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Abs t rac t - -The  coalescing process from microcracks to a fatal macroscopic crack is dominated by 
the strong interaction among  neighbouring microcracks. The distribution of  microcracks modifies 
the strength and toughness of  a brittle material. The present paper focuses on the case of strongly 
interacting collinear microcracks, and quantifies the influence by the statistical distributions of crack 
lengths and ligament sizes. The strength of  a brittle solid decreases as the s tandard deviation of  
those distributions increases. Furthermore,  we predict the scale dependency of  brittle materials : a 
specimen of  large size would have lower strength than a small specimen with the same microcraek 
density. The analysis indicates that the statistical strength of  a brittle material with strongly inter- 
acting collinear microcracks can be correlated by a three-parameter Weibull distribution. © 1998 
Elsevier Science Ltd. 

1. I N T R O D U C T I O N  

Brittle materials are featured by the existence of randomly distributed microcracks. For a 
solid weakened by microcracks, considerable progresses have been achieved in estimating 
its overall stiffness. The overall stiffness can be accurately estimated through the self- 
consistent method (Budiansky and O'Connell, 1976), the generalized self-consistent method 
(Christensen and Lo, 1979), and Mori-Tanaka method (Mori and Tanaka, 1973; Taya 
and Chou, 1981). The above-mentioned homogenization methods, however, are suspectable 
for the strength estimate of brittle materials. 

Experiments (Evans and Wiederhorn, 1984; Wiederhorn and Fuller, 1985) revealed 
that the strength and toughness of brittle materials are sensitive to the microstructures and 
exhibit a wide Weibull distribution. For a brittle material of fixed crack density and 
average crack length, the statistical distribution of the strength declines as the specimen 
size increases, or as the deviation of crack lengths (or ligament lengths) increases. 

The scattering in the strength of brittle materials suggests a statistical theory. Weibull 
(1939) introduced a principle which states that a material breaks when the weakest mic- 
rocrack in the material leads to a fatal crack. The above weakest link theory (WLT) formed 
the basis of many subsequent statistical models for the failure prediction of brittle materials. 
Batdorf and Crose (1974) extended the analysis of Weibull to the cases of multiaxial stress 
state. A parallel analysis was also conducted by Rufin et al. (1984) by incorporating WLT 
with the independent action theory. Evans (1978) developed a statistical analysis for 
distributed penny-shaped cracks based on a critical strain-energy fracture criterion. 
Recently, She et al. (1991) derived a formula for evaluating the failure probabilities of 
brittle materials under a general fracture criterion, which contains the models mentioned 
above as the special cases. Experimental results were presented (She and Landes, 1993) to 
support their analysis. 

These models can explain the strength data of brittle materials to some extent, but 
nevertheless share a common weakness : the strong interaction among nearby microcracks, 
as well as its role in the coalescing process to form a fatal crack, has not been addressed. 
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In the present work, we formulate the coalescing process of microcracks strictly as the 
outcome of interacting stress intensity factors (SIF). The interacting SIF for collinear 
microcracks can be estimated by a method proposed by Kachanov (1985, 1987). The 
accuracy of this evaluation is verified by checking its prediction against the numerical 
solution of the original system of integral equations. Based on this estimate of strongly 
interacted microcracks, we propose a statistical analysis to predict the failure probabilities 
of an infinite plate containing collinear microcracks. Two simple cases are examined in 
detail. The first case concerns N collinear microcracks of equal length, but with distributed 
ligament sizes. The second case concerns N collinear microcracks of distributed lengths 
separated by ligaments of equal size. Theoretical analysis and examples for each case are 
presented. Examples for both cases are verified by direct numerical simulations on stat- 
istically generated collinear microcrack configurations. The statistical predictions for the 
two cases are correlated by Weibull analyses, a relationship between the Weibull modulus 
and the standard deviation of the ligament size (or crack length) is established. 

