
U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Growth of nanostructured thin films of poly( p-xylylene)
derivatives by vapor deposition
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Abstract

Nanostructured thin films of poly( p-xylylene) derivatives are deposited by oblique angle vapor deposition method under low-vacuum
conditions. We showed deposition of columnar nanostructured poly(o-chloro-p-xylylene) and poly(o-bromo-p-xylylene) thin films, and
co-deposition of nanostructured poly(o-trifluoroacetyl-p-xylylene-co-p-xylylene) thin film. Characterization of both the nanostructured and
planar thin films of poly( p-xylylene) are performed with different experimental methods. We developed a generalized strategy towards
depositing nanostructured poly( p-xylylene) derivatives and thus promise a new generation of thin films suitable for biomedical and antifouling
applications.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanoporous films have generated great interest due to their
unusual physical and chemical properties arising from their
high surface area and nanoscale spatial dimension. A nano-
porous film is defined as a continuous connected structure
with porosity in at least one dimension being in the nanometer
range. A wide variety of nanoporous structures (e.g. wires,
membranes and fibers) have been deposited in the last two
decades [1e4].

Nanoporous columnar thin films are assemblies of parallel,
inclined nanowires generally grown by vapor deposition tech-
niques [5,6]. Upright nanowires grow on a substrate that is
kept perpendicular to the flux of source vapor. For oblique
angle deposition, the substrate is tilted with respect to the
incident vapor flux, thereby exciting a self-shadowing process.
If the incident vapor flux is directed, on average, at an angle
a to the substrate plane, the straight nanowires grow at an

angle b� a to the same plane, as shown schematically in
Fig. 1 for a columnar thin film of poly-p-xylylene (PPX).
[2.2]Paracyclophane [7] is first converted to a reactive vapor
of monomers by pyrolysis. The vapor flux of p-xylylene is
then directed towards a tilted substrate where polymerization
occurs on the substrate. Thus, the formation of nanostructured
PPX columnar thin films is influenced by a combination of
nucleation common in thin films [8] with bond formation (i.e.,
polymerization), in addition to geometrical self-shadowing,
surface diffusion along the substrate of incoming monomers,
and bulk diffusion leading to oriented crystallization [9e11].

We showed earlier that nanoporous helical structures of
poly(o-chloro-p-xylylene) (Cl-PPX) can be grown using obli-
que angle deposition technique [9e11]. In this paper, we
expanded the deposition technique to other PPX derivatives
and showed co-polymerization of two PPXs. Particularly,
we showed the deposition of poly(o-bromo-p-xylylene) (Br-
PPX) and poly(o-chloro-p-xylylene), and co-deposition of
poly(o-trifluoroacetyl-p-xylylene-co-p-xylylene) (F-PPX). PPX
films are characterized with various experimental methods.
Results for these nanostructured thin films are compared
with planar PPX thin films. We have introduced a generalized
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process for nanostructured PPX polymerization based on obli-
que angle deposition, which is simple and inexpensive method
for coating of surfaces at an industrial scale.

2. Experimental

2.1. Paracyclophane synthesis

We adopted the methods of Reich et al. [12] and Lahann
et al. [13] to synthesize dibromo[2.2]paracyclophane and
4-trifluoroacetyl[2.2]paracyclophane, respectively (Fig. 2a).
Briefly, bromination of [2.2]paracyclophane leads to four
isomeric dibromides with 45% yield, whereas trifluoroacetyl-
PPX is synthesized by FriedeleCrafts acylation of [2.2]para-
cyclophane with trifluoroacetic acid anhydride using an excess
of AlCl3 (90% yield).

2.2. Substrate preparation

A fresh Si (100) wafer is cleaned by successive immersions
in HCl/CH3OH (1:1 v/v), deionized water, and concentrated
H2SO4. Adherence of the PPX film to the silicon substrate sur-
face is increased by a self-assembled organosilane monolayer.
Styrylethyltrimethoxysilane (Gelest, PA) monolayer is formed
on the silicon substrate by using methods described elsewhere
[14]. The substrate is baked on a hotplate at 120 �C for 4 min
to complete the dehydration reaction that forms the siloxane
bond between the organosilane and the silicon substrate. The
SAM uniformity and thickness is measured by nanoshaving
AFM technique [15].

