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Abstract. Biological systems form complex networks of interaction on several scales,
ranging from the molecular to the ecosystem level. On the subcellular scale, interac-
tion between genes and gene products (mRNAs, proteins) forms the basis of essential
processes like signal transduction, cell metabolism or embryonic development. Recent
experimental advances helped uncover the qualitative structure of many gene control
networks, creating a surge of interest in the quantitative description of gene regulation.
We give a brief description of the main frameworks and methods used in modeling gene
regulatory networks, then focus on a recent model of the segment polarity genes of the
fruit fly Drosophila melanogaster.

The basis of this model is the known interactions between the products of the
segment polarity genes, and the network topology these interactions form. The inter-
actions between mRNAs and proteins are described as logical (Boolean) functions. The
success in reproducing both wild type and mutant gene expression patterns suggests
that the kinetic details of the interactions are not essential as long as the network of
interactions is unperturbed. The model predicts the gene patterns for cases that were
not yet studied experimentally, and implies a remarkable robustness toward changes in
internal parameters, initial conditions and even some mutations.

The success of this approach also suggests a wide applicability of real-topology-
based Boolean modeling for gene regulatory networks. In cases when the information
about the system is incomplete, Boolean modeling can verify the sufficiency of inter-
actions and can propose ways to complete the network. After a coherent picture is
obtained, more realistic kinetic models can be used to gain additional insights into the
functioning of the system.

1 Introduction

1.1 Complex Networks in Genetic Regulation

Recent remarkable progress in molecular biology has led to a complete map
of the genomes of many organisms, and the identification and classification of
the proteins is well under way. The next major challenge is to determine all
the interactions between genes, proteins and other cellular components and to
integrate this knowledge into a system-level understanding. It is now widely rec-
ognized that the networks of interaction and regulation between cellular entities
are highly complex, and their understanding needs a concerted effort between
experiment, modeling and theory.
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Fig. 1. Genes regulate each other’s activity through regulatory networks. Gene tran-
scription into mRNA is influenced by transcription factors, themselves products of
other genes. In addition, post-translational modifications lead to proteins with modi-
fied properties.

Genes and gene products interact and form networks on several levels [1]. On
the genomic level, a class of proteins called transcription factors can activate or
inhibit the transcription of genes into mRNAs. Since these transcription factors
are themselves products of genes, the ultimate effect is genes regulating each
other’s expression by forming so called gene regulatory networks. Proteins can
participate in diverse chemical reactions that lead to modified proteins with
different functions than the originals. Several proteins can also bind to form
protein complexes with new roles. Proteins that are members of a class called
enzymes catalyze the biochemical reactions forming the base of cellular processes
(e.g. metabolism). In many cases the different-level interactions are integrated,
for example in signal transduction networks the presence of an external signal
(a chemical attractor or a hormone) triggers a cascade of interactions that can
involve both biochemical reactions and regulation.

The focus of this article is gene regulatory networks whose components are
genes, mRNAs and proteins, and the interactions include transcription, transla-
tion, transcriptional regulation and posttranslational reactions (see Fig. 1). We
can realize from this description that gene regulatory networks cannot be com-
pletely described by a standard graph of nodes and edges. Specifically, the nodes
have distinct identities as they correspond to diverse cellular components, and
the edges can have two different signatures (signs) corresponding to activation
and inhibition.

Gene regulatory networks play a crucial role during development, the process
in which a unicellular egg gives rise to an adult [2]. Each cell in a developing
embryo has the same DNA, but at no time in their life cycle are all of their
genes expressed, i.e. transcribed into mRNA and synthesizing protein. The basis
of cell differentiation is differential gene expression, and this is accomplished by
interactions between genes, i.e. gene regulatory networks [3].
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1.2 Modeling Gene Regulatory Networks

When trying to understand the role and functioning of a gene regulatory net-
work, the first step is to assemble the components of the network and the interac-
tions between them. This structural information needs to be complemented with
information or hypotheses regarding the kinetics of the interactions. Since de-
velopment is a dynamic process in which the expression of genes can constantly
change, gene network models need to have a dynamical aspect, i.e. they need
to define a state variable for each component, and study how this state changes
by the interactions in the network. This state variable can correspond to the
concentration of mRNAs and proteins, or it can be a binary value corresponding
to the qualitative statement that a gene is expressed or not.

A complete gene regulatory network model incorporates experimental knowl-
edge about the components and their interactions as well as the initial state of
these components, and leads to the known final state or dynamical behavior of
the network. Validated models then are able to investigate cases that cannot be
explored experimentally, for example changes in the initial state, in the compo-
nents or in the interactions, and they can lead to predictions and insights into
the functioning of the system.

1.3 Pioneering Work in Modeling Gene Regulatory Networks

The experimental advances in the mapping of gene regulatory networks are fairly
recent, but modeling general aspects of gene regulatory networks dates back to
the end of 1960s thanks to the pioneering work of Stuart Kauffman and René
Thomas.