2. STRESS INTENSITY FACTORS OF COLLINEAR MICROCRACKS 

We first discuss the problem of N collinear microcracks with arbitrary lengths and 
ligament sizes in an otherwise infinite plate loaded by uniform remote tension ~ .  An 
integral representation of such problem was discussed by Rice (1968). An alternative way 
to solve the problem is through superposition technique, which can be generalized to the 
case of oriented microcrack distributions in a plane [see Gong and Horii (1989)]. To solve 
the stress intensity factors, one replaces the original problem by an equivalent configuration : 
the plate is stress free at infinity, but with uniform traction a ~ applied along the faces of 
every microcracks. The latter problem is further reduced to the superposition of Nproblems, 
each involves an infinite plate with a single crack at the designated location. The crack faces 
are loaded by normal traction yet to be solved. For the problem concerning with the ith 
microcrack, the hypothetical traction a~(x) along the crack faces is the sum of ~r ~ and the 
normal stresses induced by the (unknown) traction applied on the faces of other micro- 
cracks. For collinear microcracks, one has 

aj(x) = a ~ + ~l=)f"~, , , / ( x _ O ) ~  7 [. [ x -b j -~ l  aj(~)d~, i = 1,2 . . . .  N 
,)h i aj 

(1) 

where aj and bj denote the half-length and the center location of thejth microcrack. Accurate 
solution for the above system of integral equations can be obtained through the Chebyshev 
polynomial technique. The stress intensity factors of the ith microcrack are : 

K!eft 1 f /ai--x 1 f ,  [~+x , - ~ / ~ x a i ( x ) d x ,  Kr ight- ., xf~a, ~ X / ~  a'(x)dx (2) 

where the superscript "left" (or "right") refers to the left (or the right) crack tip. 
To simplify the solution, Kachanov (1985, 1987) replaced the non-uniform tractions 

in the integrand of eqn (1) by their average values. After solving N average tractions from 
N linear self-consistent equations, one is able to evaluate the non-uniform tractions from 
eqn (1), by replacing ai(~) in the integrand of eqn (1) by its average ~i(~)). The stress 
intensity factors can be evaluated by Chebyshev polynomials as 

2 . . . . .  1 

(3) 
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Table 1. Interacting SIF for two collinear cracks of equal length 
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Exact SIF SIF 
solution predicted Error predicted Error 

(Tada et aL) by eqn (6) (%) by eqn (1) (%) 

0.4 1.112 1.112 0.0 1,112 0.0 
0.2 1.255 1,251 0.3 1.255 0.0 
0.1 1.473 1,452 1.4 1.473 0.0 
0.04 1.905 1,809 5.0 1.924 1.0 
0.02 2.372 2.134 10.0 2.419 2.0 

where L denotes the number of integral points, and the locations xt = cos[ (2 l -  1)rc/2L] 
(l = 1 . . . . .  L) are zeroes of Chebyshev polynomial. Without loss of generality, all deri- 
vations to follow are exemplified for the right crack lip, and the superscript "right" is 
omitted for brevity. The accuracy of  this evaluation is verified by checking its prediction 
against the numerical solution of the integral equation system (1). Consider the special case 
of two collinear cracks along the x-axis, with crack tips taking the coordinates ( -  1, - c/2) 
and (c/2, 1). As shown in Table 1, the prediction by the estimate eqn (3) checks well with 
the exact solution [see Tada et al. (1973)], though the accuracy can be improved by directly 
solving the integral equation system (1). 

3. STATISTICAL ANALYSIS 

This section presents statistical analyses for the problem of N collinear microcracks in 
an infinite plate under uniform remote tension a °°. The half length of  the microcrack is 
denoted by a, and the ligament size between two neighboring microcracks is denoted by c. 
Both a and c are statistical variables, and their statistical distributions are described by 
density functions f(a) and p(c), respectively. Both f(a) and p(c) are normalized, with c_, 
a_, c+, a+ being the lower and upper limits of c and a. Since the lengths of the microcracks 
and the ligament sizes between every two neighboring microcracks are statistical variables 
[see Fig. 1 (a)], the solution of the stress intensity factors is burdensome. To simplify 
the problem, attention is focused on the strong interaction between the two neighboring 
microcracks (denoted by a' and a"), while the others are approximated by a periodically 
distributed crack array (with expected crack length 2a0 and ligament size Co), as depicted in 
Fig. 1 (b). By using the method of the previous section, the SIF at point A [see Fig. 1 (b)] is 

