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Abstract

Dynamic characteristics of one-
dimensional periodic and nearly periodic
structures are investigated. Each substructure
has a mass and a grounding stiffness. The
connection between substructures are
achieved by harmonic and anharmonic
nearest neighbor interactions. Harmonic and
anharmonic interaction potentials result in
linear and nonlinear coupling stiffnesses,
respectively, between the substructures.
Periodicity is deliberately broken by
designing small disorder either in the linear
coupling stiffness or in the grounding
stiffness. Modal analysis is performed for the
lineanized behavior of the structure.
Principal component analysts is utilized for
the nonlinear behavior of the structure
which 15 in thermodynamic equilibrium. It is
found that nonlinear interactions delocalize
the modes associated with lower frequencies,
especially if the disorder is designed in the
grounding stiffness.

Introduction

One-dimensional (1D} periodic
structures are ubiquitous in the area
pertinent to the modeling of engineering
structures. A periodic structure contuns a
modular repeat unit with a2 mass and a
stiffness called grounding stiffness. In 1D
penodic structures, repeat units are aligned
along a line and connected with spnings
which may be linear or nonlinear. It was first
shown in solid state physics by Anderson’
that presence of disorder in periodic lattices
results in Jocalized eigenstates. Later,

Hodges2 ctilized this finding in structural
vibrations. The author show that distortion
of the strict periodicity of a given continuous
structure with a small disocder results in
normal mode localization. The reader s

referred to the review by Ibrahim® for
developments within the last decade.

An important consequence of this
phenomenon for practical applications

would follow if one were to determine
under what circumstances disorder has a
similar effect to damping in that the
propagation of vibrations from the external
sougce i3 confined. In other words, deliberate
utilization of disarder may act as a passive

controller.! Along the same line of thought,
the similarities and differences between
disorder and structural damping was
explored by Langley5 by comparing the
attenuation factors produced for each case.
Statistical investigations were presented by
Piecre and his collaborators ™ and
references cited therein. Effects of disarder in
multisspan beams were also undertaken by

Pierre® and Bendiksen and his collaborators’
who had also initiated the localization

applications in aerospace structures'® and
studied a{)plications on large space

structures. 1 Recently, Plerre and his co-

worker!? have taken another path in that
they have calculated Lyapunov exponents of
the wave transfer matrix of the disordered
periodic linear system.

Literature covering studies which are
involved in studying effects of nonlinear
interactions on the localization is meager.
Zaslavsky and his collaborators established
an analogy between the disorder in particle
chains and dynamical problem of transition

to chaos.® Vakakis and his co-workers'*
used multiple-scales analysis to show the
existence of localized modes due to
nonlinearity in the grounding stiffness in a
periodic structure with cyclic boundary
conditions.

In this study, our main aim is to
understand the effect of nonlinearity to the
localization behavior observed for the linear
1D periodic structure. Nonlinearity s
introduced in the nearest neighbor coupling
with the aid of a fourth order interaction
poteatial. The similitude between the medal
analysis of the linearized system and the
principal component analysis of the

nonlinear system15 is employed. In order to
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set the stage for the nonlinear analysis,
modal analysis for the linearized system is
performed first. A global measure is defined
using the linear mode shapes which
quantifies the distortion in the eigenvectors
{mode shapes) due o disorder in coupling or
grounding stiffness. The same form of the
measure is preserved for the nonlinear
analysis; the linear mode shapes are replaced
by-the eigenvectors of the covariance matrix.
Thus, the effect of nonlinearities are
manifested in the comparison of these two
measures defined for the linear and for the
nonlinear cases. In what follows, first, the
model and the methodology employed in
this study are clarified. The results obtained
from the calculations are then discussed. The
main finding is that nonlinearity in the
coupling sti%fness delocalizes the modes,
which are localized due to disorder in the
grounding stiffness, associated with the
lower frequencies. In addition, nonlinearity
in the coupling lessens the amount of
distortion which is created by the
randomness in the coupling stiffness, again
for lower frequencies. Concluding remarks
along with the ongoing studies is placed at
the end.