In the absence of experimental results, Stuart Kauffman considered an ide-
alized representation of a typical (random) gene network [4,5]. He assumed that
genes are equivalent, and their interactions form a directed graph in which each
gene receives inputs from a fixed number K of randomly selected neighbors. The
state of genes is described by binary (ON/OFF) variables, and the dynamic be-
havior of each variable, that is, whether it will be ON or OFF at next moment,
is governed by a Boolean function. In general, a Boolean or logical function is
written as a statement acting on the inputs using the logical operators “and”,
“or” and “not” and its output is 1(0) if the statement is true (false). In a Ran-
dom Boolean Network (RBN) the functions governing the state of each node are
randomly selected from the 22K

possible K-input Boolean functions, and kept
fixed afterward. Kauffman studied the dynamics of these RBNs, focusing on the
attractors (usually cycles) in the state space of the whole network. He discovered
the existence of a phase transition in an RBN of size N depending on the value of
the parameter K. For K > 2 there are around N/e possible cycles whose length
scales exponentially with N , however, for K = 2 both the number and length
of the limit cycles is only

√
N . Kauffman proposed to identify the number of

attractors of a gene regulatory network with the number of possible cell types,
and noted that the number of cell types seems to increase approximately with
the square root of the number of genes per cell, suggesting that gene regulatory
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networks are in the ordered regime, or on the edge between order and chaos. The
RBN models spawned a lot of research in the physics literature, see e.g. [6–9].

While Kauffman proposed a dynamic view on randomly connected gene reg-
ulatory networks, René Thomas developed a detailed logical description of the
mechanisms governing transcriptional regulation, including the effects of DNA
domains such as promoters, initiators, terminators, and the concepts of genetic
dominance and recessivity [10]. This formalism was later refined to include mul-
tilevel variables and used to study feedback loops, i.e. circular chains of interac-
tion. These loops can be classified into two categories based on the number of
negative (inhibitory) interactions in the loop: if this number is even, the loop is
positive, and if the number of negative interactions is odd, the loop is a nega-
tive feedback loop. Thomas found that a positive feedback loop is a necessary
condition for the existence of multiple steady states, while a negative feedback
loop with two or more elements is a necessary condition for stable limit cycles
[11]. Biologically this means that cell differentiation is based on positive feedback
loops, and homeostasis (stability to small perturbations) is based on negative
feedback loops. The logical framework introduced by René Thomas was success-
fully applied to various gene regulatory networks playing a role in the flower
morphogenesis of the wall cress Arabidopsis thaliana [12] and the development
of the fruit fly Drosophila melanogaster [13,14].

1.4 Current Models

Broadly speaking, the modeling approaches to gene regulatory networks can be
divided into two main groups. In the ‘discrete-state’ approach each network node
(mRNA or protein) is assumed to have a small number of discrete states and the
regulatory interactions between nodes are described by logical functions similar
to those used in programming. Typically time is also quantized, and the network
model that describes how gene products interact to determine the state at the
next time gives rise to a discrete dynamical system [12–18].

A more detailed level of description is used in the ‘continuous-state’ ap-
proach, in which the levels of mRNAs and proteins are assumed to be contin-
uous functions of time, and their evolution is modeled by differential equations
with mass-action kinetics or other rate laws for the production and decay of all
components [19–21]. In order to compare with usually ON/OFF type experi-
mental gene expression profiles, the continuous concentrations are transformed
into binary variables using thresholds.

In this paper I shall focus on a recent model of the segment polarity genes
developed in collaboration with Hans Othmer [18]. In this model we concentrate
on the products (mRNAs, proteins) of segment polarity genes. We reconstruct
the network of interaction between these components from experimental data,
and assume that these interactions can be expressed as Boolean functions. We
find that the dynamic behavior of this model always leads to steady states, and
these steady states are in very good agreement with the experimental data on
the gene expression pattern of wild type and mutant Drosophila embryos. In
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addition, the model leads to insights into the functioning of this network, the
most important being that the network topology is a main source of robustness.

2 The Segment Polarity Gene Network

The genes involved in embryonic pattern formation in the fruit fly Drosophila
melanogaster, as well as the majority of the interactions between them, are
known (for recent reviews see [22–24]). As in other arthropods, the body of
the fruit fly is composed of segments, and determination of the adult cell types
in these segments is controlled by about 40 genes organized in a hierarchical
cascade of gene families [25]. These gene families are expressed in consecutive
stages of embryonic development and have a spatial expression pattern that is
successively more precisely-defined (see Fig. 2). The genes at one step initiate or

Fig. 2. The segmentation of the fruit fly embryo is governed by a hierarchy of gene
families, starting from maternal genes. Each of these genes encode for transcription
factors, and are responsible for the initiation of the genes in the next family. While
the genes in the first three steps are transient, the segment polarity genes maintain a
stable pattern for three hours. Reproduced with permission from [23].
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modulate the expression of those involved in the next step of the cascade. While
most of these genes act only transiently, the segment polarity genes are expressed
throughout the life of the fly, and their periodic spatial pattern is maintained
for at least 3 hours of embryonic development.

The best characterized segment polarity genes include engrailed (en), wingless
(wg), hedgehog (hh), patched (ptc), cubitus interruptus (ci), smoothened (smo)
and sloppy paired (slp)1. The segment polarity genes encode for diverse pro-
teins including the transcription factors Engrailed (EN), Sloppy Paired (SLP),
and Cubitus Interruptus (CI), the secreted proteins Wingless (WG) and Hedge-
hog (HH), and the transmembrane proteins Patched (PTC) and Smoothened
(SMO)2.