K A = (7 F . . . .  (4) 
ao ao 

In eqn (4), F is a dimensionless shape function. Representative curves of the normalized 
stress intensity factor (KA/a ~ X ~ o )  at point A are plotted in Fig. 2. Figure 2(a) plots the 
KA/a ~ ~/~ao vs c/ao curves under prescribed co/ao ratios, for the special case o fa '  = a" = a0. 
The normalized stress intensity factor increases as either the ligament size c or the average 
ligament size c0 decreases. Figure 2(b) plots the KA/a ~ ~ a o  vs a' a0 curves under prescribed 
co/ao ratios, where a" = a0 and c = Co. The normalized stress intensity factor increases as 
the average ligament size co/ao decreases or as the right crack length a'/ao increases, When 
a' = ao and c = co, the curves in Fig. 2(b) also describe the relation between KA/a ~ X /~o  
and a"/ao under the same co/ao ratios. The number of microcracks, N, is taken as 100 in all 
calculations concerning Fig. 2, 

In the two subsections to follow, we discuss two special cases : (A) collinear microcracks 
of equal length, but with ligaments of  distributed sizes ; and (B) collinear microcracks of  
the same ligaments, but distributed crack lengths. Both cases involve SIF estimates for N 
microcracks as described above. 
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Fig. 1. Configurations of collinear microcracks : (a) array of microcracks with arbitrary lengths and 
ligament sizes ; (b) array of microcracks with remote periodical configuration. 

3.1. Case A : equal length microcracks with ligaments of distributed sizes 
We first consider the case of  microcracks o f  equal length, then the distribution f(a) is 

a Dirac delta function 6(a-ao) and a'  = a" = a0. The distribution function for the ligament 
size p(c) is a normalized distribution with c in the range o f  (c_, c+), where c and c+ are 
the sizes of  the min imum and the max imum ligaments. I f  the distribution p(c) is very wide, 
c_ can be taken as zero. The average ligament size is given by co = 0 = ~',+ cp(c)dc. Note  
that  KA is a monotonical ly  decreasing function o f  c/ao, when a'  = a" = ao are fixed [Fig. 
2(a)]. A threshold value of  a ~, denoted by ate, can be defined as 

KIC /' f c  • - " '  c o  
/ 

a0 o 0 /  
(5) 

where K~c is the matrix fracture toughness. Corresponding to a given a ~ (a ~ > 0), one has 
which satisfies the following equat ion a critical ligament size, denoted by ccr, 

k a o '  1, 1,ao - a ~ x / ~ 0 .  (6) 

Equat ions  (5) and (6) indicate that  fracture cannot  occur if a ~ < ate, and the whole 
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Fig. 2. Representa t ive  curves  of  the normal ized  stress in tensi ty  factor,  N = 100: (a) a '  = a" = (to; 
(b) a '  = a0, c = Co. 

~ would break. structure remains intact. If  tr ~° > trth, the ligament of sizes smaller than Ccr 
The connection of the microcracks modifies the density functions p(c) and f(a) to 

p,  (c) = H(c - c2r )  (7) 

1 p(2a 
f](a) = 1-c~-2~6(a-a°)+ 1-ct [H(2a-4ao -c_)-H(2a-4ao --Celt)]. (8) 

- - 4 a 0 )  

.1 
In the above expressions, ~ = ~'c' r p(c)dc denotes the fraction of broken ligaments and H 
denotes the Heaviside step function. The first part off](a) denotes those unchanged mic- 
rocracks of length 2ao, while the second part denotes the distribution density of  microcracks 
formed by the ligament breaks. The expectations of the microcrack lengths and the ligament 
sizes after the first step of microcrack extension are denoted by 

r 2a + 1/2clr i (  + 
201 = 2 afl (a)da ?~ = cp] (c)dc. (9) 

