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Abstract. Experimental results on grain boundary properties and grain growth obtained using the Electron
Backscattered Diffraction (EBSD) technique are compared with the Finite Element simulation results of an Al-
foil with a columnar grain structure. The starting microstructure and grain boundary properties are implemented
as an input for the three-dimensional grain growth simulation. In the computational model, minimization of the
interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is com-
pared with the final experimental microstructure, after annealing at 550◦C. Good agreement is observed between the
experimentally obtained microstructure and the simulated microstructure. The constitutive description of the grain
boundary properties was based on a 1-parameter characterization of the variation in mobility with misorientation
angle.
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Introduction

Computational modeling and experimental character-
ization can be linked to study the interface properties
and microstructural evolution of materials. However,
new experimental data is needed for the compre-
hensive understanding of the kinetics of grain evo-
lution. Grain boundary energy and mobility can be
extracted with the measurement of the geometry of
triple junctions between grain boundaries [1]. Ex-
perimental results on grain boundary properties that
are obtained from EBSD technique can be used to
simulate the topological changes in grain boundary
motion.

Simulation [2, 3], theory [4], and the experimen-
tal observation [5] of grain boundary evolution of

three-dimensional microstructures have been studied
by several authors in the literature. A new tech-
nique for three-dimensional grain growth simulations
was introduced by Kuprat [6]; this method utilizes
gradient-weighted moving finite elements (GWMFE)
[7] combined with algorithms for performing topolog-
ical reconnections on the evolving mesh [8]. In this
model, minimization of the interface energy is the
main driving force for the grain boundary motion. In-
terface motion is assumed to obey a linear relation
(v = µκ) where µ is reduced mobility, v is the ve-
locity, and κ is the curvature of the grain boundary.
An important verification of the model is that the ex-
pected power law dependence of growth kinetics is ob-
tained [9]. The gradient in mobility has a major effect
on the growth process. In this paper, the orientation
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dependence of the boundary mobility is introduced
in order to break the symmetry in GWMFE simula-
tions. With the same simulation technique, both normal
and abnormal grain growth in three-dimensions can be
studied.

In the following section, a brief summary of experi-
mental details is presented. This is followed by results
from GWMFE simulation, then comparison with an-
nealing experiment, and ending with a discussion and
conclusion.

Experimental Procedure

The samples, which have 1 × 1 cm2 lateral dimen-
sions and 120 µm thickness, were cut from 99.98%
pure Al foil. The starting microstructure was polycrys-
talline and annealed in a horizontal tube furnace at a
temperature of 550◦C for 9 hours in a N2 environment.
Under these conditions, a thin oxide layer is always
present on the foil surfaces which prevents thermal
grooves from forming along grain boundaries. After an-
nealing, the specimen was quickly removed from the
furnace and quenched under water, then mounted on
a glass slide. The sample was then electro-polished at
room temperature for 60 seconds with a solution of 730
ml ethanol, 100 ml ethylene glycol monobutylether,
78 ml perchloric acid, and 90 ml distilled water. A
strong cube texture, {100}〈001〉, was observed after
the annealing, with a small number of grains devi-
ating from cube texture. In order to locate the scan-
ning area, microhardness indents were used. A sec-
ond annealing for 20 minutes at 550◦C, under the
same conditions, was performed to generate the final
microstructure.

A secondary electron image was recorded from the
surface of the crystal and the grain morphology ob-
tained by applying the Gabor Wavelet [10] image-
processing algorithm, which detects the boundaries.
The orientation information was extracted from EBSD
patterns using standard EBSD methods [11]. EBSD
scans were performed in beam control mode on the
Al foil on an XL-40 Philips FEG Scanning Electron
Microscope. A 52 mm diameter phosphor scintillation
screen was used to observe the EBSD patterns, and the
working distance (sample surface to gun tip) was fixed
throughout the data acquisition process. Scan areas of
800×800 µm2 with a three-µm step size were used. It
is important to note that the scan size was chosen so as
to minimize the possible errors and accurately measure
orientation in the scan plane [12].

Simulation

As in [6], in the GWMFE method, interfaces are rep-
resented as parameterized piecewise linear surfaces:

x(s1, s2) =
∑

nodesj

α j (s1, s2)x j

Here, (s1, s2) is the surface parameterization, the sum is
over the N interface nodes, α j (s1, s2) is the piecewise
linear basis function (“hat function”) which is unity
at node j and zero at all other interface nodes, and
x j = (x1

j , x2
j , x3

j ) is the vector position of node j .
We have that

ẋ(s1, s2) =
∑

j

α j (s1, s2)ẋ j

is the velocity of the surface at the point x(s1, s2) (based
upon linear interpolation of node velocities) and

vn = ẋ(s1, s2) · n̂(n̂ is local surface normal)

So

vn =
∑

j

(n̂α j ) · ẋ j (1)

In effect, we have that the 3N basis functions for vn

are equal to nkα j , where n̂ = (n1, n2, n3). These basis
functions are discontinuous piecewise linear, since the
nk are piecewise constant.