2.1 Wild Type Patterns of the Segment Polarity Genes

The segment polarity genes are activated by the pair-rule genes at about 3 hours
after fertilization. The initial state of the segment polarity genes includes two-
cell-wide SLP stripes followed by two-cell-wide stripes not expressing SLP [26],
single-cell-wide wg, en and hh stripes followed by three cells not expressing
them, and three-cell-wide stripes for ci and ptc [2]. This pattern is maintained
almost unmodified for three hours, during which time the initially homogeneous-
looking embryo is divided into 14 parasegments (the embryonic counterparts of
the adult segments) by regularly - distributed furrows. The position of these
furrows coincides with the space between the wg and en -expressing cells, thus
the periodicity of the gene expression drives the future external appearance of the
embryo [25]. The cells in a parasegment are counted from anterior (toward the
head) to posterior (toward the tail). According to this notation, wg is expressed
in the most posterior cell of each parasegment, and en in the most anterior cell.

The segment polarity genes refine and maintain their expression through the
network of intra- and intercellular regulatory interactions shown in Fig. 3. The
stable expression pattern of these genes (specifically the expression of wingless
and engrailed) defines and maintains the borders between different parasegments
and contributes to subsequent developmental processes, including the formation
of denticle patterns and of appendage primordia [2,25]. Homologs of the segment
polarity genes have been identified in vertebrates, including humans, which sug-
gests strong evolutionary conservation of these genes.

The pair-rule gene product SLP activates wg transcription and represses en
transcription. The WG protein is secreted from the cells that synthesize it [25,
27] and initiates a signaling cascade leading to the transcription of en [28]. EN
promotes the transcription of the hh gene [29] and represses the transcription
of ci [30] and possibly ptc [31,32]. The HH protein is also secreted, and binds
to the HH receptor PTC on a neighboring cell [22]. The intracellular domain
1 Many of these genes were named for the phenotypic changes their mutations cause,

e.g. a wingless mutant fruit fly does not have wings.
2 These notations follow the convention that names of genes and mRNAs are italicized,

while names of proteins are capitalized.
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Fig. 3. The network of interactions between the segment polarity genes. The shape of
the nodes indicates whether the corresponding substances are mRNAs (ellipses), pro-
teins (rectangles) or protein complexes (octagons). The edges of the network signify
either biochemical reactions (e.g. translation) or regulatory interactions (e.g. transcrip-
tional activation). The edges are distinguished by their signatures, i.e. whether they
are activating (→) or inhibiting (� ). Terminating arrows (→) indicate translation,
post-translational modifications (in the case of CI), transcriptional activation or the
promotion of a post-translational modification reaction (e.g., SMO determining the ac-
tivation of CI). Terminating segments (� ) indicate transcriptional inhibition or in the
case of SMO, the inhibition of the post-translational modification reaction CI→CIR.

of PTC forms a complex with SMO [33] in which SMO is inactivated by a
post-translational conformation change [34]. Binding of HH to PTC removes the
inhibition of SMO, and activates a pathway that results in the modification of
CI [34]. The CI protein can be converted into one of two transcription factors,
depending on the activity of SMO. When SMO is inactive, CI is cleaved to form
CIR, a transcriptional repressor that represses wg, ptc [35] and hh transcription
[36,37]. When SMO is active, CI is converted to a transcriptional activator, CIA,
that promotes the transcription of wg and ptc [35,37–39].

3 Description of the Model

In the model, each mRNA or protein is represented by a node of a network,
and the interactions between them are encoded as directed edges (see Fig. 3).
The state of each node is 1 or 0, according as the corresponding substance is
present or not. The states of the nodes can change in time. We choose a time
interval that is larger or equal to the duration of all transcription and translation
processes, and we use this interval as the length of a unit timestep. The next
state of node i is determined by a Boolean function of its state and the states of
those nodes that that have edges incident on it.
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3.1 Updating Rules

The functions determining the state of each node are constructed from the inter-
actions between nodes displayed in Fig. 3 according to the following rules (see
also Fig. 4)

(i) mRNAs/proteins are synthesized in one timestep if their transcriptional
activators/mRNAs are present;

(ii) the effect of transcriptional activators and inhibitors is never additive,
but rather, inhibitors are dominant;

(iii) mRNAs decay in one timestep if not transcribed;
(iv) transcription factors and proteins undergoing post-translational modifi-

cation decay in one timestep if their mRNA is not present.
For example, EN is translated from en, and therefore the state of EN at time

t+1, EN t+1 = 1 if ent = 1. Since EN is a transcription factor, it is assumed that
its expression will decay sufficiently rapidly that if ent = 0, then EN t+1 = 0.
These two assumptions mean that

EN t+1 = ent. (1)

Table 1 gives an overview of the Boolean functions for each node. In each case,
subscripts signify spatial position (i.e. cell number) and superscripts signify
time3.

Fig. 4. Assumptions for the kinetics of the interactions. We assume that the timescale
for turning ON or OFF is the same. Transcription requires the presence of activators
and the absence of inhibitors; translation requires the presence of the mRNA.

