Binding Binding Site V_L V_L V_H V_H F_c F_c F_c

Molecular Forces in Antibody Maturation*

Melik Demirel^{1,2}

¹Allen Pearce Assistant Professor, College of Engineering, The Pennsylvania State University, University Park, PA, USA, E-mail: <u>mcd18@psu.edu</u>

²Alexander von Humboldt Fellow, Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

*Published, Physical Review Letters, 2005

ACKNOWLEDGEM<u>ENT</u>

FUNDING

- ICAM funding
- Penn State University, MRSEC-MRI/Huck Seed Grant
- Penn State University, Start-up funds + Allen Pearce Endowment
- Alexander von Humboldt Fellowship

COLLABORATION

Prof. ARTHUR LESK (Molecular Biology and Biochemistry, The Pennsylvania State University, University Park, PA, USA)

Seminar Outline

 Globular Proteins: Definition, Properties

- Immune System: Antibodies
- Theory/Simulation: Coarse Grained
 Modeling of Antibodies

PROTEINS

- Have unique, compact tertiary structures
 All enzymes and regulatory proteins are globular
- Use α helices, β sheets, β and γ turns, and non-regular structures (to different extent in each)
- Prosthetic groups are often found in pockets
- Hydrophobic amino acids are in the center and hydrophilic on the outside
- Globular proteins often have more than one domain
- More than one subunit participate in quaternary structures

Structure of the peptide bond 20 different subunits (R) with 5 major atoms: N,C,H,O,S= NACHOS

Notice the planar nature of the peptide bond. The trans form is favored. Delocalization of the π -electron orbital over the O-C-N accounts for the partial double bond character of the peptide bond.

The structure of the protein is defined by the rotation around the polypeptide chain

Rotation is allowed only on both sided of the a-carbons. The angles of rotation are defined as ϕ (phi) and ψ (psi)

Beginning of helix formation and collapse

Contribution of the enthalpy and entropy to the free energy of folding

- Average values for protein stability: ~20-50 kJ/mol under physiological conditions
- Reasons for lowered stability:
 - the biological activity requires a certain degree of conformational flexibility
 - proteins must be able to be degraded (especially important for regulatory proteins)
 - kinetic traps along the folding pathway

Thermodynamic parameters for folding of some globular proteins

Protein	ΔG (kJ/mol)	ΔH (kJ/mol)	∆S (J/K·mol)
Ribonuclease	-46	-280	-790
Chymotrypsin	-55	-270	-720
Lysozyme	-62	-220	-530
Cytochrome c	-44	-52	-27
Myoglobin	-50	0	+170

Note: Data adapted from P. L. Privalov and N. N. Khechinashvili, *J. Mol. Biol.* (1974) 86:665–684. Each data set has been taken at the pH value where the protein is maximally stable; all are near physiological pH. Data are for the folding reaction: Denatured \implies native.

"80%-20%"

Similar folding patterns but

Do we see the evolution of structures?

Stati

11 **20**

Protein like to assemble Examples: Tobacco Mosaic Virus, Spider Silk, Human Rhino Virus, Bacterial Flagella

000000000

We can engineer the assembly... Protein Design

Yeates, et al, Current Opinion in Structural Biology Volume 12, 2002, pg 464

Seminar Outline

Globular Proteins: Definition,
 Properties

Immune System: Antibodies

 Theory/Simulation: Coarse Grained Modeling of Antibodies

Immune system

- Group in two categories: Adaptive (antibody production) and innate immune response
- Components: The cells of the immune system originate in the *bone morrow*, where many of them also mature. They then migrate to guard the peripheral tissues, circulating in the blood and in a specialized system of vessels called the lymphatic system
- All the cellular elements of blood, including the <u>red blood cells</u> that transport oxygen, the <u>platelets</u> that rigger blood clotting in damaged tissues, and the <u>white blood cells</u> of the immune system derive ultimately from the same progenitor or procursor <u>cell-the</u> <u>hematopoietic stem cells</u> in the bone marrow.

Stem Cell- Cell Differentiation

Antibodies and Antigenic determinants.