~/a 0 '/r 

The failure of brittle solids is likely to be caused by the further connections between 
the extended microcracks and the microcracks of length 2a0. An extended microcrack has 
a length of 2al = 4ao + q,  where c, falls within the range between c_ (the minimum ligament 
size) and C~r (the maximum ligament size which breaks under tr'~). The failure process of a 
microcracked solid is determined by many event chains. Each chain consists of microcracks 
whose lengths are between 4ao+c~ and 4ao+cx+dc~, with different c] values assigned to 
different chains. The solid will break if any chain breaks. Each chain is composed of 
Np(cOdc] extended microcracks, and each of them is regarded as a link in the chain. The 
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chain will break if any link breaks. The failure of one extended microcrack proceeds by 
successive connections with the other microcracks. Each step in this coalescence sequence 
occurs with some possibility. As the connected crack grows longer, the possibility for 
further connection becomes larger. When the length of the extended crack reaches a critical 
size, the possibility for subsequent connection will reach unity. Each connection step is 
assumed as an isolated event, and scarcely modifies the overall ligament distribution p~(c). 
By utilizing eqn (4), the SIF at the right tip of this extended microcrack is 

~c ~ / C  a 1 - cl'~ Kright (lO) 

If K right ~ KIc , the crack extends and connects to a nearby microcrack of expected length 
2 2~. Corresponding to the value of 2a~, one can find a critical length of c, denoted by c¢~, 

which satisfies the following equation 

2 a  
oo ~ ~ f C c r  1 - 1, (ll) 

Equation (11) suggests that the microcrack of length 2al will connect to the nearby mic- 
rocrack of length 24~ if the ligament size c between them falls in the range of (c~, C2r). 

• c 2 

Consequently, the probability for the extension of the microcrack of length 2a, is 5 ~!~ p~ (c)dc. 
When the steps above are repeated, the crack length becomes 

2an = 4a0 + 2 ( n - 1 ) ~  +c~ + ~ Ok(c~) 
k=2 

(12) 

after n successive connections. The expectation for the ligament size during the kth con- 
nection is 

f 4 cT1 (c)dc 

ek - k = 2,3 . . . .  (13) 

f ~rPl (c)dc 
'~ 

k denotes the critical size of ligaments for the kth connection, given by where symbol cc~ 

(c k o, ) 
K,c=~r~x/~7~r :~r,ak--',l,~ k =  2 ,3 , . . . .  (14) 

\ a l  a l  

Please note that the Ok, k = 2,3 . . . . .  in eqn (13) bears different physical meaning from the 
?~ in eqn (9). The total number of microcrack connections, M, before the emergence of a 
fatal crack, is determined by 

1 
a M _  1 < - ( K I c / o ' ~ )  2 ~ a M .  ( 1 5 )  

For the microcrack of length 2a~, its failure probability is unity if M = 1. Otherwise, it is 
equal to the product of the successive connecting possibilities 
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i Pf(Cl) = p,(c)dc. (16) 
n=2 C 1 ,,}%r 

Then its survival probability is 

Ps(c,) = 1-Pf(c , ) .  (17) 

There are Np(cOdc~ microcracks of almost identical length 2a~. According to WLT, each 
microcrack consists of a link in the chain. Assume the breaking process of a link is 
independent of the others, then the survival probability of the chain is equal to the mul- 
tiplications of the survival probabilities of Np(cl)dcL links. Thus we have 

Ps ~-- {l - P f ( C l ) }  Np(cl)dcl ,~, e x p  { - N P 6 c , ) p ( c ~ ) d c ,  }. (18) 

The approximation in the last step comes from the fact that the increment NPf(cl)p(cOdcl 
is much smaller than unity. Again from WLT, the cumulative survival probability is the 
product of the survival probabilities of all connected microcracks. Thus, one has 

, ,  . . . .  (19) 

Finally, the failure probability for the brittle solid containing N microcracks is 

Pfail 1 =  -- e x p { f d r P f ( c ) p ( e ) d c } -  N c (20) 

provided that tr ~ ~> O't~. 
From eqn (20), the failure probability Pfail depends on the number of microcracks, the 

distribution of the ligaments, the average crack density, and the level of the applied stress. 
The influence of a ~ can be observed from its relations to C~r and Pf. For the special case of 
a periodic crack array, the failure probability is reduced to Pfan = H(  ~ -  O'~h). 

