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Abstract

A set of protein conformations are analyzed by normal mode analysis.  An elastic network
model is used to obtain fluctuation and cooperativity of residues with low amplitude fluctu-
ations across different species.  Slow modes that are associated with the function of proteins
have common features among different protein structures.  We show that the degree of flex-
ibility of the protein is important for proteins to interact with other proteins and as the
species gets more complex its proteins become more flexible.  In the complex organism,
higher cooperativity arises due to protein structure and connectivity.

Introduction

Proteins act alone or in complexes to perform many cellular functions.  Protein-pro-
tein interactions are rather complex.  There are approximately 4200 genes in yeast
that end up approximately 93,000 protein-protein interactions (1, 2).  Another level
of complexity arises when we start thinking about protein complexes, e.g., dimers,
trimers, and tetramers.  However, the number of proteins in a complex is not limit-
ed to such lower numbers, because there are complexes that have more than 50 dif-
ferent proteins.  For example, eukaryotic ribosomes contain 82 integral proteins, and
yeast proteasomes plus their ancillary components comprise 56 polypeptides.  Three
hundred and twenty-six proteins were recently identified being associated with the
RNA polymerase II preinitiation complex from Saccharomyces cerevisiae (3).

The number and type of interactions in proteins are very complex, and protein 3
dimensional structure plays a key role in these interactions.  Mutations and adapta-
tions provide the proteins through evolution to have marginal stability.  Besides, some
residues and regions are conserved in both protein sequence and structure.  Details of
the protein topology in the folded state have been studied by several groups (see for
a review: Taylor et al. (4)).  Freire and coworkers (5) studied the flexibility of sub-
strates that bind to HIV protease.  They observed that peptide substrates are more
flexible than the synthetic peptides and they could adapt themselves better to bind to
the HIV protease.  From computational point of view, one frequently used method
involves molecular dynamics (MD) simulations following the motion and folding of
proteins at the molecular level.  While these techniques are very effective, their high
computational cost is a drawback.  A viable alternative method is the coarse-grained
simulations for describing the vibrational dynamics of simple models (6-10).

Fernandez and colleagues (11) showed that the number of dehydrons in a protein
increases as the species gets more complex.  In this paper, we perform a normal mode
analysis to determine the vibrational motions of proteins across different species.  We
studied the fluctuation of residues with low amplitude fluctuations in slow modes.
We observe that in all cases, a protein that belongs to complex organism has more
correlated motion in its vibrational motions than the protein in the simpler organism.
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Materials and Methods

Our method, which is now known as the Gaussian Network Model (GNM), mod-
els fluctuations of proteins.  The GNM method is very successful in describing the
dynamic characteristics of proteins (12-18).  Comparison with experiments shows
that slow and fast modes of proteins are associated, respectively, with function and
stability (12).  Results from GNM calculations were found to be in excellent
agreement with x-ray crystallographic temperature factors (also called Debye-
Waller or B-factors) (12, 19).  The GNM is based on the following postulate: in
folded proteins, residues undergo gaussianly distributed fluctuations around their
mean positions, due to harmonic potentials between all “contacting” residues.  No
residue specificity need be invoked as a first order approximation.  Instead, the
inter-residue potentials are all represented by the same single-parameter harmon-
ic potential.  The fluctuations of residues are controlled by a harmonic potential
and α-carbons being used as representative sites for residues.  The dynamic char-
acteristics of the molecule are fully described in this model by the so-called
Kirchhoff matrix of contacts.  Two residues are defined to be in contact if the dis-
tance between their α-carbons is less than a cut off radius of 8 Å.  Kirchhoff
matrix of contacts and harmonic potential are defined as

where ∆R is the fluctuation of an α-carbon atom and Γ is the Kirchhoff matrix (or
the contact map).  Note that the generalized inverse of the Kirchhoff matrix is taken
here after eliminating the zero eigenvalue.  Fluctuations of residues are obtained by
inverting the Kirchhoff matrix and given by

where kB is the Boltzmann constant and T is the absolute temperature.  〈∆R∆RT〉
can be expressed as a sum over the contributions 〈∆Ri∆Rj

T〉k of the individual
modes, in an expansion using the eigenvalues λk and eigenvectors Uk of Γ in