Antibodies

- Schematic structure of antibody molecule is shown. The two arms of the Y-shaped antibody molecule contain the variable region that form the two identical antigen-binding sites. The stem can take one of only a limited number of forms and is know as the *constant region*. It is the region that engages the effector mechanisms that antibodies activate to eliminate pathogens.
- Antibodies are made up four protein chains (lower figure). There are two types of chain in an antibody molecule: a larger chain called the *heavy chain* (green) and a smaller one called the *light chain* (yellow). Each chain has both a variable and a constant region, and there are two identical light chains and two identical heavy chains in each antibody molecule.

Fab

Fo

A model of the IgG

 How are antigen receptors with an almost infinite range of specificities encoded by a finite number of genes? Answered by Susumu Tonegawa (Nobel Carbo prize, 1987, "for his discovery of the genetic principle for generation of antibody diversity")

Binding

Fab

site.

Clonal Selection

- Each lymphocyte (B-Cells and T-Cells) progenitor gives rise to many lymphocytes, each bearing a distinct antigen receptor.
- Lymphocytes with receptors that bind ubiquitous self antigens are eliminated before they become fully mature, ensuring tolerance to such self antigens.
- When antigen interacts with the receptor on a mature naive lymphocyte, that cell is activated and starts to divide. It gives rise to a clone of identical progeny, all of whose receptors bind the same antigen.
- Antigen specificity is thus maintained as the progeny proliferate and differentiate into effector cells. Once antigen has been eliminated by these effector cells, the immune response ceases.

The clonal selection theory of the immune response.

Seminar Outline

- Globular Proteins: Definition and
 Properties
- Immune System: Antibodies and Clonal Selection

 Theory/Simulation: Coarse Grained Modeling of Antibodies

MODELING BIOLOGICAL SYSTEMS

Problem/ Method	Typical Application	Software Examples	Resolution (Scale)	Spatial Realism	Stocha stic Realis	Tim e Step	Time- scale	Serial/ Parall el	Comp Time Cost
Networks of reactions/ Sets of ODEs	Metabolic or signaling pathways	Ecell (192), Gepasi (147,148) VCell (166-168) XPPAUT ^(a)	N/A (cell)	N/A	none	ms	ms - hrs	serial	minimal
Excitation/ Compartmental Circuit	Nerve signaling	GENESIS (204) NEURON (88) NEOSIM ^(b)	μm –mm (cell- multicell)	low-to- medium	none	ms	ms - hrs	usually serial	usually low
Reaction kinetics/ Stochastics	Gene regulation/ transcription	BioSpice(138), MCell (178- 182) StochSim (174) XPPAUT ^(a)	N/A (cell)	N/A	high	ms	ms - hrs	serial	low
3-DReaction Diffusion/Finite Elements	Flow models, Calcium dynamics	FIDAP (54) Kaskade (32), VCell (166-168)	<µm (Cell)	medium- to-high	none	μs- ms	µs - sec	either	low-to- high
3-DReaction Diffusion/ Monte Carlo	Micro- physiological processes	MCell (178- 182)	nm – mm (Subcell- cell)	high	high	ps – ms	μs - sec	either	low-to- high
Macro- molecular ma- chinery/GNM	Collective dynamics	GNM (14)	Å -100 nm (complexes)	high	none	N/A	ps - 10 ns	N/A analytic	minimal
Diffusion in potential field/Poisson- Nernst-Planck	Electrostatic interactions, ion channels	(124, 43)	Å -nm (membrane proteins)	High (implicit solvent)	none	N/A	10 ns	parallel	low-to- medium
Macromolecular motions/Brownian Dynamics (BD)	Conformation dynamics (in flow fields)	CHARMM (8) GROMOS (192)	Å -nm (macro- molecules)	High (implicit solvent)	high	5-10 fs	1-10 ns	parallel	medium- to-high
Molecular Dynamics (MD)	Conformation dynamics & free energies	AMBER, CHARMM (9), GROMOS (192)	A (macro- molecules)	Exact (explicit solvent)	exact	1-2 fs	~ ns	parallel	very high
Molecular structure/Ab initio simulations	Solution of the of Schrodinger equation	Gaussian98 (74)	< Å (electrons- atoms)	exact	exact	-	N/A	parallel	highest

Network Models

Length Scale, m

(quantum mechanics)