3.2 Representing the State of the System

Expression of the segment polarity gene occurs in stripes that encircle the em-
bryo, and therefore we treated the two-dimensional pattern as one-dimensional.
We considered a line of 12 cells corresponding to three parasegment primor-
dia (i.e. the spatial regions that will become the parasegments), and imposed
3 In coding these rules we have used an equivalent description of a function giving the

output of every possible combination of inputs.
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Table 1. The Boolean functions used in the model. The functions are based on the
known interactions between mRNAs and proteins shown in Fig. 3, and on the temporal
assumptions listed above. In general the updating rule gives the expression of a node
at time t + 1 as a function of the expression of its effector nodes at time t. However,
there are three exceptions: we assume that the expression of SLP does not change, and
that the activation of SMO and the binding of PTC to HH are instantaneous.

Node Boolean updating function

SLPi SLP t+1
i = SLP t

i =
{

0 if i%4 = 1 or i%4 = 2
1 if i%4 = 3 or i%4 = 0

wgi wgt+1
i = (CIAt

i and SLP t
i and not CIRt

i)
or [wgt

i and (CIAt
i or SLP t

i ) and not CIRt
i]

WGi WGt+1
i = wgt

i

eni ent+1
i = (WGt

i−1 or WGt
i+1) and not SLP t

i

ENi EN t+1
i = ent

i

hhi hht+1
i = EN t

i and not CIRt
i

HHi HHt+1
i = hht

i

ptci ptct+1
i = CIAt

i and not EN t
i and not CIRt

i

PTCi PTCt+1
i = ptct

i or (PTCt
i and not HHt

i−1 and not HHt
i+1)

PHi PHt
i = PTCt

i and (HHt
i−1 or HHt

i+1)
SMOi SMOt

i = not PTCt
i or HHt

i−1 or HHt
i+1

cii cit+1
i = not EN t

i

CIi CIt+1
i = citi

CIAi CIAt+1
i = CIt

i and (SMOt
i or hht

i−1 or hht
i+1)

CIRi CIRt+1
i = CIt

i and not SMOt
i and not hht

i±1

periodic boundary conditions on the ends. We used four cells per parasegment
primordium because when expression of the segment polarity genes begins, a
given gene is expressed in every fourth cell. The state of the system includes a
12-cell wide 1-dimensional periodic pattern for each node in the network which
we represented as a series of black/gray boxes corresponding to cells in which
the given node is ON/OFF (see Fig. 5). To make the periodicity of the pattern
clear, we separated the patterns corresponding to distinct parasegments by short
white spaces.

4 Modeling the Wild Type Segment Polarity Genes

The first step in validating the model is testing whether it captures the wild
type behavior of the system. Therefore we started from the known initial pattern
of the segment polarity genes and updated their states according to the rules
presented on Table 1, checking whether they become stationary.

The initial state of each parasegment primordium includes SLP present in
the last (posterior) two cells, wg present in the last cell, en and hh expressed
in the first (anterior) cell, and ci and ptc expressed in the posterior three cells
[25,26,29,31,32]. Since the proteins are translated after the mRNAs are tran-
scribed, we assumed that the proteins are not expressed in the initial state. The
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Fig. 5. Because the expression pattern of the segment polarity genes is symmetrical,
we represent it with a one-dimensional pattern corresponding to the anterior-posterior
axis. We identify the state of each node in the network with a periodic succession of
black/ gray squares corresponding to cells that express/do not express the given node.
Each segment of four cells corresponds to a parasegment primordium.

en
EN

WG

hh
HH
ptc
PTC
PH

wg

(b)(a)CIR
CIA
CI
ci
SMO

Fig. 6. Wild-type expression patterns of the segment polarity genes. Here and hereafter
left corresponds to anterior and right to posterior in each parasegment. Horizontal rows
correspond to the pattern of individual nodes - specified at the left side of the row - over
two full and two partial parasegments. Each parasegment is assumed to be four cells
wide. A black (gray) box denotes a node that is ON (OFF). (a) The experimentally-
observed initial state. en, wg and hh are expressed in every fourth cell, while the broad
ptc and ci stripes are complementary to en. (b) The steady state given by the model
when initialized with the pattern in (a). This pattern is in excellent agreement with
the observed gene expression patterns. After [18].

one-dimensional representation of the mRNA and protein patterns is shown in
Fig. 6a.

We iterated the dynamical system defined by the rules in Table 1 starting
from the initial state described above. We found that after only 6 time steps,
the expression pattern stabilizes in a time-invariant spatial pattern (see Fig. 6b)
that coincides with the experimentally observed stable expression of the segment
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polarity genes. Indeed, wg and WG are expressed in the most posterior cell of
each parasegment [40], while en, EN, hh and HH are expressed in the most
anterior cell of each parasegment [29,40], ptc is expressed in two cells, one on
each side of the en-expressing cells [25,31]. SMO is present in a broad region
ranging from the wg-expressing to the en-expressing cells [41]. ci is expressed
almost ubiquitously, with the exception of the cells expressing en [30,38]. CIA
is expressed in the neighbors of the HH-expressing cells, while CIR is expressed
far from the HH-expressing cells [35].

Thus the model [18] demonstrates that the interaction between the segment
polarity genes is able to maintain their expression after initialization. The success
in reproducing the stable expression pattern of these genes is a strong indication
that the kinetic details of the interactions do not matter, just their signature
and the regulatory network they form. This conclusion is in agreement with the
results of the continuous-state model of von Dassow et al. [20].