Figure 3 plots the failure probability versus the normalized strength a~x~o/Kic  
curve. We prescribe p(c) by a normal distribution which peaks at c = Co. The dimensionless 
standard deviation s is normalized with respect to Co. The calculations are conducted under 
a crack density of eo/ao = 0.25. Figure 3(a) is plotted under a fixed standard deviation of s, 
with different curves corresponding to the N values of 100, 200, 500 and 1000. The failure 
probability slowly rises when tr ~ exceeds the threshold value a~h, then undergoes a transition 
stage, and finally approaches the asymptote ofPfaij = 1. The graph depicts that the transition 
strength level for a brittle solid decreases as the number of microcracks increases, which 
predicts the scaling effect (or the specimen size dependence) of brittle solids. In Fig. 3(b), 
the number of microcracks is fixed at 300, with different curves corresponding to the s 
values of 0, 0.1, 0.15, 0.2, 0.25 and 0.3. Under the same crack density, a brittle solid with 
non-uniform ligament sizes would have a strength considerably lower than the one with 
relatively uniform ligament sizes. 

3.2. Case B: collinear microcracks of distributed lengths 
We next discuss N microcracks separated by ligaments of fixed size Co, while f(a) is a 

normalized distribution function with average crack length 2ao. The value of a ranges from 
the maximum possible half crack length a_ to the minimum possible half crack length a+. 
Without loss of generality, we consider the interaction between two neighboring cracks of 
lengths 2aL (long microcrack) and 2as (short microcrack), with aL > as. The interacted SIF 
at the tip of long microcrack is 
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Fig. 3. Failure probability vs normalized strength of brittle solids, case A: (a) s = 0,2 ; (b) N = 300 
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Fig. 4. Failure probability vs normalized strength of brittle solids, case B : (a) s = 0.2 ; (b) N = 300. 
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K= a°°~a-ooF( c° ac as,C_oo ~ 
~ • 

\ao ao ao ao} 

1003 

(21) 

Figure 2(b) shows that K is a monotonically increasing function of both ac/ao and as/ao. 
The threshold value of a ~, atE, refers to the special case of aL = as = a+ 

. K'c / (~_o a+ a+ ' , " ° .  

ao ao ao / 
(22) 

If a ~ < ate, no ligaments break. Otherwise, a number of ligaments will break, and there 
exists an a* ~< a+, such that 

\ao ' a o '  ao' o-~ x/rcao (23) 

A long microcrack with half length aL ~< a* cannot connect to any microcracks shorter 
than itself. On the other hand, if ac > a*, one can find a critical value of as, denoted by 
a~r, which meets the following equation 

F aL act Co _ 

'ao ' a o '  a~ xfn~-0" 
(24) 

The long microcrack a L can connect with any short microcracks whose lengths exceed than 
2aclr . Therefore, the total connecting probability of ligaments is 

fo'+ )Ia '~ = f(ac f(a)dadac. 
* ~ 

(25) 

After the first connection, the long microcracks of length 2aL change to the ones of length 
2al = 2aL + Co + 2as, with as taking distributed values. Moreover, the same number of short 
microcracks disappear, and the total number of the microcracks becomes N(1-f l ) .  The 
probability density function of the microcrack lengths changes to 

f(a) [1- -H(a--a*)  f(a)da- H(a--a~r(aL))f(aL)daL 

CO 
+ ~-~Ja, f(aL)f~a--ac-- ~)H(a--aL -~ (26) 

In the right-hand side of eqn (26), the first line denotes the distribution density of unchanged 
microcracks, whereas the second line denotes the distribution density of extended micro- 
cracks. It is those extended microcracks that are most likely to create a fatal crack. 