Here, the summation is performed over all (0 < k < N) nonzero eigenvalues of Γ.
A first test of the validity of the GNM is to compare the predicted fluctuations of
residues with those observed in experiments (B-factors).  We extracted a set of 3-
D structures for all single chain protein types from protein data bank, and calculat-
ed free energies of 2656 proteins.  Later, we selected a non-redundant subset of 302
proteins with at most 50% sequence similarity.  A force constant of 1.0 ± 0.5
kcal/(mol Å2) has been obtained in 302 proteins which agrees with unpublished
results of Bahar et al. (20) In protein crystals, temperature factors are of the order
of 12-20Å2, corresponding to a displacement of the atoms about their mean posi-
tions of between 0.15 and 0.5Å (21).  However, in almost all crystal structures,
temperature factor is determined empirically and also takes into account a variety
of other factors such as static disorder, wrong scaling of measurements, absorption,
and incorrect atomic scattering curves.  Hence values of temperature factors and
force constant may only be taken as a rough approximation.

Results and Discussion

We have studied a number of small size proteins from protein data bank, PDB,
(Chymotrypsin Inhibitor 2 pdb.2ci2, Muscarinic Toxin/Acetylcholine Receptor
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Binding Protein pdb.1ff4, Type III Antifreeze Protein,pdb.1gzi) which have no
similarity in their protein structures but have the same number of residues
(N=65).  They are all observed to exhibit similar eigenvalue distributions by
using GNM.  We have also studied the fluctuation distributions for these proteins
using slow mode analyzes of GNM (Figure 1a).

Fluctuations are represented by a color code that goes from red to blue, where blue
is the most flexible and the red is the most rigid.  These three proteins exhibit very
different fluctuations but their eigenvalue distributions are similar (Figure 1b).
Based on this observation, we studied a set of 3-D structures from 302 proteins and
calculated the connectivities of these proteins.  GNM model defines the protein
connectivity by the following equation,

where Γ is the contact map, and λ is the eigenvalue which are introduced in the
previous section.  The results from 302 proteins showed that the connectivity of
protein structures scales linearly with protein length (Figure 2).  Combining the
results of Eq. [4] and Figure 2, we can conclude that the proteins which have equal
number of residues have the same connectivity value and the sum of eigenvalues is
also same.  Similar eigenvalue distribution is expected for proteins which have
equal number of residues, but the fluctuations will be different based on topologi-
cal constrains.  This should be an outcome of the fact that a global protein has a
characteristic packing in its cores.  On the average, a residue will have seven non-
bounded neighbors in its first coordination shell (22).  Therefore, slow modes
should have common features among different protein structures.

The interconnection between the folds and functions is a well known fact, such
that folds across different species are conserved.  It is also known that a com-
plex and a simple organism have almost similar number of genes.  The com-
plexity of the organisms should be the result of the interactions between these
genes’ products, namely their proteins.  Although the folds are similar, not all
structural features are conserved across different species.  Fernandez and col-
leagues (11) showed that the number of dehydrons in a protein increases as the
species gets more complex.  These sites are assumed to be interaction sites with
other proteins.  This also suggests that there should be differences among the
dynamics of proteins across species.

We analyzed all the data related to the fluctuations for the same folding domains
across different species (Table I).  The first column gives the names of the pro-
teins.  The second column lists the two PDB codes for the same protein; the first
one belongs to a complex organism and the second one to a simpler organism.
Third and Fourth columns are the residue numbers in the proteins taken from the
PDB.  ρ1 and ρ2 refer to the ratio of the residues that exhibit high fluctuations to
the overall residue numbers for the higher organism and simpler organism, respec-

383
Protein Fluctuations in a

Proteomic Network

connectivity ≡ ΣΓii = Σλk
i k

[4]

Table I
Ratios of highly flexible residues for the same species for different complexities.