5 The Functional Topology
of the Segment Polarity Network

The success of our model demonstrates that the topology of the regulatory net-
work has a determining role in its dynamics. Nevertheless, knowledge of the
topology alone is not enough to determine what will happen in the network.
Moreover, the presence of dual interaction signatures precludes us from using
standard graph theoretical tools to analyze this network.

To obtain a better insight into the connection between topology and dynam-
ics, we proposed the construction of an expanded graph that reflects the function
of the network. The first step of this expansion is adding complementary pseudo-
nodes corresponding to every node whose negated state enters the Boolean rules
on Table 1. The second step is to introduce composite pseudo-nodes for nodes
whose states are terms of a conjunction in these rules (see Table 2). Consider
the transcription of the hh gene. Figure 3 shows that hh has two incoming edges,
one from EN and one from CIR, and Table 1 shows that transcription of the
hh gene requires both the presence of the EN protein and the absence of the
CIR protein. We introduce complementary pseudo-node, CIR, that is expressed
whenever CIR is not, and connect it to CIR with a symmetrical edge. Then we
add the composite pseudo-node ECR, and we draw two directed edges starting
from EN and CIR and ending in ECR, to represent the dependence of ECR on
the expression of EN and CIR (see Fig. 7). Now hh receives inputs only from
ECR.

Figure 8 shows the nodes and edges corresponding to the mRNAs and pro-
teins in the second cell of the parasegment together with the pseudo-nodes these
mRNAs and proteins interact with, both cell-autonomously, and in the neighbor-
ing cells. Although the introduction of the pseudo-nodes increases the number of
nodes in the network, it eliminates the distinction between edges based on their
signatures; all directed edges in Fig. 8 now signify activation. However, there are
differences in the way multiple activating edges are taken into account: multiple
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Fig. 7. Illustration of the network expansion process used to construct the functional
topology. To express the logical rule governing the transcription of hh graphically, we
introduce the complementary node CIR and the composite node ECR. The expanded
network contains real nodes (filled circles) and pseudo-nodes (open circles), an inter-
dependence relation between CIR and CIR (dotted line), edges corresponding to the
activation of ECR (dash-dotted lines) and a single edge expressing the activation of hh
transcription. After [18].

Fig. 8. Functional topology of the network affecting the second cell of the parasegment.
Pseudo-nodes with multiple indexes correspond to intercellular interactions and either
receive some of their inputs from the neighboring cells, or contribute to the expression
of the nodes in the neighboring cells (not shown). Symmetrical edges between nodes
and their complementaries are drawn with dotted lines, double arrows denote a pair
of oppositely directed edges. The colored edges illustrate two antagonistic activating
clusters starting from en (purple) and EN (red).
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Table 2. Definition of the symbols for pseudo-nodes used in Fig. 8. The state of each
composite node is determined from the logical function giving its relation to the state
of its “parent” nodes.

Symbol of pseudo-node Relation to parent node(s)

Complementary nodes
EN not EN
hh not hh

HH not HH
PTC not PTC
SLP not SLP
SMO not SMO

Composite nodes corresponding to a single cell
(CAECR)2 CIA2 and EN2 and CIR2

(CASCR)2 CIA2 and SLP2 and CIR2

(CSM)2 CI2 and SMO2

(ECR)2 EN2 and CIR2

(wCACR)2 wg2 and CIA2 and CIR2

(wSCR)2 wg2 and SLP2 and CIR2

Composite nodes corresponding to intercellular interactions
Cihj CIi and hhj

CiSMihjhk CIi and SMOi and hhj and hhk

PiHjHk PTCi and HHj and HHk

PiHj PTCi and HHj

WiSj WGi and SLPj

edges ending in composite pseudo-nodes are added by the operator “and”, while
multiple edges ending in real nodes are cumulated by the operator “or”.

Figure 8 illustrates the heterogeneous functional topology of the segment
polarity network. The majority of nodes have few edges, but there are key nodes
with a large number of incoming or outgoing edges. For example, CIR has 5
outgoing edges, while HH has 4. The important role of HH in the network is
reflected in the fact that it affects the future expression of 4 other proteins
(CIA, CIR, PTC and PH) in the neighboring cells, for a total of 8 nodes. Other
nodes such as CIA have several incoming edges, indicating that they can be
activated in many ways. A single node, SLP, has only outgoing edges because it
is constitutively present; all others have both incoming and outgoing edges (the
apparent exceptions interact with nodes in the neighboring cells).

The functional network of Fig. 8 gives insight into the time-evolution of the
expression of the segment polarity genes. For example, we can determine the
cluster of nodes that can be activated by the expression of a given node (see
colored nodes in Fig. 8). The absence of EN (or conversely the presence of EN)
gives the largest activated cluster, containing ci, CI, CIA, ptc, PTC, PH, wg, and
WG. A separate activated cluster starts with the presence of en, and contains
EN, hh and HH. These activating clusters indicate that the cells expressing en
and hh never express wg, ptc or ci. This separation into anterior and posterior
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compartments expressing different genes is well-known, in fact, it is the basis for
calling these genes “segment polarity genes” [2].