Similar to the discussion in case A, we take a connected microcrack of length 2at as a 
link of a chain of the whole structure, and follow the process of its successive connections. 
After the first step of microcrack connections, the expected length of microcracks is 

I 
2 a +  + 1 /2c  o 

2a~ = 2 af l (a)da. (27) 
d a _  

Corresponding to the value 2al, we can find the next critical value of as, denoted by a~r, 
which satisfies the following equation 
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= (28) 

Equation (28) suggests that the extended microcrack of length 2a, will connect to a nearby 
microcrack as if as is longer than u:~. 

When the steps in case A are repeated, the crack length after n successive connections, 
2a,, is given by 

2a, = 2a, +(n-l)c,+2 i: Lik 
k=2 

(29) 

where 

(30) 

is the expected length of the microcrack that connects to the extending crack during the 
kth connection. In eqn (30), 2u& denotes the critical crack length for the kth connection, 
defined by 

cO ak-I ak cO -__ -- = 
al ’ dl ‘a, ‘a, (31) 

Please note that the &, k = 2,3, . , in eqn (30) bears different physical meaning from the 
d, in eqn (27). The total number of stable microcrack connections, M, before the emergence 
of a fatal crack, is still determined by eqn (15). The failure probability of one microcrack 
with a first connection length of 2a, can be calculated by the following multiplicative 
formula which accounts for the successive connections 

I’&,) = fi 
s 

‘+ f,(a)da. 
n=l a” cr 

(32) 

If the same procedure in the previous subsection is followed, the failure probability for the 
brittle solid containing N microcracks is 

f’f,il = 1 -exp{ -N(l-/)) [ay++“2’” P,(,)f;(a)da} (33) 

provided that c? > a$. 
Figure 4 plots the failure probabilities vs the normalized strength om&/KIc. We 

prescribe f(a) by a normal distribution which peaks at co = 0.25~~. The dimensionless 
standard deviation s is normalized with respect to a,. Figure 4(a) is plotted under a fixed 
standard deviation of s = 0.2, with different curves corresponding to the N values of 100, 
200,500 and 1000. Figure 4(b) fixes the number of microcracks at 300, with different curves 
corresponding to the s values of 0, 0.1, 0.15, 0.2, 0.25 and 0.3. Trends similar to those in 
Fig. 3 are predicted for collinear microcracks of distributed lengths. 

4. DIRECT NUMERICAL SIMULATIONS 

Configurations of scattered collinear microcracks are generated according to prescribed 
s and N values. The number of different configurations generated under the same s and N 
values is termed the random generation number, Ng. Those microcrack configurations are 
analyzed numerically by solving the integral equation (1). When the maximum stress 
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Fig. 5. Comparisons between the statistical predictions and direct numerical simulations of  material 
strengths, s = 0.2, N = 50 : case A ; (b) case B. 

intensity factor Kmax (among all crack tips) reaches K~c, we connect that crack tip to the 
nearby microcrack. The modified configuration is analyzed again to obtain the remote 
stress level for the next microcrack connection. That coalescence process can be simulated 
step by step, until a critical remote stress for catastrophic fracture is reached. That critical 
stress is termed the strength a ~ of the brittle solid containing strongly interacted collinear 
microcracks. The level of a ~ varies according to the different microcrack configurations 
generated by the computer. The statistical distribution of a °~ gives rise to a failure prob- 
ability vs normalized strength curve similar to the ones in Figs 3 and 4. The larger the 
number Ng, the more precise the numerical simulation for failure probability. Figure 5 
shows the failure probability vs normalized strength curves by direct numerical simulations, 
contrasted to the similar curves furnished by the statistical approach. Figure 5(a), (b) 
correspond to case A and B, respectively. Calculations of the two cases are conducted under 
a crack density of co/ao = 0.5. The predictions from the two methods converge as the 
random generation number, Ng, becomes sufficiently large, as evidenced in Fig. 5. Good 
agreement between the two predictions justifies both approaches. 