Protein PDB code Ν1 Ν2 ρ1∗ ρ2∗ F1
# F2

#

Prion 1qm0,1ag2 104 103 0.26 0.19 0.36 0.30

Ubiquitin 1ubi, 1f0z 76 66 0.33 0.14 0.26 0.23

SH3 protein 5hck,1sem 61 58 0.23 0.17 0.22 0.20

Hemoglobin 1gob,1dlw 155 116 0.18 0.12 0.26 0.24

Chaperone 1byq,1amw 213 213 0.19 0.16 0.68 0.63

Myoglobin 2hbc,1bz6 141 153 0.37 0.33 0.19 0.19

∗ρ1 and ρ2 refer to the ratio of the residues that exhibit high fluctuations to the overall

residue numbers for the higher organism and simpler organism, respectively.
#F1 and F2 are the average residue fluctuations over all modes for the higher organism and

simpler organism, respectively. N1 and N2 are the residue numbers in the organisms.



tively.  A residue is flagged as a highly fluctuating residue if its average fluctua-
tion over the first three slow modes is above its average fluctuation.  The average
fluctuation is calculated from Eq. [3], by taking 1 ≤ k ≤ 3.  Therefore, these num-
bers are simply indicators of whether a protein has a high number of flexible
residues or not.  The seventh and eighth columns are the average residue fluctua-
tions over all modes for the higher organism and simpler organism, respectively.
The average fluctuations are calculated from Eq. [3], by taking 0 < k < N.  In all
cases, we can see that the more complex the organism the more flexible its pro-
teins.  The more complex organisms also have higher ρ values.
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Figure 1: GNM fluctuation analysis of
small proteins (PDB codes: 2ci2, 1ff4, 1gzi)
which has the same length but different
structure are shown in (a).  Fluctuations are
represented by a color code that goes from
red to blue, where blue is the most flexible
and the red is more rigid.  Eigenvalue distri-
butions for these proteins are shown in (b).
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Figure 2: Connectivity value from 302 x-ray structures
which are extracted from PDB.  Connectivity is linear-
ly varying with the protein length.

Figure 3: Illustrative comparative analy-
sis of the packing flexibilities for the same
proteins in different species.  The highly
flexible regions are shown in blue and the
least flexible with red.  The left and right
panels represent the less and more complex
proteins, respectively.  SH3 domains are
from nematode C. elegans (pdb.3sem) (a)
and H. sapiens (pdb.5hck) (b) ; ubiquitin is
from E. coli (pdb.1f0z) (c) and H. sapiens
(pdb.1ubi) (d); and hemoglobin is from
Paramecium (pdb.1dlw) (e) and H. sapiens
subunit (pdb.1bz0, chain B) (f).
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Figure 4: The cooperativity maps of hemoglobin for
Paramecium (a) and H.sapiens (b) are shown.



We observe that when the same protein within a protein family is examined across
different species, there are differences in their flexibilities.  For example, the Src
homology 3 (SH3) proteins in the nematode Caenorhabditis elegans (pdb.3sem)
has less flexibility compared to the human SH3 domain (pdb.5hck) (Fig. 3a).  Since
flexibility determine protein recognition sites and its ability to bind to other mole-
cules, this difference suggests a far more complex recognition mechanism in the
complex species.  Likewise, on the same basis, the human ubiquitin (pdb.1ubi) is
more flexible than its Escherichia coli counterpart (pdb.1f0z) (Fig. 3b).  For the
hemoglobin protein, there are significant differences: the paramecium “hemoglo-
bin” (pdb.1dlw) is more rigid and is monomeric in vivo.  The analogous-fold hemo-
globin (pdb.1bz0) in humans exhibits higher degree of flexibility (Fig. 3c) and
occurs as a tetramer.  Figure 3 and Table I suggest that as more complex species
diverge, the conserved fold associated with a given function becomes more inter-
active as suggested by Fernandez and colleagues (11).  Through out the evolution
we observe increasing number of binding-related residues.

Figure 4 shows the cooperativity maps of two hemoglobin proteins from
Paramecium and H.sapiens that are calculated from Eq. 2.  Cooperativity map are
plotted by a color code that goes from red to blue, where red is the positively cor-
related residues, and the blue is negative.  In addition, yellow color denotes no cor-
relation among residues.  Higher complexity organism (H.sapiens) has more red
and blue regions than the lower complexity one.  In the complex organism, higher
cooperativity arises due to protein structure and connectivity.