2.3. PPX thin film deposition

Deposition of a PPX-derivative columnar thin film started
with dimers, which are placed in an evacuated chamber and
converted to a reactive vapor of monomers by pyrolysis
(Fig. 2b). The deposition rate and the deposition pressure
are controlled by the evaporation temperature (150e175 �C)
and the pyrolysis temperature (650e690 �C) of the dimer.
The substrate is held fixed in orientation at a¼ 10�. The dimer
(0.5 g) is inserted into the vaporizer for each deposition, and
the vapor pressure is maintained at approximately 10 mTorr.

The deposition process took 10 min after the required vacuum
level has been achieved. The thin films are deposited on sili-
con substrates.

2.4. Characterization

A Philips XL-40 scanning electron microscope (SEM) is
used for cross-sectional analysis of samples prepared by cleav-
ing thin films in liquid nitrogen. All surface measurements are
performed with a Nanoscope-E atomic force microscope
(Veeco Metrology, CA). Topography images are collected in
ambient air at room temperature, with silicon nitride (SiN)
triangular cantilevers having contact mode tips (DNT-20,
Veeco Metrology, CA). The FT-IR (Bruker Optics, MA) data
were collected with respect to a silicon wafer reference in
air. Spectra are recorded using NortoneBeer apodization
with 4 cm�1 resolution, and for each spectrum 400 scans are
co-added. The spectra are analyzed using OPUS 5.5 software.

3. Results

There are many [2.2]paracyclophane derivatives which
have the same basic molecular architecture but with the aro-
matic or aliphatic hydrogen atoms replaced by other atoms
or chemical groups (e.g. amines, ketones, lactones and esters)
[16]. Three hydrophobic paracyclophane derivatives are
selected for the current work. We synthesized dibromo[2.2]-
paracyclophane and 4-trifluoroacetyl[2.2]paracyclophane
based on methods of Reich et al. [12] and Lahann et al.
[13], respectively. Dichloro[2.2]paracyclophane is purchased
from SCS-coating, IN. Molecular structures and flow charts
of the syntheses are given in Fig. 2a. Deposition process of
nanostructured thin film is same for three PPX derivatives
and it is discussed in detailed earlier [9e11]. Fig. 2b describes
the pyrolysis of the paracyclophane, which is followed by po-
lymerization on the silicon substrate during vapor deposition.

Thin films of PPX have a wide range of usage [17] such as
chemical and corrosion resistant coatings, capacitor dielec-
trics, moisture barriers, electrical insulators dry lubricants
and anti-friction layers in MEMS [18,19], but those are not
nanostructured PPX. Instead, those films may be called ‘‘pla-
nar films’’, as they do not have any morphology or structure; in
contrast, our PPX films are nanostructured with columnar
morphology.

Fig. 3 shows cross-sectional SEM images and correspond-
ing surface topography of the three PPX nanostructured co-
lumnar thin films deposited obliquely on silicon substrates at
an angle a¼ 10�. Surface topography is characterized by an
atomic force microscope (AFM). Each film is an assembly
of inclined columns having a length of 10e20 mm. The nano-
structured columns grow at an angle b¼ 55�. Microscopic
features of films from three different substrates appear to
have close similarity. The surface AFM images presented
also in Fig. 3 indicate the columns are about 50e200 nm in
cross-sectional diameter.

Table 1 shows the measured columns size, roughness and
surface area for three nanostructured columnar thin films in

Fig. 1. Schematic of oblique angle deposition combined with pyrolysis of

p-xylylene. The deposition process starts with [2.2]paracyclophane dimer

and then converted to the poly( p-xylylene) film on a substrate at an oblique

angle (a¼ 100).
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comparison to their planar counterparts. PPX films are com-
posed of w40� 106 aligned columns per square millimeter.
Surface roughness data show that the nanostructured films
are 3e15 times rougher compared to the planar films. This
is expected since planar films form a conformal surface and
their surface roughness is very small. Surface area, column
size and roughness of PPX films are calculated with the Nano-
scope Software (Veeco Metrology, CA).