Molecular Dynamics Simulation $F_i = m_i a_i$

- □ Full atomic representation \rightarrow noise
- \Box Empirical force fields \rightarrow limited by the accuracy of the potentials
- Time steps constrained by the fastest motion (bond stretching of the order of femtoseconds)
- Inefficient sampling of the complete space of conformations
- High computational cost: Limited to small proteins (100s of residues) and short times (subnanoseconds)

Coarse Grained Modeling Scale ~ 0.1 nm Carboxyl terminus 1.24 1.53 Å Ca 1.32 Å Atomistic Amino terminus (b) Coarse grained 2 3 1

28 Tozzini, Current Opinion in Structural Biology, 15, 144 (2005)

GAUSSIAN NETWORK MODEL (GNM)

Demirel, M.C. (with others) Protein Science, December 1998

Energy= $\gamma/2[\Delta R\Gamma \Delta R^T]$

Using statistical mechanics (Gaussian integral)

Fluctuations= $\Gamma^{-1}=(\gamma/3k_BT)^* < \Delta R \Delta R^T >$

 Γ : Connectivity matrix, ΔR : fluctuation of each residue

Fig 1. GNM of biomolecules. The set of representative interaction sites in (a) forms the nodesof the network in (b)

CONTACT MAP (CONNECTIVITY MATRIX)

Chymotrypsin inhibitor-2 64 residues

$$\Gamma = \begin{cases} -\delta(r_c - r_{ij}) & i \neq j \\ -\sum \Gamma_{ij} & i = j \end{cases}$$

Demirel et al. (1998), Protein Science, v7, 2522 Bahar et al. (1998), Physical Review Letters, v80, 2733

COMPARISON

... of theoretical (thick curve) and experimental (thin curve) B factors for Chymotrypsin inhibitor 2 (2ci2), C2 protein (1cot), and CHE-Y protein (3chy)

Atilgan, et al., 2001, Biophysical Journal, v80, 50

STABILITY

determine

stability

Demirel et al. (1998), Protein Science, v7, 2522

³⁴ time v.s. 1 day of simulation with MD).

Antibody Maturations: 4 structures crystallized by Shultz Group (*Patten et al., Science 271, 1086,1996*).

Flexibilities for primary and secondary structures

□In both primary and secondary antibodies, the flexibility of the binding site decreases upon binding to the hapten, as a result of protein-ligand forces.

❑However, the flexibility of the binding site of the unligated state of the primary antibody is no more than that of the secondary antibody.

$$\langle \Delta R \rangle_{1} = \langle R \rangle_{1} - \langle R \rangle_{0}$$
(1)

$$\langle (.) \rangle_{1} = \int (.) Z_{1} d\Delta R / \int Z_{1} d\Delta R$$
(2)

$$Z_{1} = c_{1} \exp\left(-(\chi_{2}) \Delta R^{T} \Gamma \Delta R - (\Delta R \Delta f_{1})\right)$$
(3)
Force term

$$\frac{\partial \ln(\theta)}{\partial \ln(\Delta f_{1})} = \langle \Delta R \rangle_{1} \text{ where } \theta = \int Z_{1} d\Delta R$$
(4)

$$\frac{\partial \ln(\theta)}{\partial \ln(\Delta f)} = \chi_{r} \Gamma^{-1} \Delta f_{1}$$
(5)

(5) and (6), we find
$$\Delta f_1 = \gamma \Gamma \langle \Delta R \rangle_1$$

Molecular Forces and Displacements

□Upon encounter with hapten, the primary antibody is exposed to larger forces compared to the secondary antibody.

In contrast, binding of the hapten to the secondary antibody is more like a lock-and-key mechanism; the interaction with hapten reduces flexibility but produces substantially less distortion of the structure.

³⁸ Demirel & Lesk, Physical Review Letters, accepted, 2005

Summary

Elastic network models are successful in describing equilibrium protein motions.

- X-ray and NMR relaxation data are in good agreement with elastic network results
- Large structural complexes (e.g. titin, viral capsids) can be studied with coarse grained models. (not possible with any other molecular method)
- We have investigated by calculations based on an elastic network model the relative roles of changes in structure and flexibility in changes in affinity and specificity during antibody maturation.