Method

In this study, linear and nonlinear
dynamics of 1D periodic and nearly penodic
structures (Figure 1) are investigated.
Nonlinear behavior of the system is
achieved by intreducing a quartic nearest
neighbor interaction potential between the

substructures.'® In the linear coupling case,
modal analysis is performed; whereas for the
nonlinear coupling analysis, principal
component analysis 15 utilized. First, the
linear analysis technique 1s outlined: after
that the methodology followed for the
nonlinear analysis 15 explained.

] inear S:.Q"R”n]‘ !lt the. \'"hzu_“;n“n

In this case, the system consists of m
substructures with equal masses M, and
equal grounding stiffnesses k. The
interaction between the substructures are
accomplished by linear nearest neighbor
interactions. Let the coupling stiffness of thus
interaction be k.. Both ends of the chawn are
fixed. Connections of the substructures to the
fixed ends are also achieved by the couphing
stiffness k. In this case, the total energy of
the system may be written as

m.p2 m
= lELQ- I.
B 55‘12 M Elz""}

n

m+1

+ 3 Lke(gi-qiq 2
j=1 2

where qo = gm4; = 0 due to fixed ends. Here G
and pjare the displacement and the
momentum of the ith substructure,
respectively. In the system, disorder is
designed in coupling and in grounding
stifinesses by redistributing these stiffnesses
with a uniform random distribution about
their mean values which are equal to those
of the perfect system. The dynamic
characteristics, natural frequencies and the
mode shapes, of the perfect and disordered
linear system may then be obtained by
solving the following eigenvalue problem

M+ KDy} =0 @

where @ is the natural frequency, ¥ is the
corresponding mode shape, [I] is the identity
matrix and [K] is the stiffness matrix of the
whole structure. The stiffness matrix js
tridiagonal whose (i-1, 1), (i, i), and (i, i+1)th
elements are (- ke ), (kg + K¢ 441 + ki), and
(-keiot), respectively. Par the perfectly
periodic system kg = K¢ j,1-

Nontinear Coupling of the Sut

In addition to the harmonic, i.e.,
second order, nearest neighbor interaction in
the potential, an anharmonic, fourth order
nearest neighbor interaction between the
substructures is considered. The total energy
of the system can then be written as

m+1
B -ELv T La(q-qit @)
i=

where Go = Q.1 = 0 and a is the coefficient
related to the nonlinearity. The equations of
the motion may be obtained via Hamilton
equations, viz.,

. dE
oo
a"EP* @
s = - JENL
aq

where overdot denotes differentiation with
respect to time. The time evolution of each
substructure of the system can be obtained by
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solving eq 4. Time series obtained for
displacements or momenta may be expressed

in a matrix of the form"’
A=z, . .. %] (&)

Here a; Is the column vector characterizing
the instantaneous position or momentum of
the structure; it consists of m coordinates of
each substructure recorded at time ¢, 1<i £
n. This so-called trajectory matrix A is
decomposed into the product of three

matrices by the singular value
decomposition technique“

T
Amxn= Umxmzmxrn Vrwn 6

Here the subscripts denote the sizes of the
matrices, L is a diagonal matrix, the

elements o, of which are called the singular
values of A, 1sism
Using eq 5, one can also obtain the

covariance matrixt? 19

Con = (1/1) Aquen Afixm
= (1/n) Ugun T2 Uik q)

where {1/n) is a normalization constant.
This representation may be called the
spectral decomposition of matrix C. The
analysis associated with the spectral
decomposition of the covariance matrix is
usually called principal component analysis.
In eqs 6 and 7, U is an orthonormal matnx; it
may be called the left singular matrix of the
trajectory matrix A or the eigenvector matrix
of the covariance matrix C. The columns of
which are the left singular vectors of A or,
equivalently, the eigenvectors of C. Each left
singular vector, or eigenvector, represents a
new base vector spanning a singular
direction of the lower dimenswonal subspace
relevant to the intrinsic dynamics of
maotion.}”1%22 The columns of V are the
corresponding right singular vectors of A.V
is normalized, i.c., VIV = |, where I is the
identity matrix. UTA gives the projections of
the instantaneous positions 2, along the new
base vectors. The elements of L are
presented in descending order along the

diagonal, as 6, 2 07 2 ... 2 O The ith element

o, represents the amplitude of motion along
the ith singular direction.

