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Abstract. The present paper explores the extension of a macrocrack by connecting statistically distributed microc-
racks. Two issues are discussed: (1) how long a semi-infinite crack can extend by connecting collinear microcracks
of equal length but distributed ligament sizes; (2) how far the crack tip can shift vertically from the original crack
extension line by connecting randomly positioned and oriented microcracks. Statistical analysis is employed to
calculate the expected crack extension length and the vertical shift of the crack tip. The implication of the present
study for the problem of a macrocrack linking to a parallel fault is addressed.
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1. Introduction

The existence of many microcracks has been recognized as a major strength degradation
mechanism in brittle materials. Some researchers attributed the damage evolution toward
fracture to the reduction of effective elastic constants. This perception has encouraged research
into the estimation of the effective stiffness, with approaches ranging from the Mori–Tanaka
method (1973), the self-consistent method of Budiansky and O’Connell (1976) to the gen-
eralized self-consistent method of Christensen and Lo (1979). Nevertheless, the effective
elastic property is not a reliable indicator of damage prediction for brittle materials (Wu
and Chudnovsky, 1990; Kachanov, 1992). The fracture related parameters such as the stress
intensity factors (SIF) are sensitive to the local microcrack geometry, while the effective elastic
properties, as volume average quantities, are not.

The local interaction should be taken into account in describing the fracture of brittle
materials, as exemplified in many macrocrack–microcracks interaction analyses (Kachanov,
1990, 1992). The immense computations render a direct numerical evaluation of macrocrack–
microcracks interaction impractical. Since the scatter in fracture related properties is inherent
to brittle materials, a statistical approach would be a natural way to deal with the problem.

The macrocrack–microcracks interaction has been extensively dicussed in the literature;
see Kachanov et al. (1990). However, the complete fracture process due to the macrocrack
connecting to microcracks has hardly been addressed. A comprehensive review on the back-
ground of this area can be found in Kachanov (1992), where some basic concepts are clarified.
Coalescence between collinear microcracks in brittle materials toward fracture was investi-
gated recently by Zhang et al. (1998), with an emphasis on the strong interactions among the
microcracks.
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(a)

(b)
Figure 1. Configurations of collinear microcracks lying ahead of a semi-infinite crack. (a) Array of microcracks
with arbitrary lengths and ligament sizes; (b) array of microcracks with remote periodical configuration.

The present work analyzes the extension of a macrocrack by connecting microcracks on its
way. For brevity, we assume the material to be isotropic and linear elastic, and the macrocrack
to be driven by remote mode I loading. Since the deviation of crack path from its original
direction is of interest here, issues such as material anisotropy, mixed mode loading andT -
stress influence are certainly of relevance. Be this as it may, we confine the present analysis to
the simplest case, and focus on the demonstration that the statistical nature of the microcrack
distribution can itself generate a fluctuating crack path, even in the absence of mixed mode
loading andT -stress. The readers should bear in mind that further inclusion of a mode II
component and a tensileT -stress will capitalize the crack path deviation. The material’s
anisotropy will twist the crack path further by offering different elastic response and different
fracture toughness in various directions.

As a geometrical simplification of the problem, the lengths of the microcracks and the
ligaments are assumed to be much smaller than the macrocrack length, with the latter being
regarded as semi-infinite and extending self-similarly. This simplification may overestimate
the extension of the macrocrack, but will retain the statistical nature of the problem. As will
be shown below, the simulation by self-similar crack propagation enables us to quantify the
macrocrack propagation by linking microcracks for many steps.

To get analytical results, we cannot start from arbitrarily positioned and oriented micro-
cracks, along with completely unknown statistical features. Instead, we simulate the general
situation in three steps:

(i) For the interaction among cracks, we consider a collinear array of cracks with random
positions, as shown in Figure 1(a). The analysis then highlights the local interaction
between the macrocrack and the nearest microcrack, and replaces the other microcracks
by a periodic array, as shown in Figure 1 (b).

