
A Brief Introduction to the Physical Basis for Electron Spin Resonance 

 
In ESR measurements, the sample under study is exposed to a large slowly varying 

magnetic field and a microwave frequency magnetic field oriented perpendicularly to the applied 

field [1,2]. Usually the measurements are made at an X band: a microwave frequency  9.5 GHz.  

An unpaired electron has two possible orientations in the large applied field and thus two 

possible orientation dependent energies. (From classical electricity and magnetism, the energy of 

a magnetic moment in a magnetic field H is - H.) Magnetic resonance occurs when the energy 

difference between the two electron orientations is equal to Planck’s constant, h, times the 

microwave frequency. For the very simple case of an isolated electron, the resonance requirement 

may be expressed as 

 

Hghv e0 ,       (1) 

 

where g0 = 2.002319 and  is the Bohr magneton, emeh 4/ , where e is electronic charge 

and me is the electron mass. The Bohr magneton is 9.274015x10-28 J/G. 

Expression (1) describes the resonance condition for an electron which does not otherwise interact 

with its surroundings. The structural information provided by ESR is due to deviations from this 

simple expression. For relatively simple trapping centers, including all which have been studied in 

MOS systems, these deviations are due to spin-orbit coupling and electron–nuclear hyperfine 

interactions.  

 

A. Spin-orbit coupling 

The deviations from expression (1) due to spin orbit coupling come about because a 

charged particle, the electron, is traveling in an electric field due to the nuclear charge. It therefore 

experiences a magnetic field B=Exv/c2, where E is the electric field, v is the velocity, and c is the 

speed of light. The spin-orbit interaction may be understood qualitatively (and only qualitatively) 

in terms of the Bohr picture: an electron moves about the nucleus in a circular orbit. It would 

appear to an observer on the electron that the positively charged nucleus is in a circular orbit about 

the electron. (It appears to an unsophisticated observer on earth that the sun is in a circular orbit 

about the earth.) The nucleus thus generates a local magnetic field which would scale with the 



electron’s orbital angular momentum, rxp, and with the nuclear charge. One would thus correctly 

surmise that spin-orbit coupling interactions increase with increasing atomic number and orbital 

angular momentum quantum number.  This spin-orbit interaction is schematically illustrated in 

figure 2.  (Note: Figure 2 is intended to provide only a qualitative approximation of reality.) 

(a) 

(b) 

 

 

Figure 2. (a) An electron orbiting a nucleus in the (not quite right but illustrative) Bohr picture (b) An observer on the 

electron observes the motion of the nucleus around the electron.  This results in a current around the electron and a 

local magnetic field.  The local field increases with nuclear charge and increasing electron orbital angular momentum.  

Therefore, this contribution to the local field reflects the chemical nature of the site. 

 

In solids, the spin-orbit interaction is ‘‘quenched’’ but a second order effect appears from 

excited states. This effect scales with the applied magnetic field and depends on the orientation of 

the paramagnetic defect in the applied magnetic field. The spin-orbit coupling may thus be 

included in the ESR resonance condition by replacing the constant g0 of expression (1) with a 

second rank tensor gi j . The symmetry of this tensor reflects the symmetry of the paramagnetic 

center. Under some circumstances, the symmetry of the tensor may permit identification of the 

defect under study. 

Perturbation theory allows calculation (with modest accuracy) of the g tensor for the simple 

defects. The components of the g tensor are given by 
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Here g0 is the free electron value,   the atomic spin-orbit coupling constant, Li and Lj are 

angular momentum operators appropriate for the x, y, or z directions, and the summation is over 

all excited states k. State | > and energy E correspond to the paramagnetic ground state of the 

system. The g tensor can often, by itself, provide structural information if the system under study 

contains nuclei of significantly different charge. The atomic spin orbit coupling constant, as figure 

2 suggests, is a very strong function of nuclear charge. Thus a germanium dangling bond spectrum 

likely yields a much larger range of g tensor components than a silicon dangling bond.  

 

B. Electron-nuclear hyperfine interactions 

The other important source of deviation from expression (1) is the hyperfine interaction of 

the unpaired electron with nearby nuclei. Certain nuclei have magnetic moments; some important 

examples in semiconductor device materials are 7.8% of germanium nuclei, 73Ge (spin 9/2), 4.7% 

of silicon nuclei, 29Si (spin ½), almost 100% of hydrogen nuclei, 1H (spin ½), as well as essentially 

100% of phosphorous nuclei, 31P (spin ½). The near 100% abundant 14N nucleus has a spin of 1.  

A spin 1/2 nucleus has two possible orientations in the large applied field; a spin 1 nucleus three 

possible orientations. Each nuclear moment orientation corresponds to one local nuclear moment 

field distribution.  

