 64 repeat unitmasses The historical dom is referred to as an extended system. It is possible to
perspective of the developments since then may be found ishow that canonical ensemble of the original system is
an excellent review by Forf®], with his personal reflections. equivalent to the microcanonical ensemble of the extended
For the mechanical systems with relatively small DOF, con-system, provided that dynamics of the extended system is
sensus has been established in that there exists a threshelidjodic on the constant energy surface. The main difficulty
energy for each mechanical system above which the systemn Nosés scheme was the predictability of ergodicity as put
satisfies equipartition. Inasmuch as the system equilibrategrward by Hoovel[9], who also derived a computationally
the laws of statistical mechanics and thermodynamics magmenable form of the Nosequation. Hoover and his col-
be utilized. laborators[10] demonstrated the inadequate thermalization

Some modifications in the equations of statistical mechanwhen they applied the Nodgoover equation to the one-
ics are necessary when we deal with small systems.[8lill dimensional harmonic oscillator. Later, Cho and Joannopo-
was the one who generalized the differential equations ofilos[11] showed that a Lennard-Jones potential system can
macroscopic thermodynamics so as to consider sfmidiro-  be ergodic, but on very large time scales. It should also be
scopig systems. Berdichevsky and his collaboratpts 6] noted that one cannot modify the couplings of the system to
have taken a different path, along which they have studiethe temperature bath in Ndsescheme.

Henon-Heiles[5] and FPU problem$6] both numerically Kusnezovet al.[12] introduced another scheme which is
and theoretically. Theoretical formulations are based on thealled a cubic coupling scheme and activates the coupling to
work of Berdichevky[4]. In this work, the author showed the thermal bath with two additional degrees of freedom. The
that the laws of statistical mechanics based upon the micrauthors also demonstrated that their scheme suffices to
canonical ensemble must be slightly modified for small sysachieve ergodicity of the extended system. The main differ-
tems. In the applications, ergodicity was checked with theence between the studies of Ndsj and Kusnezowet al.

aid of numerical simulation§5,6]. And it has been shown [12] is that the former is a Hamiltonian dynamics, which is
that numerical and theoretical probability distribution func- ergodic in the subspace, while the latter is canonical dynam-
tions are in very good agreement when ergodicity is achieveits, which is non-Hamiltonian and ergodic in the extended
during the numerical studies. space.

Numerical experiments performed on FPU systems to In this work, we follow the work of Kusnezoet al.[12]
date may be viewed as microcanonical formulations. In thisand perform canonical numerical experiments on a HPU-
study, we consider canonical dynamics formulatiphs19]. chain. We compare the results from simulations with the
Andersen[7] proposed that the interaction with a thermal theoretical calculations from the statistical mechanics formu-
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FIG. 1. Normalized probability distributions of tHe) displacement of the free er(d;g), (b) velocity of the free endp,¢), (c) thermal
bath coordinaté¢), and(d) thermal bath momenturf). Solid lines denote the theoretical predicti¢is)s.(3) and(4)] and dashed lines are
obtained from numerical experiments.

lations of the canonical ensemble. It is found that the theohas been performed successfully and compared with the fi-
retical and numerical probability distributions are in very nite DOF thermodynamics by Berdichevsky and his collabo-
good agreement and the average energy of the FPU chajators[6]. It was shown that as the number of DOF increases
varies linearly with the bath temperature. (N=32) the relative error in probability distributions be-

A one-dimensional chain containiflg number of repeat tween the numerical results and the theoretical estimates be-
units is considered. Adjacent repeat units communicate Witl&omes less pronounced due to accurate achievement of er-
each other via an interaction potential. The interaction potengogicity. Nevertheless, for a smaller number of DOF, the
tial consists of quadratic and quartic functions of the differ-qrror grows exponentially. This makes the use of the

ence betyveen the. generalized coordinates of the consecutim,v,E) ensemble inappropriate for theoretical calculations
units. This model is usually referred to as the FBWxodel. on small systems
Its total energy(Hamiltoniar) may be written as For the FPUB chains containing a number of repeat units
1 N 1 less than 32, constant DOF, volume, and temperature
> pi2+2 > (9i—Qgi_q1)%+ 7 (gi—gi-)% (N,V,T) ensemble(ganonical ensemblanay be utilized fo.r
i=1 theoretical estimations. However, another computational
1) scheme is then necessary for constant temperature numerical

whereq; andp; are the generalized coordinate and the mo_integration; of the equations of motion. Here we qtilize the
mentum of the th repeat unit. We takg,=0. The first sum cubic coupling scheme of Kusnezeval.[12]. According to
in this equation is the kinetic energy and the second sum S scheme, the following extended system needs to be in-
the potential energy of interactions, which can be symboli{egrated:
cally shown adJ(q).