The nanostructured films are also characterized by infrared
(IR) spectroscopy. The IR spectroscopy for the nanostructured
Br-PPX and the Cl-PPX films indicates similar peaks for
CH stretching (2800e3000 cm�1), aromatic CH stretching
(3026 cm�1), CH deformation (1340 cm�1), C-deformation
(1401 cm�1), and benzene breathing (950 cm�1). IR spectra
of F-PPX show significant differences below 2000 cm�1.
Specifically, the ketone (C]O) peak at 1712 cm�1 and alkyl

halide peak (CeF) at 1135e1194 cm�1 are observed for
F-PPX Fig. 4.

4. Conclusions

A general strategy to fabricate nanostructured PPX thin
films by oblique angle vapor deposition is presented. We
demonstrated deposition of poly(o-chloro-p-xylylene) and
poly(o-bromo-p-xylylene) as well as co-deposition of poly-
(o-trifluoroacetyl-p-xylylene-co-p-xylylene) nanostructured
thin film.

Nanostructured PPX films are currently deposited to
2.5 cm� 2.5 cm silicon substrates in a 30 cm diameter depo-
sition chamber. We note that industrial scale deposition can
be achieved by designing a larger deposition system. Addition-
ally, the nanostructured PPX production technique does not
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Fig. 2. (a) Synthesis of dibromo[2.2]paracyclophane and 4-trifluoroacetyl[2.2]paracyclophane, and (b) Polymerization of poly(o-bromo-p-xylylene) (Br-PPX)

and poly(o-chloro-p-xylylene) (Cl-PPX), and co-polymerization of poly(o-trifluoroacetyl-p-xylylene-co-p-xylylene) (F-PPX) are shown.
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require any mask, lithography method, clean room environ-
ment or a surfactant for deposition. Therefore, the nanostruc-
tured PPX deposition may be utilized in industrial applications
as an inexpensive wide area manufacturing technique.

Fig. 3. Cross-sectional SEM images of columnar nanostructured. (a) F-PPX, (b) Cl-PPX, and (c) Br-PPX and corresponding surface images obtained by contact

mode-AFM (scale bars for AFM scans: X: 1 mm/div, Y: 1 mm/div, Z: 350 nm/div).

Table 1

Measured column size, roughness and surface area on a 2 mm� 2 mm top

section of PPX thin films

Film type Number of

columns

Surface

area (mm2)

Surface

roughness (nm)

Nanostructured F-PPX 152� 19 5.20� 0.14 62.9� 8.1

Nanostructured Cl-PPX 150� 6 5.13� 0.06 46.3� 5.0

Nanostructured Br-PPX 181� 20 5.17� 0.06 68.0� 14.5

Planar F-PPX N/A 4.18� 0.05 17.6� 2.3

Planar Cl-PPX N/A 4.07� 0.01 7.9� 0.8

Planar Br-PPX N/A 4.02� 0.01 4.8� 1.3

The standard deviation is measured on five different sample sections.

Fig. 4. IR spectra for nanostructured thin films of Br-PPX, Cl-PPX and F-PPX

are shown.
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We demonstrated co-deposition of two types of PPX mono-
mers. Novel physicochemical properties can be obtained by
co-deposition of two or more types of PPX monomers with
different side groups. These properties can be manipulated
by changing the film morphology (i.e., chiral, chevron or
columnar deposition). Additionally, the topology of the nano-
structured PPX can be modified by depositing the polymer on
microscale lithographically patterned substrates [20]. Hence,
we can optimize the physicochemical properties of the nano-
structured PPX by controlling surface topology, chemistry
and film morphology at the same time, and create a new gen-
eration of advanced coating material for naval and biomedical
applications.
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