The same protein fold is mostly utilized for function across different species.  On
the other hand, the degree of cooperativity of a protein with other molecules is
much higher in complex organisms making it to form more complex pathways.
Therefore genotypic differentiation brings about variability in the extent of
molecular association.  This variability arises from differences in the extent to
which intramolecular hydrogen bonds are shielded from water attack as suggest-
ed by Fernandez and colleagues (11).  Here we also show that, the degree of flex-
ibility of the protein is also important for proteins to interact with other proteins
and as the species gets more complex its proteins become more flexible.  Higher
levels of connectivity are advantageous for certain functions in more complex
species.  The higher organisms remain their complex physiologies without dra-
matically increasing their genome size (the number of genes in the human genome
proved to be deceptively low).  Our results imply that the interactions in a species
are determined by the flexibility in its protein folds and this might be an indica-
tion of the complexity, helping explain how complex physiologies may be
achieved without a significant increase in genome size.

Acknowledgement

This research is supported by MRSEC/MRI seed grant of Pennsylvania State
University funds (to M.C.D.), Institute for Complex Adaptive Matter fellowship (to
M.C.D.), and National Institutes of Heath intramural funds (to O.K.).  We thank
Jayanth Banavar at the Pennsylvania State University for discussions.

References and Footnotes

385
Protein Fluctuations in a

Proteomic Network

1.

2.

3.

4.

5.
6.
7.

J. E. Galagan, S. E. Calvo, K. A. Borkovich, E. U.Selker, N. D. Read, D. Jaffe, W. FitzHugh,
L. J. Ma, S. Smirnov, S. Purcell et al. Nature 422, 859-868 (2003).
P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V.
Narayan, M. Srinivasan, P. Pochart et al. Nature 403, 623-627 (2000).
J. Ranish, E. Yi, D. Leslie, S. Purvine, D. Goodlett, J. Eng, and R. Aebersold. Nat. Genet.
33, 349-355 (2003).
W. R. Taylor, A. C. W. May, N. P. Brown, and A. Aszodi. Reports on Progress in Physics 64,
517-590 (2001).
I. Luque, M. J. Todd, J. Gomez, N. Semo, and E. Freire. Biochemistry 37, 5791-5797 (1998).
I. Bahar, A. Atilgan, M. C. Demirel, and B. Erman. Physical Review Letters 80, 2733-2736 (1998).
F. Tama. Protein and Peptide Letters 10, 119-132 (2003).



386

Demirel and Keskin

8.
9.

10.

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.
21.
22.

R. Lumry. Biophysical Chemistry 101, 81-92 (2002).
O. Keskin, S. R. Durell, I. Bahar, R. L. Jernigan, and D. G. Covell. Biophysical Journal 83,
663-680 (2002).
C. Micheletti, J. R. Banavar, and A. Maritan. Physical Review Letters 8708 (2001).  Art.
no.-088102.
A. Fernandez, R. Scott, and R. S. Berry. Proceedings of the National Academy of Sciences
of the United States of America 101, 2823-2827 (2004).
M. C. Demirel, A. Atilgan, R. L. Jernigan, B. Erman, and I. Bahar. Protein Science 7, 2522-
2532 (1998).
R. L. Jernigan, M. C. Demirel, and I. Bahar. International Journal Of Quantum Chemistry
75, 301-312 (1999).
A. Atilgan, S. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophysical
Journal 80, 505-515 (2001).
I. Bahar, A. D. C. Wallquist, and R. Jemigan. Biochemistry 37, 1067-1075 (1998).
O. Keskin, I. Bahar, D. Flatow, D. Covell, and R. Jernigan. Biochemistry 41, 491-501 (2002).
O. Keskin, X. Ji, J. Blaszcyk, and D. Covell. Proteins 49, 191-205 (2002).
O. Keskin. J Biomol Struct Dyn 20, 333-345 (2002).
M. C. Demirel, I. Bahar, and A. Atilgan. Biophysical Journal 76, A176 (1999).
I. Bahar and B. Ozkan. Unpublished Data. (2002). http://klee.bme.boun.edu.tr/gamma.
X. Ji. National Institutes of Health, Personal Communication (2003).
S. Miyazawa and R. L. Jernigan. Journal of Molecular Biology 256, 623-644 (1996).

Date Received: August 18, 2004

Communicated by the Editor Ramaswamy H Sarma