5. W E IB ULL ANALYSIS 

Weibull suggested the following three-parameter distribution for the strength data of 
brittle materials 

W ( a ) =  1 - e x p  \ a0 } / (34) 

In eqn (34), W(a) is the cumulative failure probability at an applied stress a that is 
normalized with respect to K~c/x/~. The parameter a~ denotes the location from which 
the cumulative failure probability starts to grow, and 00 characterizes the scale of  the 
transition regime of  a failure probability curve. The dimensionless parameter m is referred 
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to as the WeibuU modulus which characterizes microcrack distribution in a brittle material. 
Equation (34) can be manipulated to a straight line of slope m on a lnln-ln Weibull plot 

lnln( l _ ~-~)  = mln(a-au)-mln(ao). (35) 

If the cumulative failure probabilities obtained in the previous sections can be approxi- 
mated by the Weibull distribution (34), then they should become straight lines in a Weibull 
plot. For  both cases A and B, au is equal to a$~o/Klc.  The Weibull modulus can be 
determined by presenting the numerical data in a Weibull plot. 

Figures 6 and 7 show the appropriateness of  the three-parameter Weibull distribution 
function in fitting the strength data. As remarked by Sahimi and Arbabi (1993), the fitting 
by the three-parameter Weibull distribution relies on the randomness of the microstructure 
distribution in the material, the wider the distribution, the better the fitting. Such a trend 
is observed in Fig. 7(b), but not in Fig. 6(b). Nevertheless, in all cases plotted, the curves 
for different N become nearly straight lines parallel to each other. It seems that the Weibull 
modulus m is irrelevant to the number of microcracks. At the same time, the curves in Figs 
6(a) and 7(a) reveal that the scale parameter a0 increases as N increases under fixed standard 
deviation. Typical ln(a0) vs s curves are plotted in Fig. 8 to illustrate the influence of the 
standard deviation s on the scale parameter ao. The curves show that ln(a0) decreases as s 
increases. Collecting data from these Weibull plots for different values of standard devi- 
ations, one can reveal the Weibull modulus vs standard deviation relation, as shown by the 
symbols in Fig. 9. Apparently, m decreases as s increases. The Weibull modulus m tends to 
zero as s becomes sufficiently large, and m tends to infinity near s = 0. Fitting those data 
points by the least-square method, one gets the following curve 
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Fig. 6. WeibuU plots for case A : (a) s = 0.2 ; (b) N = 300. 
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Fig. 7. Weibull plots for case B : (a) s = 0.2 ; (b) N = 300. 
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dl d2 
m = - -  + - -  ( 3 6 )  

S S 2 

where the fitting parameters are d~ = 1.44, d2 = 0.26 for case A, and dl = 1 . 1 1 ,  d 2  = 0.21 
for case B. 

6. CONCLUDING REMARKS 

The strength of a brittle solid containing microcracks depends not only on the average 
density of microcracks, but also on the fluctuation of microcracks, as manifested through 
the strong interaction between them. Furthermore, the scaling effect for the brittle solids 
can be quantified through the present model by considering the strong interaction between 
microcracks of fluctuated lengths and ligament sizes. These are the central messages of the 
present paper. For the simple case of collinear microcracks, the statistical model proposed 
here for failure prediction agrees reasonably well to the direct numerical simulation for 
configurations generated according to the given statistical characterization. 

The statistical analysis also indicates that the strength distribution of brittle solids with 
collinear microcracks can be approximated by a three-parameter Weibull distribution. 
Moreover, the Weibull modulus appears independent of the size of the specimen. The size 
of the specimen mainly modifies the location of the strength transition, and scarcely perturbs 
transition characterization. Further investigations are required to certify if these conclusions 
hold true for the more general case of orientated planar microcracks. 
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