Using instantaneous momentum, p;,
for each substructure and constructing the
covariance matrix with momenta, one can
derive the entries of the covariance matrix as

G = (py 2N\ = T3 ®
%

where equality takes place if the system
reaches equipartition. Here T denotes the
absolute temperature in the equilibrium 2%
{n this case, eigerivalues of the covariance
matrix are equal to each other, and they are
equal to T. The left singular matrix of A
becomes the identity matrix. Therefore, we
first employ the instantaneous momentum
of the structure and show that the system has
reached equipartition. After that, we take the
instantaneous position of the structure and
perform the decomposition once more with
position coordinates so as to identify how the
effects of disorder are changed when the
nonlinear system is ergodic.

Calculations and Results

A 1D chain consisting of 16
substructures is considered. Both ends of the
chain are fixed. Susceptibility of the structure
to localization depends on the degree of
coupling between the substructures. Weak
coupling {low k.} results in strong
localization manifested in the
rearrangement of the displacements for each
substructure as it may be observed from the
eigenvectors of the system. In order to create
strong localization, the grounding stiffness,
k, and the mass, M, are set 1o unity, while the
coupling stiffness, k. = 0.01.

Three  different  disordered
configurations are designed by uniform
random distribution of the grounding or
coupling stiffnesses about their mean which
are the same as the perfact case. In the first
two configurations, the randomness is given
to the coupling stifiness, k.. The last
configuration ‘contains the random
distribution for the grounding stiffness k.
The following ratio is defined so as to
measure the degree of randomness:
Ui /my(ko). Here p is the standard deviation
with subscripts designating the variable to
which randomness is built in, and me(ke)
stands for the mean of a variable that is
between the parenthesis followed m,. For
the first configuration, which is hereafter
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called case (a), this ratio is equal to 0.213,
while for the second case, which is hereafter
called case (b), the ratio is one half of the first.
In the third case, which is hereafter called
case (c), on the other hand, the numerical
value of the ratio for the first case is

preserved satisfying Bic/ Me(ke) = Py /me(ko):
The reason for cbserving this equality is the
following: the results indicated that the
dynamic characteristics found are insensitive
to changes that may be made in the mass of
the substructure and they are almost
{excluding the differences with three orders
of magnitude) insensitive to the value of the
grounding stiffness.

The dynamic characteristics, natural
frequencies and the associated mode shapes,
both of the perfect and of the disordered
chains are obtained. Two measures are
defined to distinguish the differences
between the perfect and disordered
configurations, (a), (b), and {c). The first is
defined t0 measure the contribution of each
natural frequency to the whole frequency
spectrum

K= @2/tr(3?) 9

where @, is the natural frequency of the ith

mode, A is the eigenvalue matrix, and tr{.)
denotes the trace operation. The second
measure calculates the difference created in
the eigenvectors {(mode shapes} due to
disorder

o= lav)2203)12 o

where Ay is the difference between the
perfect and the disordered eigenvectors
probed at each substructure for the ith mode;

the overbar, (.) , denotes the averaging over
the substructures: Therefore, ¢, is the
average difference for the ith mode.

In Figure 2, x,, the ncrmalized
frequency spectrum is plotted for the four
different configurations; perfect, and three
disordered configurations, (a), (b), and (c). It
may be observed from the figure that the
perfect frequency spectrum 13 not distorted
due to randomness in coupling or in
grounding stiffnesses. Due to low coupling
stiffness, the frequency band of the spectrum
is very much narrow in that the highest
frequency differs from the lowest one by only
five percent. Only observable difference

between the perfect and the random case
oceurs for the case (2) where the randomness
is given to the coupling stifiness. The most
pronounced difference is at the highest end
of the spectrum. Weaker disorder for
coupling stiffness and disorder in the
grounding stiffness do not produce
significant differences from the perfect
frequency spectrum.