While the majority of the activating effects propagate outside the cell, there
are three cases in which an activation can return to its source. In other words,
three short positive feedback loops exist in the network of Fig. 8. The first
two loops connect wg2 with (wCACR)2 or (wSCR)2 and the third connects
PTC2 with P2H1H3. These loops ensure the maintenance of wg and PTC if all
the conditions for the expression of the pseudo-node in the cycle are met. The
successful activation of the wg cycle can induce the stable expression of en and hh
in those neighboring cells where neither SLP nor CIR is expressed, and stable
expression of PTC leads to stable CIR expression two cells removed from en
expression.

6 Gene Mutations

An important method for inferring gene interactions experimentally is to silence
selected genes by mutations. These null mutant genes are not able to synthesize
protein, and if that protein is a transcription factor, the effects of the mutation
propagate through the system (see Fig. 9). Our model is able to simulate the
effect of null mutations by setting the state of the transcript to OFF and not
updating it during the evolution of the system.

Our results indicate that if any of en, wg or hh are blocked, the steady state
is a pattern with no en, wg, ptc or hh, as in Fig. 10a. We can see from Fig. 8
that each of these mutations disrupts intercellular signaling, causing ubiquitous
expression of CIR, which in turn leads to ubiquitous repression of transcription.
This result is in excellent agreement with all experimental observations regarding
en, wg and hh mutant embryos [29,31,42–44].

If the ptc gene is blocked, we obtain a pattern with broad wg, en and hh
stripes ( see Fig. 10b). Indeed, the network in Fig. 8 shows that if ptc is de-
activated, PTC will be ubiquitous, causing all CI to be transformed into CIA,
which leads to two-cells-wide wg and en/hh expression. This pattern agrees with
the experimental results on ptc mutants [29,43–45]. Moreover, our results are in
agreement with all experimental observations of double mutants as well [29,40,
42,46].

Fig. 9. Gene mutations that disrupt transcription factors propagate through the sys-
tem, affecting multiple nodes.
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Fig. 10. Segment polarity gene expression patterns predicted for gene mutations. (a)
Pattern with no segmentation. This pattern arises if any of wg, en or hh is kept OFF
in the model and is independent of the initial state of the other genes. (b) Broad
expression pattern. The stripes of en, wg and hh are two-cells-wide, while the ci stripe
narrows and CIR is not expressed. This state arises when ptc is kept OFF, regardless
of the initial state of other genes. (c) Almost normal pattern obtained for ci mutants
and wild type initial conditions.

If all the other genes are initiated normally, we find that the effect of a ci
deletion does not affect the en, wg and hh patterns (see Fig. 10c). Indeed, Fig. 8
shows that the deactivation of ci leads to the disappearance of CIA and CIR,
but wild-type wg can still be maintained by SLP[39,44]. In conclusion, the model
is in agreement with every observed gene pattern in mutants (see Fig. 11) and
provides predictions for genes whose expression was not studied experimentally.

7 Determination of the Steady States
and Their Domains of Attraction

The fact that the model reproduces the results of numerous experiments re-
markably well suggests that the structure of the model is essentially correct, and
warrants exploration of problems that have not been studied experimentally.
For example, we can determine the complete set of stable steady state patterns
of segment polarity gene expression, and estimate the domain of attraction of
these states. The former can be done analytically by noting that these are fixed
points of the discrete dynamical system, and so xt+1

i = xti, where x corresponds
to any node in the network. Thus a steady state is the solution of the system of
equations obtained from Table 1 by simply removing the time indices (see [18]).
We obtain 10 solutions that correspond to four distinct patterns (see Fig. 12)
and their slight variations.

The first steady state is the pattern with no segmentation first presented
in Fig. 10a. The second corresponds to the wild-type pattern first shown in
Fig. 6b. The third steady state has two-cells-wide en and wg stripes like the ptc
mutant (see Fig. 12c). In the fourth distinct steady state wg is expressed in the
anterior neighbor of its wild-type position, while the en/hh stripe is displaced
posteriorly (see Fig. 12d). This expression pattern corresponds to an embryo
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Fig. 11. Comparison between the experimental results (embryo pictures showing the
expression pattern of en and hh, after [29]) and predictions of the model (black and gray
patterns) for two gene mutations. The model indicates that ci mutation can preserve
the pattern of en and hh, while ptc mutation doubles their expression, in agreement
with experiments.

with no parasegmental grooves, since the end of the wg stripe does not meet the
beginning of the en stripe.

While each of the steady states can be obtained starting from suitable nearby
states, the number of initial conditions leading to a chosen stable pattern, i.e., its
domain of attraction, can be very different. Consider first the number of initial
states that lead to the wild-type steady state. If we fix all nodes but one in their
wild-type pattern, there are 24 = 16 distinct initial patterns corresponding to
the four cells of the parasegment. We do this for each of the 14 variable nodes
in turn (we do not change the expression of SLP) and find that the number of
initial patterns leading to the wild-type steady state is 3 for wg or WG variation,
4 for en, EN, hh or HH variation, 8 for ptc, PTC, CI or CIA variation, and 16
for PH, SMO, ci or CIR variation. When the initial pattern of all 14 nodes can
vary, there are 32 · 44 · 84 · 164 ∼ 6× 1011 prepatterns that lead to the wild type
steady state, which is a fraction of 8× 10−6 of the total number of initial states
Nst = 1614.