We envision the nuclear moment interacting with an unpaired electron residing in a wave 

function which is a linear combination of atomic orbitals (LCAOs). For intrinsic defects in SiGe 

and related systems, the most important cases almost certainly involve s- and p-type wave 

functions. (For defects involving transition metal impurities, analysis will be somewhat more 

complicated but the basic principles are the same.) The LCAO for an unpaired electron can be 

written as 

 

  
n
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where s  and p  represent the appropriate atomic orbitals corresponding to the nth site, 2

na

represents the localization on the nth site, and 2

sc  and 
2

pc represent, respectively, the amount of s 

and p character of the wave function on the nth atomic site. 



 

For a site in which the unpaired electron is reasonably well localized at a single atom, the analysis 

is particularly simple. To first order we can interpret ESR spectra from such a site in terms of s/p 

hybridized atomic orbitals localized at that central atom. (The generalization to a defect wave 

function involving significant sharing by several atoms is very straightforward.[ 1])  

The electron nuclear hyperfine interaction of an electron in a p orbital is anisotropic: it 

corresponds to a classical magnetic dipole interaction as schematically illustrated in Fig. 3. The 

interaction is strongest when the field is parallel to the symmetry axis. The sign of the interaction 

changes and the magnitude is decreased by one half when the field is perpendicular to the 

symmetry axis. When the electron and nuclear moments are aligned by a strong magnetic field in 

the z direction, a reasonable assumption for work discussed in this appendix, only the z component 

of the dipolar field is important, because the interaction energy involves a dot product. -H. This 

z component, nng  (1-3 cos2  )r-3, is averaged over the electronic wave function to produce the 

dipolar contribution,  
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Figure 3. Interaction of the nuclear moments dipole field (lines) with the p orbital electron (shaded areas).  In (a) the 

applied field, and thus the nuclear moment, is aligned parallel to the orbital symmetry axis. In (b) the applied field, 

and thus the nuclear moment, is aligned perpendicular to the orbital symmetry axis. 

(a) 

(b) 



 

 

Figure 4. Interaction of the nuclear moments dipole field (lines) with the p orbital electron (shaded areas).  The 

interaction of the electron and the applied magnetic field is axially independent because of the spherical symmetry of 

the s orbital. 

 

The electron–nuclear hyperfine interaction of an electron in an s orbital is isotropic. This 

interaction is illustrated in Fig. 4. The figure shows why the interaction is isotropic. The spherical 

symmetry of the orbital results in zero interaction with this field except for a spherical region about 

the nucleus with a radius of an imaginary current loop generating the nuclear moment’s field. Since 

the s orbital has a nonzero probability density at the nucleus, a large isotropic interaction results. 

The s orbital hyperfine interaction can also be computed from an elementary electricity and 

magnetism calculation: the magnetic field at the center of a current loop of radius a is given by 2 

/a3, where m is the magnetic moment of the current loop. The probability density of the electron 

varies little over the volume of the nucleus; take it to be constant, 
2
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the fraction of the electron wave function at the nucleus, to be 
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The magnetic moment of the nucleus is the nuclear g factor, gn, times the nuclear Bohr 

magneton, n . Thus, the isotropic or Fermi contact interaction is given by 
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where 
2

)0( represents the unpaired electron probability density at the nucleus. 

Both isotropic and anisotropic hyperfine interactions are likely present for quite a few of 

the defects to be observed in SiGe systems. This is so because the unpaired electron wave functions 

generally involve both p-orbital and s-orbital character, and in some cases d-orbital character as 

well. The hyperfine interactions, like the spin-orbit interactions, are expressed in terms of a second 

rank tensor. In many cases, to a pretty good approximation, the centers have axially symmetric 

wave functions and thus an axially symmetric tensor is appropriate. 

With the magnetic field parallel to the p orbital symmetry axis, the anisotropic coupling of 

Eq. (4) yields (4/5) 3rg nn ; the field perpendicular to the symmetry axis results in an 

interaction of half the magnitude and opposite sign -(2/5) 3rg nn . This result is intuitively 

satisfying and consistent with the sketches of Fig. 3.  

The components of the hyperfine tensor correspond to sums of the isotropic and anisotropic 

interactions for the applied field parallel and perpendicular to the unpaired electron’s orbital 

symmetry axis: 

 

 
anisoiso|| 2AAA  ;      (7) 

 anisoiso AAA  ,      (8) 

where 
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For a paramagnetic center with a specific orientation (designated by the angle   between 

the symmetry axis and the applied field vector) the resonance condition is 

 



 AMHH 10  ,      (10) 

 

where eghvH /0  , and M1 is the nuclear spin quantum number, 
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Equations (10)–(12) and only moderately more complex general case expressions provide 

a very straightforward basis for analyzing ESR results for defects with a specific orientation with 

respect to the applied magnetic field.   