In PFigure 3, ¢ the averaged
normalized RMS differences of the
eigenvectors for each mode from the perfect
case are shown for three disordered
configurations, (a), {b), and {(c). Despite the
insensitivity observed to the disorder in the
frequency spectrum, the eigenvector
distributions are affected by the randomness
in the coupling stiffness, cases (a) and {b), and
in the grounding stiffness, case (<)}, In curve
(a), the disorder is in the coupling stiffness

with fye/me(k) = 0.213. It may be deduced
that the lower modes are not changed as
much as the higher modes. Approximately a
linear trend of degree of distortion from the
lower to the higher modes is observed from
the figure. The associated eigenvector
distributions for each mode along the
substructure confirm this observation. The
most localized modes are those associated
with the highest end of the frequency
spectrum. In curve (b), the randomness is
again in the coupling stiffness with one half

of the Wy /me(k.) ratio used in the curve (a).
It is seen that the linearly increasing trend in
the deformity of the eigenvector distribution
may not be observed any more. The most
localized modes are still associated with the
highest frequencies, hawever, the deformity
in the eigenvectors associated with the lower
frequencies are decreased. In curve (c), the
disorder is created in the grounding stiffness,

k, with py./ma(ke) = B/ melke). In contrast

with the first two case, the distortions for the
eigenvector distribution take place for the
modes related both with the lower end and
with the higher end of the frequency
spectrum. Symmetry is broken in the curve
(<) due 10 the coupling stiffness. The results
displayed in Figure 3 are obtained by
averaging over eight different configurations
for each curve. Different configurations are
created by taking eight different seed
numbers while distributing uniform
random variables for the stiffnesses in the
cases (a), (b), and (c). Note that for each

configuration u/m, ratio is still constant.
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Next, a small nonlinearity with a
fourth order potential between the nearest
neighbors is added to the energy, which is
given by eq 3. The coefficient pertinent to the
nonlinearity, @, is selected to be one order of
magnitude legs than the coupling stiffness ke

so that a = 0.001. The nonlinear system with
16 substructures is integrated numerically by

the Bulirsch-Stoer method.?® With this
integration scheme, the total energy of the
system is preserved up to eight digits during
the simulation at each time step. The system
is integrated until the equipartition is
reached. Thus, the nonlinear analysis is
performed on the equilibrated structure.

In Figure 4, in similitude with Figure
2, the normalized spectrum of the
eigenvalues of the covariance matrix (or,
equivalently, singular values of the
trajectory matrix) 1s displayed. Here, the
logarithm of the normalized singular
spectrum is plotted so as to display the
deviations of the higher singular values
from zero. To calculate the numbers in the

figure, w; is replaced by o, and X is replaced

by L in eq 9. The same four configurations as
in the linearly coupled substructures is
considered. No random distribution is
considered for the nonlinearity coefficient. It
may be seen from the figure that the
normalized spectrum of the singular values
are Insensitive to the disorder fabricated in
the system as in the normalized spectrum of
the natural frequencies in the linearly
coupled substructures. The contribution of
the first, second, and the thurd singular
modes to the whole singular spectrum is 60,
16, and 7 percent, respectively.

In Figure 5, the averaged normalized
differences in the left singular vector (ur,
equivalently, the eigenvector of the
covariance matrix) from the perfect case for
each mode is shown for three disordered
configurations, (a), (b), and (c). To calculate

the numbers in the figure, y{’s in eq 10 are
now the left singular vectors pertinent to
each singular mode. Although the singular
spectrum is not affected by the deviations
from the perfect structure, the randomness
in the coupling stiffness and in the
grounding stiffness do affect the singular
vectar distributions. In parallelism with
Figure 3, in curve (a), the disorder is in the
coupling stiffness with B/ Melke) = 0213, Tt
may be inferred that the lawer modes are not
changed as much as the higher modes like in

the linear coupling case. A linear trend of
degree of distortion from the lower to the
higher modes can be observed until the very
end of the modal spectrum. An immediate
jump in the distortion takes place at mode
number 15. However, the overall degree of
distortion is lower than the linear case,
which may be found from the scaling of the
figure margins.