The Gradient-Weighted Moving Finite Element
method is to minimize∫

(vn − µσ K )2 dS (2)

over all possible values for the derivatives ẋi . (The inte-
gral is over the surface area of the interfaces). We thus
obtain

0 = 1

2

∂

∂ ẋ k
i

∫
(vn − µσ K )2 dS 1 ≤ k ≤ 3 1 ≤ i ≤ N

=
∫

(vn − µσ K )nkαi dS

Using (1), we obtain a system of 3N ODE’s:

[ ∫
n̂n̂T αiα j dS

]
ẋ j =

∫
µσ K n̂αi dS

or

C(x)ẋ = g(x) (3)



Linking Experimental Characterization and Computational Modeling 139

where x = (x1
1 , x2

1 , x3
1 , x1

2 , . . . , x3
N )T = (x1, x2, . . . ,

xN )T is the 3N -vector containing the x , y, and z coor-
dinates of all N interface nodes, C(x) is the matrix of
inner products of basis functions, and g(x) is the right-
hand side of inner products involving surface curva-
ture. Since n̂n̂T is a 3 × 3 matrix, it is clear that C(x)

has a 3 × 3 block structure. As explained in [6], the
inner products involving curvature can equivalently be
viewed as arising from a surface tension of magnitude
µ on each of the planar triangular cells of our discretiza-
tion of the interfaces. This leads to the satisfaction of
the Herring condition at triple lines.

The system of ODE’s (3) is solved with an implicit
second order backwards difference variable time-step
ODE solver [6]. We use generalized minimal residual
(GMRES) iteration [15] with block-diagonal precon-
ditioner to solve the linear equations arising from the
Newton’s method. More details appear in [6]

To simulate the grain structure evolution, an area of
500 × 500 µm2 was chosen from the scanned exper-
imental microstructure. It is assumed that the grains
are columnar in nature and as such, their boundaries
are perpendicular to the surface [16]. Hence, the grain
boundary structure on the section plane is extruded in
the third (thickness) direction to create the three di-
mensional mesh. In the initial configuration, the mi-
crostructure consists of 26 grains, which were used to
construct a three-dimensional finite element mesh of
4328 tetrahedral elements in which the mesh lines con-
formed to the grain boundaries. Each grain is meshed
independently and combined with LAGRIT [13] mesh
generation software. The initial lattice orientation for
each grain is then assigned based on the EBSD mea-
surements. The total volume of the structure is kept
constant during the simulation and exterior boundaries
are assumed to be quasi periodic. The GWMFE method
minimizes the function,

∫
(v − µκ)2 dA over all possi-

ble values of dx/dt values, where A is the surface area,
x is the vector containing coordinates of all interface
nodes, and t is the explicit time. All other details related
to GWMFE method can be found in reference [6]. The
GWMFE method solves an ordinary differential equa-
tion, where computational time scales with the number
of tetrahedral elements in the simulation box. In an
SGI-O2/R10000, our simulations took approximately
10 minutes of CPU time.

Anisotropy of the model is introduced by a single
parameter dependence in the grain boundary mobility.
In the calculations, the relative mobility in columnar
Al-foil depends on misorientation angle and is low for

Table 1. Experimentally measured relative mobility values of each
grain interface.

Relative
Misorientation mobility Grain numbers (see Fig. 1)
angle (degree) values for each grain boundary

<3 0.03239 3–4 4–7 5–17 7–4 9–8
11–9 25–21

3–4 0.00355 2–9 5–6 5–16 7–9 13–23
15–21 19–20 19–26

4–5 0.037287 2–7 4–6 6–16 9–13 12–13
21–26 25–26

5–6 0.0239 2–10 3–7 6–14 15–16 15–19
25–24

6–7 0.029 6–8 7–8 12–9 13–14 15–18
16–17 19–18

7–8 0.005728 6–15

8–9 0.00934 6–7

9–10 0.0107 9–10 15–20 23–24

10–11 0.05033 24–26

11–12 0.254698 14–21

12–13 0.282448 14–9

13–15 0.404045 1–2 1–10 1–11 8–14 13–22
14–15 14–22 22–21

>15 0.8279 22–25 23–22 24–22

small misorientations but undergoes a sharp transition
to high mobilities between ten and fifteen degrees mis-
orientation [13]. It is assumed that capillarity is the only
driving force for boundary migration. Note that relative
mobility values are calculated based on the low angle
boundaries and all high angle boundaries are consid-
ered to have uniform (high) mobility. The local equi-
librium condition at triple junctions is determined by
the grain boundary energies. Relative boundary ener-
gies and mobilities were extracted through a statisti-
cal/multiscale analysis [17] and are given in Table 1
for the pre-annealed microstructure. The variation in
energy was not considered in these simulations, how-
ever. The first column in Table 1 indicates the relative
grain boundary mobility. The second column denotes
the grains that have an interface with the relative mo-
bility value in the initial microstructure.