The description of ESR spectra of defects within a poly-crystalline or amorphous film, such 

as an SiO2 passivating layer, is more complex but still comprehensible. All defect orientations are 

equally likely and, due to the lack of long range order, slight differences in local defect geometry 

may be anticipated. The presence of defects at all orientations leads to the continuous distribution 

of both g and A values from 
||g  and 

||A  to g and A . Differences in local geometry may also lead 

to slight defect-to-defect variations in 
||g , g , 

||A , and A  .  

 

   (a)      (b) 

Figure 5. (a) Randomly oriented “dangling bond defects” lead to a relationship with any particular direction which is 

(b) not random at all.  Many more dangling bonds point in a direction perpendicular to an axis than parallel to it.  Thus, 

the ESR pattern of a random array of defects will yield a weak signal corresponding to the ESR parameters for the 

field parallel case and a strong signal for the field perpendicular case. 

 



Both of these complications are relatively easy to deal with. The random distribution of 

defect orientation can be dealt with easily in terms of analytical expressions found in most ESR 

textbooks. Again, let’s think about the somewhat simplified case of an axially symmetric defect 

wave function. (The most general lowest possible symmetry case is a logical extension of the 

higher symmetry case and is well understood.) For axially symmetric centers, far fewer centers 

will have the symmetry axis parallel to the applied field than perpendicular to it; thus the ESR 

spectrum intensity will be far stronger at the A  and g  values than at 
||A  and 

||g  .) The slight 

defect-to-defect variations in g and A values lead to broadening of the line shapes anticipated for 

unbroadened tensor components. (The process is illustrated in Fig. 6.) 

The evaluation of ESR hyperfine tensor components allows for a reliable and moderately 

precise identification of the unpaired electron’s wave function.  

A little common sense usually allows one to identify the magnetic nuclei involved in 

observed hyperfine interactions. (Common sense involves inspection of the fraction of the 

spectrum is split by the hyperfine lines, counting the number of hyperfine lines, if possible 

evaluating the symmetry of the defect spectrum…)  Having identified the nuclear species involved, 

a first order analysis of the unpaired electron wave function is extremely straightforward in terms 

of the LCAO picture. For defects in a crystalline environment, Eq. (12) can be fit to the ESR 

spectrum for multiple orientations. (For more complex defects, the extension of Eq. (12) to the 

most general case is reasonably straightforward.[1])  For simple defects in a polycrystalline 

environment one may fit the appropriately broadened analytical expressions to the ESR spectra to 

yield A  and 
||A . (This process is illustrated in Fig. A5.)   By applying Eqs. (7) and (8) to this 

result, one may then obtains the isotropic and anisotropic coupling constants Aiso and Aaniso . 



 

Figure  6. A schematic plot of ESR amplitude versus magnetic field corresponding to a site with axially symmetric g 

and hyperfine tensors and a spin-1/2 nucleus in  a polycrystalline material, such as a polycrystalline thin film of SiGe. 

Note that the breadth of the lines depends on the range of variation in the g and hyperfine tensors. 

 

Tabulated values of Aiso and Aaniso calculated for 100% occupation probability can then be 

utilized to determine the hybridization and localization of the electronic wave functions. For 

example, the isotropic and anisotropic coupling constants for an electron 100% localized in a 

silicon s and p orbital are, respectively, ao=1639.3 G and bo=40.75 G. In Fig. 7, we illustrate an 

ESR trace of the E’ center, the dominating deep hole trap in high quality thermally grown oxides 

on silicon. 

 

 

 

 

Figure 7. The ESR pattern of E’ centers from SiO2. The strong central peak ( with about 95% of the total integrated 

intensity) corresponds to the 95% abundant 28Si non-magnetic nuclear sites.  The two weaker side peaks (with a 

combined intensity of about5%) are due to the 29Si magnetic nuclei sites which are about 5% abundant. 



An application of the analysis schematically indicated in Fig. 6 indicates that Aiso=439 G 

and Aaniso=22 G. If the electron were 100% localized in a silicon s orbital, we would expect an 

isotropic coupling constant of ao =1639.3 G. We measured 439 G; thus the orbital has 439/1639

 27%s. If the electron were 100% localized in a silicon p orbital we would expect Aaniso=bo=40.75 

G. We measured   22 G; thus, the orbital has 22/40.75 54%p. The analysis indicates a 

localization on the center silicon of about (54+27)=81%. Although the crude analysis just 

discussed is not extremely precise it is, to first order, quite reliable. One should realize that the 

isolated atomic values obtained for ao and bo are themselves only moderately accurate and that 

placing an isolated atom in a matrix of other atoms will inevitably alter the constants somewhat. 

Nevertheless, a straightforward analysis of hyperfine parameters provides moderately accurate 

measurement of hybridization and localization. 

 

References in text can be found on page labeled “References” on website 

 

 