(ii) Next we consider arbitrary orientations and lateral positions of the nearest microcrack,
and search for their influence on the vertical deviation of the microcrack. Similar to the
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computational damage cell model, only the damage cell directly ahead of the main crack
is of relevance to the crack path, while the microcrack in the cell may have a different
orientation. The weakening by the other microcracks, if treated as a degradation of the
Young’s modulus, would have no effect on the SIF of the macrocrack. By linking those
microcracks one at a time along probabilistic tilting angles, one finds the probabilistic
vertical shift. The expected vertical shift is shown to be proportional to the square root of
the linking stepn.

(iii) Then we combine the two analyses. The first calculation delivers the linking stepn under
a prescribed remote SIF, and the substitution of thatn value into the second calculation
leads to an estimate of the vertical shift. It is an approximate scheme, but it does reveal
the qualitative aspect of the vertical shift.

The above approach requires the examination of two cases in detail. The first case concerns
the expected extension of the macrocrack by linking an array of collinear microcracks. The
second case treats the more general case of randomly positioned and oriented microcracks,
with attention focused on the vertical shift of the macrocrack from its original path. Both cases
involve the estimation of the interacting stress intensity factor at the tip of the macrocrack and
a statistical analysis to predict the macrocrack extension.

The next section recapitulates the available results for the stress intensity factors at the
semi-infinite crack tip under the above mentioned microcrack configurations. Section 3 con-
ducts a statistical evaluation of the expected extension of the macrocrack under a prescribed
remote stress intensity factor. Section 4 estimates the vertical shift of the semi-infinite crack
by linking randomly positioned and oriented microcracks. The last section combines the two
analyses to predict the crack path deviation under a prescribed mode I load.

2. Stress intensity factor at a semi-infinite crack tip

2.1. A COLLINEAR MICROCRACK ARRAY AHEAD OF THE SEMI-INFINITE CRACK

Consider the problem of an array of collinear microcracks ahead of a semo-infinite crack in an
otherwise infinite plane, as depicted in Figure 1a. The semi-infinite crack occupies the negative
x-axis and the array ofmicrocracksis situated atxlk < x < xrk (k = 1,2,3 . . .), where the
superscripts ‘l’ (or ‘ r ’) refers to the left (or the right) tip of the microcrack. The configuration
is subjected to a remote stress intensity factorK∞I . The complex potential formulation of
linear plane elasticity is employed (Muskhelishvili, 1953)

σ11+ σ22= 4φ′(z),

σ22− σ11+ 2iσ12 = 2(z̄φ′′(z)+ ψ ′(z)), (1)

u1+ iu2 = 1+ ν
E

(κφ(z)− zφ′(z)− ψ(z))

whereκ = 3− 4ν for the plane strain case,κ = (3− ν)/(1+ ν) for the plane stress case, and
E andν are the Young’s modulus and the Poisson’s ratio, respectively. The symmetry of the
problem admits a single potential representation, for example, byφ(z), for all field quantities.
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For the configuration considered, Rubinstein (1985) introduced the following stress function
that satisfies all the boundary conditions

φ′(z) = KI(∞)
2
√

2πz

N∏
k=1

(λk − z)√√√√ N∏
k=1

(xlk − z)(xrk − z)
, (2)

whereN is the number of microcracks, andλk (K = 1,2,3, . . . , N) are real constants which
can be determined by the condition of single valued displacements∫ xrk

xlk

Imφ′(x)dx = 0, k = 1,2, . . . , N. (3)

The stress intensity factor at the tip of the semi-infinite crack is

KI

K∞I
=

N∏
k=1

λk√√√√ N∏
k=1

xlkx
r
k

. (4)

For the special microcrack configuration delineated in Figure 1(b), the microcracks have
the same half-lengtha = a0, and the ligaments between the neighboring microcracks assume
the same value ofc0. However, the first ligament, namely the ligament between the macrocrack
and the nearest microcrack, may have a different value ofc. Then the right hand side of
(4) depends only on the dimensionless groupsc/d0 and a0/d0, with d0 = 2a0 + c0 being
the distance between the centers of two neighboring microcracks, anda0/d0 signifying the
microcrack density. Thus, one may tabulate the SIF at the macrocrack tip (x = 0) as follows

KI = K∞I Y
(
c

d0
,
a0

d0

)
(5)

whereY is a dimensionless shape function. Details of the calculation of functionY can be
found in the work of Rubinstein (1985).