Results

The simulated results of microstructure evolution show
large differences between isotropic and anisotropic
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Figure 1. Comparison of experiment and predicted grain morphol-
ogy: Experimentally obtained microstructure (a) before annealing
(500 µm by 500 µm) (b) after annealing, and simulated final mi-
crostructure (top view) with (c) isotropic properties (d) anisotropic
properties.

dependence in terms of grain morphology. It was found
that when starting with identical initial microstructures,
varying the mobility dependence caused significant
differences in the final microstructure. Isotropic (i.e.,
mobility is constant and equal at all boundaries) and
anisotropic simulation results are contrasted in Fig. 1.
In the isotropic case, Fig. 1(c), the final microstruc-
ture has preserved the larger grains, but the smaller
grains have disappeared, as would be expected from
having fewer than six sides. In contrast to the simula-
tion with isotropic properties, examination of the ex-
perimental microstructure, Fig. 1(b), reveals that four
sided grain number 16 did not disappear after anneal-
ing. Additionally, some of the small grains (number 13
and 20) shrank but preserved their identities. In addi-
tion to these grains, there are also some important topo-
logical changes in the final annealed structure. Grains
numbered 8, 10, 19 vanished completely, and num-
bers 21, 22, 25 coalesced into grain number 21. As
shown in Fig. 1(d), for the case of anisotropic simu-
lation, grain topology is correctly predicted except for
the grain number 8.

Microstructures moving under curvature driven mo-
tion obey Von Neumann-Mullins’ law [18], which is
given by dA/dt = ∫

(v) dS, where A is the area of the
grain, andv is the normal velocity (positive when vector
points outward), and the integral is taken over the arc-
length of grain boundary. For an isotropic mobility and
energy, grains, which have sides bigger than six, will
grow and those with fewer than six will disappear. For

Figure 2. Rate of change in the area of grains is determined by the
anisotropy (mobility, and energy dependence of misorientation) of
the boundaries.

anisotropic case, however, this is not always true. The
rate of change in the area of three specific grains (num-
ber 16, 21 and 22) is shown in Fig. 2. Grain number 16,
which has four sides, has an approximately constant
rate that is slightly negative as expected. On the other
hand, grain number 22, which has six sides and a
negative rate of change of area, vanishes completely
(Fig. 1(d)) at the end of the simulation. Grain number
21 also has six sides and alternates between positive
and negative growth rates. At the end of the simulation
it has lost one side and its growth rate has become neg-
ative, in agreement with the von Neumann-Mullins’
law.

Discussions and Conclusion

The comparison between the experiment and com-
puted results provides important details related to grain
evolution. A strong similarity is observed between
growth experiments and anisotropic three-dimensional
GWMFE simulations. It is clear from the simulation
results that anisotropy in the grain boundary energy
and mobility has a major effect on growth process and
the growth is driven by these parameters. Combining
the three dimensional grain growth simulations results
with experimental outputs will provide a computational
tool for the discovery of some new methods to design
meso-structures.

Absolute grain boundary mobility values were mea-
sured by Gottstein et al. in Aluminum bi-crystals
and reduced mobilities (i.e. the product of mobil-
ity with energy) of order 10−8 to 10−7 m2·s−1 for
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two similar types of high angle boundary and various
purities were obtained [14]. For curvatures of about
100 µm−1 (i.e., boundary interface between grain 1
and 2) suggest migration rates of approximately v =
µσκ = 5.10−8100 = 5 µm·s−1. These migration rates
are high when compared to the estimated migration
rates in the experiment (0.1 µm·s−1). We note, how-
ever, that the purity of the material used in the bi-crystal
experiments was significantly higher than that in our
experiments. For the comparison of simulation times
with experiment, these values can be used to estimate
the migration distance during the annealing at various
temperatures.

We conclude that the present simulation method
verified the experimentally determined microstructural
evolution. The simulation model was an idealized grain
growth case, and future extensions may be made to sys-
tems that are more complex and these further studies
should foster a more comprehensive understanding of
grain growth. Extension of this work to a five-parameter
dependence of grain boundary energy and mobility is
in preparation.
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