We find that the network is very robust with respect to missing initial expres-
sion of nodes. We have determined that the minimal prepatterning that leads to
wild-type stable expression is as follows.

• wg is wild type,
• en and hh are not expressed,
• ptc is expressed in the third cell of the parasegment primordium,
• ci and the proteins are not expressed.
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Fig. 12. Various stable patterns of the segment polarity genes. (a) Steady state with
no segmentation. (b) Wild-type type expression pattern. (c) Steady state with broad
en, wg and hh domains. (d) Ectopic pattern with displaced wg, en and hh stripes.

In summary, it is enough to initiate the expression of two genes in two cells per
parasegment primordium, and the interactions between the segment polarity
genes will initiate the others. This result suggests a remarkable error-correcting
ability for the segment polarity gene network.

Note that the minimal prepattern contains the wild-type expression of wg.
If wg is not expressed initially we find that the final pattern is like Fig. 12a,
regardless of the initial pattern of the other nodes. Consequently, a fraction of
at least 1/16th of the initial states leads to the pattern of Fig. 12a. This finding
suggests that wg has a special role in the functioning of the segment polarity
network, and has to be activated at a specific time and specific cells in order to
obtain wild-type gene expression.

In the other limit, broader than wild-type initial expression of any node
except PH, SMO, ci and CIR leads to the pattern with broad stripes as in
Fig. 12c. This pattern is obtained in the vast majority of prepatterns, comprising
about 90% of the total number of initial state and its features were frequently
observed in overexpression experiments [43,44,47].

The minimal prepattern needed for the ectopic pattern with displaced wg
and en stripes (Fig. 10c) is wg expression in the third cell of the parasegment
primordium (the same as its steady pattern), and ptc expression in the last cell of
the parasegment primordium, where the wild-type stripe of wg would normally
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be. Note that this minimal initial condition is simply a shifted version of the
minimal condition for the wild-type steady state. In practice the simultaneous
ectopic initiation of several nodes is very improbable, and indeed, this steady
state has never been observed.

In addition to steady state analysis we have performed a systematic analy-
sis of the dynamics of the network when the initial expression of genes differs
from the wild-type initial condition. In principle the attractor for some initial
conditions could be periodic in time, but we have found that the only stable
attractors are steady states. Since the purpose of the segment polarity network
is to stabilize and maintain the parasegment borders, this result is biologically
realistic.

8 Possible Changes in the Assumptions

Our goal in constructing this model was to base it on the topology of the regu-
latory interactions and have as few additional parameters as possible. However,
there remain a few assumptions that might not be necessary or, on the contrary,
could reveal essential constraints on the network.

8.1 Equal Timescale for Synthesis and Decay

We assumed that the expression of mRNAs/proteins decays in one time step
if their transcriptional activators/mRNAs are switched off. This conjecture is
probably too severe, as the decay time of proteins is usually longer than the
time their synthesis takes. Therefore we studied a variant of the model in which
the expression of a protein is maintained for at least two steps [18]. We find that
this variant leads to exactly the same steady states as the original model, and
these states have approximately the same basins of attraction4. The two-step
model reaches the wild-type steady state shown in Fig. 6b if it is started from
the initial pattern of Fig. 6a, and leads to the same states for gene mutations. The
only change is in the intermediate states visited en route to the final state: both
the wild-type and the broad type pattern stabilizes on average 30% faster using
the two-step assumption. On the other hand, the pattern with no segmentation
is reached at a slightly lower rate than in the original model. In conclusion,
the two-step assumption provides a more realistic modeling of the decay of the
proteins without changing the conclusions of the model.

8.2 Assumptions for WG and PTC

The model contains two exceptions to the one-step decay rule through the as-
sumptions of persistence of existent wg and PTC expression. The stability of
these nodes has a major role in stabilizing the expression of the segment po-
larity genes, reflected in the existence of the cycles in the functional topology
4 Note that in this case limit cycles are possible.
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of the network (Fig. 8) and in the fact that the steady states are completely
determined by the pattern of wg and PTC. It is therefore important to check
what happens if wg and PTC decay in one step as other mRNAs and proteins.

If we assume that

wgt+1
i = CIAti and SLP ti and not CIRti, (2)

it is still possible to arrive at the wild-type steady state, but only for much more
restricted initial states. Furthermore, the resilience of the network to mutations
in ci is destroyed, and all initial states lead to the steady state with no segmenta-
tion. Since it is observed experimentally that ci null mutants still display almost
normal segmentation [44], we can conclude that the stability of wg is required
for the functioning of the segment polarity genes. This suggests a special role for
SLP as the main activator of wg, and underlies the need for its stability.

If we do not assume the maintenance of initial PTC expression, the pattern
of PTC will follow that of its transcript and split into two stripes. This will
cause the complete disappearance of CIR and the only steady state will be the
pattern with broad stripes as in Fig. 10b. Thus the persistence of PTC is a major
requirement for the function of the segment polarity network, and suggests that
the protein has special structural properties.