2.2. AN ARBITRARY MICROCRACK NEAR THE SEMI-INFINITE CRACK

We next evaluate the interacting SIF of the semi-infinite crack by an arbitrarily positioned and
oriented microcrack, loaded by a mode I stress intensity factorK∞I , as shown in Figure 2.
The microcrack has a length 2a and an orientationθ . The line from the semi-infinite crack
tip to the center of microcrack has a lengthd and spans an angleϕ from the extension line of
the macrocrack. Rubinstein (1986) studied this problem using complex stress potentials, and
a singular integral equation was formulated. The derivation leading to the singular integral
equation is facilated by an interacting stress function of a single dislocation with the arbitrar-
ily positioned and oriented microcrack. Taking the semi-infinite crack as an array of many
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Figure 2. Configuration of an arbitrarily positioned and oriented microcrack near a semi-infinite crack.

dislocations, one can write down the complex potential in terms of a superposition integral
describing the interaction of the microcrack with the semi-infinite crack

φ′(z) =
∫ 0

−∞

[
E′b(ξ)

8πi(z− ξ) + φ
′
0(b, z, ξ)

]
dξ + φ′00(z),

ψ ′(z) =
∫ 0

−∞

[
− E′

8πi

(
b̄(ξ)

(z− ξ) −
ξb(ξ)

(z− ξ)2
)
+ ψ ′0(b, z, ξ)

]
dξ + ψ ′00(z)

(6)

whereE′ = E/(1− ν2) for the plane strain case andE′ = E for the plane stress case. In each
equation above, the first term in the integrand represents the dislocation self-field, and the
second term represents the interaction of the microcrack with a dislocation incrementb(ξ)dξ
positioned atξ . The last term represents the field induced by the microcrack alone.

The integral equation, which defines the dislocation densityb(ξ), can be derived from the
traction free condition along the semi-infinite crack. A numerical scheme featuring the Gauss–
Chebyshev quadrature can solve the integral equation. Details of this integral equation, as
well as the estimation of the stress intensity factors, were provided by Rubinstein (1986). The
interaction of the microcrack gives the coexistence ofKI andKII at the semi-infinite crack tip;
they have the following form

KI,II = K∞I FI,II (a/d, ϕ, θ), (7)

wherea/d signifies the density of microcracks.FI andFII are dimensionless shape functions
for mode I and mode II, respectively. For a tilted extension of the macrocrack, the energy
release rate for crack tilting at an acute angleϕ is (see Cotterell and Rice, 1980)

G = K∞2
I

E′
G̃(a/d, ϕ, θ)

= K∞2
I

E′
cos2 1

2ϕ{cos2 1
2ϕF

2
I + (1+ 3 sin2 1

2ϕ)F
2
II − 2 sinϕFIFII }. (8)
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The authors have repeated the solution scheme of Rubinstein (1986) to get theFI andFII

functions in (7), and to evaluateG from (8). Note that (8) gives the energy release rate for the
macrocrack which starts to tilt toward (but yet to link to) the microcrack oriented at an acute
angleϕ. The numerical calculation reveals that the energy release rate of the semi-infinite
crack decreases as the angleϕ increases. In a fixed tilting directionϕ, the orientationθ of the
microcrack also effects the energy release rate (through the expressions in (7)).