In Figure 5, the other two cases, t0o,
both qualitatively and quantitatively differ
from Figure 3. In curve (b), the randomness
is in the coupling stiffness with one haif of

the jixc/ My(ke) ratioc used in the curve (a). It is
seen that the increasing trend in the
distortion of the eigenvector distributions
fram the perfect case is not preserved when
the nonlinearity is added. The increase in the
distortion is achieved until the mid-
spectrum, after that it stays approximately
constant. Thus, for lower py/my(ke) ratio,
the number of localized modes broadens
along the higher half of the modal spectrum.
Another enchanting difference from the
linear cuuplin}; takes place in the third
configuration. In curve (c), the disorder is
created in the grounding stiffness, k, with
i /me(ke) = B/ me(ky). Tt may be recognized

that the localized modes obtained at the
lower end of the frequency spectrum in the
linear coupling case disappear for the
nonlinearly coupled substructures. In othet
words, perfect nonlinear coupling between
the substructures delocalizes the modes at
the lower end of the spectrum which are
created by the random grounding stiffness
configuration with linear coupling of
substructures. In addition, the most
pronaunced distortion from the perfect case
occurs nat at the very end, but some distance
to the end of the spectrum. Not shown in
this work, the same qualitative picture as in
curve {c) of Figure 4 is also obtained when
random distribution is considered for the
mass of substructures. Note that Figure 5 is
not obtained by averaging over different
configurations ‘as opposed to Figure 3.
Howeves, from preliminary calculations, it is
noticed that some smoothing in each curve
will take place not invalidating the
conclusions drawn here. Not also displayed
here, it is also found that longer chains with
higher number of substructures behave
similarly.
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Concluding Remarks

In this study, two different measures
are introduced to quantify the differences in
dynamic behavior between perfectly periodic
and nearly periodic structures in which a
small randomness is designed. For linearly
coupled substructures, the first measure is
related to the contribution of each natural
frequency to the whole frequency spectrum.
The second measure is associated with the
mode shapes. For each mode, it evaluates the
RMS distortion of the mode shape of the
disordered structure from that of the perfect
one. For nonlinearly coupled structures, the
same measures may be used with different
physical parameters pertinent to the
mechanics of the problem. In the nonlinear
case, eigenvalue problem of the characteristic
tatrix is needed to be converted to that of
the covariance matrix which consists of the
displacements of the structure. Note that the
covariance matrix is obtained when the
structure reaches equipactition. Thus, for the
nonlinear case, natural frequencies are
replaced by the eigenvalues of the covariance
matrix for the first measure; mode shapes are
replaced by the eigenvectors of the
covariance matrix for the second measure.

it is found that the first measure,
related with the eigenvalues, cannot
distinguish the differences between the
eriodic and disordered structures both in
Finear and in nonlineac structure. However,
the second one, related with the
eigenvectors, do reflect the changes made in
the structure. The results obtained from the
second measure indicated that nonlinear
nearest neighbor interactions delocalizes the
modes corresponding to lower frequencies.
The most pronounced delocalization ozcurs
if the localized modes for the hinear structure
is obtained by designed-in disorder in the
grounding stiffness. In addition, nonlineanty
keeps the distortion almost constant at the
higher half of the frequency spectrum for
weaker randomness given to coupling
stiffnesses. As far as ongoing studies are
concerned, the equilibrium probability
distributions have already been calculated;
the entropic differences are now being
evaluated. Concurrently, forced response of
the linear and nonlinear structures are being
studied. In the forced response analysis fur
structures which are perfectly penodic and
with small disorder, the susceptibility in the
statistical-mechanical sense is our additional
measure to be investigated.
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Figure 1. One-dimensional nearly periodic
structure with m substructures. Each
substructure has a mass M and grounding

stiftness k;. Substructures are connected with
linear or nonlinear coupling stiffness, ke
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Figure 2. Normalized natural frequency
spectrum for perfect and disordered
structures calculated by eq 9. Please see the
text for definitions of the disordered
configurations (a)-{c).
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Figure 3. RMS deviations of the eigenvectors
from the perfect case calculated using g 10
for each mode. Curves (a), (b) and (<)
represent three disordered configurations.
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Figure 5. RMS deviations of the eigenvectars
of the covariance matrix from the perfect
case calculated using eq 10 for each mode.
Curves (a), (b) and (c) represent three
disordered configurations.

Figure 4. Normalized singular value
spectrum for perfect and disordered
structures calculated by e¢q 9 ior three
disordered configurations (a)<{¢).
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