8.3 Four-Cell-Wide Parasegments

During the three hours of stable segment polarity gene patterning the paraseg-
ment is enlarged due to two rounds of divisions [2]. While the wg stripe remains
a single cell wide, the en stripe widens to three cells. The maintaining of this
en requires WG transport, and, indeed, wingless protein is seen to diffuse over a
distance of 2-3 cell diameters [48]. In order to determine if our model is able to
describe the segment polarity gene patterns in later stages, we applied it to the
transition between a four- and eight-cell-wide parasegment. We started with the
wild-type pattern of Fig. 6a and assumed that each cell divides into two iden-
tical cells, with the same genes expressed in each of the two. We also assumed
that WG and HH can be transported through the nearest neighbors of the cells
expressing their mRNAs. The model leads to the steady state represented in
Fig. 13, with a single cell wide wg stripe, three cell wide en and hh stripes, and
two ptc stripes flanking the en domain. This steady state agrees perfectly with
the wild-type pattern observed in 8hr old embryos [25,30,31,41,38].

8.4 Stable SLP

Throughout our analysis we assumed that the expression of SLP does not change.
To test whether this assumption is necessary, we have studied the effects of
inactivated and overexpressed SLP. We obtain seven final states for inactivated
SLP, but none of them corresponds to the wild-type pattern. The closest state,
obtained when we start from wild-type initial conditions, has a wild-type wg and
ptc pattern, but en and hh are expressed on both sides of the wg stripe and CIR
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wg
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EN
hh
HH

CIR
CIA
CI
ci

ptc
PTC
PH
SMO

Fig. 13. Stable expression pattern of the segment polarity genes after a round of cell
division, as obtained from our model. We assume that at this stage WG and HH can
be transported through the neighboring cells. This pattern is in good agreement with
experimental observations of 8hr old embryos. After [18].

wg
WG
en
EN
hh
HH

CIR
CIA
CI
ci

ptc
PTC
PH
SMO

Fig. 14. The pattern obtained from our model when we start from wild-type initial
conditions, but SLP is not functional. Note that en is expressed on both sides of the
wg stripe. After [18].

is not absent (Fig. 14). At this point this state is a theoretical prediction that
can be verified by conditional SLP mutants (i.e., mutants that have normal pair-
rule activity, but no segment polarity activity). We also find that ubiquitously
expressed SLP leads to the state with no segmentation presented in Fig. 10b. This
finding is in agreement with experimental results [26]. Based on these results,
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and the important role of SLP in maintaining wg transcription, we conclude that
the SLP protein plays a vital role in this network.

9 Conclusions

The model demonstrates that the topology of the regulatory network plays a
determining role in the dynamics and the stability of the segment polarity genes.
The success in reproducing wild type and mutant gene patterns indicates that
the kinetic details of the interactions do not matter, as long as their net effect
is preserved. Our simulations also suggest a remarkable robustness and error
correcting ability of the segment polarity gene network. We found that a large
fraction of initiation delays can be rescued, and the network can compensate
even for some gene mutations . The model also gives numerous predictions that
can be tested experimentally. First, we concluded that the wingless gene plays a
key role in the system, and it is imperative that it be initiated at the right time
in the right pattern. However, non-initiation of engrailed and hedgehog can be
rescued by the activity of the network. Experiments with conditional mutants
defective in initiation could verify these predictions. Second, we found that the
state of the segment polarity genes can evolve into a pattern with displaced
stripes if initiated in a certain way. While this ectopic initiation is difficult, it
should be possible. Finally, we concluded that the stable expression of SLP is a
crucial requirement; this could be tested by the isolation of the segment polarity-
and pair-rule roles of SLP.

The two-step model represents a step toward modeling the transition from
the initial state to the final steady state of the segment polarity network. A
more realistic model would assume different time intervals (expressed in number
of steps) for the decay for mRNAs and proteins. While this extension would
involve unknown parameters, the condition of reaching the same steady states
as the original model would provide constraints on the variability of the decay
rates. Another direction where the model could be extended is to consider a two-
dimensional array of cells. It is known experimentally that the stripes of segment
polarity genes are not initiated as straight lines, but have jagged borders [2].
During the functioning of the segment polarity network these stripes straighten,
and the parasegment borders become sharp. A two-dimensional simulation of
our model could lead to important insights into this process.

The model presented here is part of a larger family of models using a logical
approach to gene regulatory networks [13–17,50]. As illustrated by these mod-
els, this approach enables the integration of qualitative observations on gene
interactions into a coherent picture, while adding a minimum of additional ki-
netic hypotheses. The analysis of a Boolean model is more tractable than that
for a model based on differential equations, which inevitably has numerous un-
known parameters, and a Boolean model facilitates a more systematic study of
the possible steady states and their basins of attraction5. We envision realistic
5 Note that Boolean logic can be extended to so-called polynomial logic applicable to

multi-level variables, see [49].
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topology-based Boolean modeling as an important first step in understanding
the interplay between the topology and dynamics of gene regulatory networks
and testing the completeness of available topological information. While the seg-
ment polarity gene network was successfully modeled by a simple synchronous
binary Boolean model, other networks require more detailed models incorporat-
ing asynchronous updating and/or multi-level variables [13,14]. Of course there
are undoubtedly systems, such as metabolic networks, for which a Boolean ap-
proach might not be an appropriate first level of analysis.
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