A semi-infinite crack would link to a microcrack if the resulting energy release rate reaches
a critical value

G̃(a/d, ϕ, θ) = E′GC/K
∞2
I (9)

whereGC is the critical energy release rate (or the fracture toughness) of the material. Under
prescribed values ofa/d andϕ, G̃would maximize at a certain microcrack orientationθ . This
maximum value can be calculated by

G̃max(a/d, ϕ) = max
∀θ

G̃(a/d, ϕ, θ). (10)

Given a prescribed value ofa/d, a critical value ofϕ, denoted byϕ0, for a fixed value of
E′GC/K

∞2
I is obtained

G̃max(a/d, ϕ0) = E′GC/K
∞2
I . (11)

A microcrack with angle|ϕ| > ϕ0 cannot link to the macrocrack, regardless of its orientation
angle. For the case of|ϕ| < ϕ0, a linking rangeθ1 6 θ 6 θ2 of microcrack orientations
can be identified. For prescribed values ofa/d andϕ, the bounding orientationsθ1 andθ2 are
determined by

G̃(a/d, θ1,2, ϕ) = E′GC/K
∞2
I . (12)

The above discussions on the possible linking ranges have implicitly taken into account the
effect of microcrack shielding (for largeϕ angles). The microcrack orientations that have a
significant shielding effect have already been ruled out from the possible linking range.

3. Statistical extension of a semi-infinite crack

Attention is now focused on the statistical process for the extension of a semi-infinite crack
by coalescing to collinear microcracks, as depicted in Figure 1a. The half length of the mi-
crocracks is denoted bya, and the ligament size between the semi-infinite crack and the
nearest microcrack or between two neighboring microcracks is denoted byc. For simplicity,
we consider the case of equal microcrack length but distributed ligament size. The statistical
distribution ofc is described by a density functionf (c), which is properly normalized and has
a lower limit of c−. Since the ligament sizes are statistical variables, the solution of the stress
intensity factor at the macrocrack tip is burdensome. Note that the size of the first ligament
dominates the SIF at the macrocrack tip. As depicted in Figure 1b, we approximate the sizes
of the other ligaments by the expected valuec0 =

∫∞
c− cf (c) dc, then the microcrack array

ahead of the macrocrack becomes almost periodic, except that the first ligament size,c, is still
a random variable and different from the expected valuec0 in general.
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The microcrack configuration in Figure 1b was thoroughly discussed by Rubinstein (1985),
and the solution was presented earlier in (5). His study indicated that the normalized stress
intensity factor at the main crack tip increases as the microcrack densitya0/d0 increases, and
as the first ligament sizec/d0 decreases. The monotonic variation ofY with respect to the first
ligament size enables us to define a threshold value ofK∞I , denoted byK∞th , such that

K∞th = KIC

/
Y

(
c−
d0
,
a0

d0

)
(13)

whereKIC is the matrix fracture toughness. Under a given remote stress intensity factor, a
critical ligament sizec∗ is defined by

Y

(
c∗

d0
,
a0

d0

)
= KIC/K

∞
I . (14)

From the above equation,c∗ < c− whenK∞I < K∞th , and the semi-infinite crack remains
intact; whenK∞I > K∞th , c

∗ would exceedc−, and the first ligaments of sizes smaller thanc∗
would break. The probability for the first extension of the semi-infinite crack is

p1 =
∫ c∗

c−
f (c)dc. (15)

By the first connection, the average extension length of the macrocrack can be written as

L1 = 1

p1

∫ c∗

c−
cf (c)dc + 2a0. (16)

The subsequent connections follow similar procedures. We change the size of the next
ligament to a random variablec and repeat and almost similar analysis. The difference between
the first connection and the others lies in the reduced number of ligaments whose sizes fall in
the range of[c−, c∗]. Suppose that there areN microcracks ahead of the main crack, then only
Np1 ligaments of them are breakable (after rounding off to an integer). For thekth step, the
number of the remaining ligaments becomesN − k + 1, while the number of the breakable
ligaments reduces toNp1− k + 1. The probability of thekth connection and the extension of
the main crack for thekth step become

pk = Np1− k + 1

N − k + 1
, Lk = L1. (17)

Under a prescribed stress intensity factor, the expected extension length of the semi-infinite
crack is

Lexpect=
Np1∑
k=1

 k∏
j=1

pj

Lk. (18)

The above equation indicates that the expected crack extension depends not only on the remote
stress intensity factor, but also on the number of the microcracks, sincepk is a monotonically
decreasing function ofN , from (17). The expected crack extension increases as the remote
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(a)

(b)

Figure 3. Expected extension length of a semi-infinite crack vs the normalized stress intensity factor. (a)
s = 0.15c0; (b) a0/d0 = 0.35.

intensity factor or the number of the microcracks increases. The relationship between the
expected extension and the number of the microcracks indicates a scale dependency of brittle
materials.