Constant DOF, volume, and energi,/,E) ensemble ) 3
(microcanonical ensembléntegration of the FPLB system ai=pi—&a;,

E(q.p)=

N
i=

1
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bath temperature. Solid circles represent the points obtained nu-
FIG. 2. Kurtosis of the displacements for each repeat unit calimerically. The solid line is to guide the eye.
culated using Eq(5). It is realized that the probability distribution
becomes flatter as a repeat unit departs from the fixed end, and stagaergy at each time step; therefore, the\(,E) integration

at the same flatness after the first half of the chain. of the extended system is accomplished successfully.
The normalized probability distributions of the free end
. aJ coordinate(,5, and the free end momentum,g, are shown
Pi=— aa pi in Figs. 1@ and Xb), respectively. The normalized probabil-

ity distributions of the bath coordinaté, and the bath mo-
N mentum, ¢ are shown in Figs. () and Xd), respectively.
'é«: a( > pP- NT) , Dashed lines are used for the results obtained from numerical
i=1 integrations by using TOdata points. Solid lines, on the
other hand, are calculated using theoretical re$tits.(3)].
. N R4S N ) The probability distribution of th¢th generalized coordinate
&=y ;1 Qi Tqi_ 3Ti§1 Qi | ) is calculated using the following integral:

where ¢ and ¢ represent the infinite DOF that bath consti- "

tutes. Here/ and ¢ may be referred to as the bath coordinate f(q;)= e~ YL a/Tg g, dg,- --dgj_1dg;1---day.
and the bath momentum, respectively. In E2), T is the —o

bath temperature, and and y are free parameters that may (4)

2 .
be taken as T and 1T, respectively{12]. Kusnezov and In order to perform the integration, the transformation

his collaboratord13—-15 have made further comments on £=0,—0,_, is used. For the linear case, after applying the

the best choices of free parameters in different physical moqgaddle-point approximation, the result is simplq,)

els. The thermal unnormalized probability distributions that ’
follow from this scheme are =Ce %27, For the general case, however, the closed form
solution cannot be obtained due to the inability of evaluating
f(p)=e P2, f(g)=e 2T, the integralf * e~ (14" + W2V T-aeq ¢ (a>0 is a constant
in closed form. This integral is also evaluated numerically.
£(qy,....qn) =€ Y@, f(f):e7§4/4Ty_ 3) Very good agreement between the theoretical and numerical

results is observed. It is common in all curves in Fig. 1 that

These theoretical distributions are compared with those rethe fluctuations in the numerical results are amplified around
Su'ting from the numerical integrations of E(Q) the maximum pOint of the probablhty distributions of the

A FPU-B chain with 16 repeat units is considered. Onegeneralized coordinates and momenta. Longer simulation pe-
end of the chain is fixed, the other is free. Initial conditionsiods would definitely smoothen the fluctuations.
with different energies are assigned. The initial energy given [N Fig. 2, Kurtosis of the displacements for each repeat
to the chain is well below the threshold energy of the systemunit along the chain is shown. The definition of the Kurtosis
Thus, the FPU3 system cannot satisfy equipartition with for the jth unit is
this energy level. However, in theN(V,T) formulation, re-

_|1 g q" )"

makes it possible to study the low-energy vibratidlosver Klay)= N&E T
than the threshold valy®f the FPU chains. Equations of the A
motion in the extended system, consisting of the FPU- Whereq}') stands for the generalized coordinate of jltle

gardless of the value for the excitation energy, the average
chain and the bathEgs. (2)] are integrated numerically by unit at theith time step, andV is the number of time steps.

energy of the chain converges to a constant value. This _3 5)
the Bulirsch-Stoer methofR0]. This method conserves the Here,q_j is the mean and; is the standard deviation of the
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values qlfl) ,q}Z),...,q,(M. Kurtosis quantifies the relative show clearly the numerical results for both lower and higher

peakedness or flatness of a distribution. Herein-t#8eterm  ends of the temperature spectrum.

makes the Kurtosis zero for a normal distribution. Positive Two main conclusions can be drawn from this study:

and negative Kurtosis represent the character of the distribuprobability distributions for the generalized coordinates and

tion with respect to peakedness and flatness, respectively. momenta of FPU chains can be evaluated accurately with the

is recognized that the probability distribution becomes shalaid of statistical mechanics laws. Those chains may consist

lower immediately after the fixed end. And it converges to aof small number of repeat units, and energy levels for the

limiting distribution after the seventh unit from the fixed end initial excitation can be lower than the threshold ener@y;

with an almost constant value1.42. the average energy of the FPU chain studied converges to a
We observe that the average energy of the FPthain—  constant value independent of its initial value, and it changes

irrespective of its initial value—converges to a constantjinearly with the bath temperature for all ranges of the tem-
value (E). In Fig. 3, the average energy is shown to beperature spectrum.

linearly proportional to the bath temperature. Solid circles
designate the results from numerical experiments; the solid Partial support was provided by the Bogazici University
line is to guide the eye. log-log axes are employed so as tResearch Funds Project No. 96A0430.
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