For the case of infinitely many microcracks,pk approachesp1. Therefore, each step exactly
repeats the procedure of the first step. The expected extension of the main crack becomes

Lexpect=
∞∑
k=1

pk1L1 = p1L1

1− p1
. (19)

We see that the present statistical analysis delivers a closed form estimate for the expected
extension of macrocracks under a prescribed mode I stress intensity factor. Equation (19)
indictaes that the expected extension of the main crack diminishes ifp1 approaches zero; and
becomes infinite ifp1 approaches one.

Figure 3 plots the expected extension of the semi-infinite crack versus the normalized
remote stress intensity factorsK∞I /KIC. We prescribef (c) by a normal distribution which
peaks atc0. Figure 3(a) is plotted under a standard deviation ofs = 0.15c0, with various
curves corresponding to different microcrack densities of 0.3, 0.35 and 0.4. The expected
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extension of the semi-infinite crack slowly rises as the normalized SIF exceeds the threshold
valueK∞th /KIC, then undergoes a transition, and finally approaches the vertical asymptote for
the catastrophic crack extension. As the microcrack density increases, the transition of the
expected crack extension starts at a smallerK∞I /KIC value. In Figure 3(b) the microcrack
density is fixed at 0.35, with various curves corresponding to differents/c0 values of 0.3, 0.45
and 0.6. The expected extension of the semi-infinite crack increases as the standard deviation
increases when the remote stress intensity factor is low, but decreases as the standard deviation
increases when the remote stress intensity factor is high. This variation can be explained as
follows: when the standard deviation is high, there are more ligaments of both small and large
sizes. Under a low remote stress factor, the probability of the semi-infinite crack connecting
to microcracks increases since there are more breakable small ligaments; when the remote
intensity factor is high, on the other hand, there are more unbreakable ligaments and they
retard the crack extension.

The present statistical analysis can be adopted for the case that microcracks are created
by the high stress field near the macrocrack tip. Assuming the newly created microcrack
is collinear with the macrocracks and has a fixed half-lengtha0 and a random ligamentc.
Following Rubinstein (1985), the stress intensity factor at the macrocrack tip is

KI = K∞I
√

2a0 + c
c

E
(

2a0

2a0+ c
)

K

(
2a0

2a0+ c
) (5′)

where K(m) and E(m) are complete elliptical integrals of the first and second type, respec-
tively. Determination of the critical size of ligamentc∗ is reduced from (14) to

√
2a0 + c∗
c∗

E
(

2a0

2a0 + c∗
)

K

(
2a0

2a0 + c∗
) = KIC/K

∞
I . (14′)

4. Vertical shift of the semi-infinite crack tip

Consider microcracks positioned and oriented ahead of a semi-infinite crack. The configura-
tion is loaded remotely by an applied stress intensity factorK∞I . We want to emphasize that
the random nature of the microcrack orientations provokes the zigzag in the cracking path.
The fluctuating vertical shift intensifies as more microcracks are connected, even though the
remote loading and the statistical distribution of the microcracks are symmetric with respect to
thex-axis. Suppose the macrocracks grows a long distance. We want to estimate the expected
vertical shift of the crack tip from the original crack extension line. In geological structures,
a long crack may connect microcracks under geological stress and deviate from its original
path. The present case refers to the linkage of two noncoplanar macroscopic defects driven by
the normal loading in a brittle material microcracks. Linkage of two geological faults under
remote shear loading can be analyzed by this approach, with slight modification. The vertical
shift means that it is possible that two parallel geological faults may join, and has significance
in analyzing catastrophic geological ruptures, such as earthquakes.
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We first propose a simple model to describe the vertical shift of a semi-infinite crack. The
extension of the semi-infinite crack is accomplished via step-by-step connections between
the semi-infinite crack and the neighboring microcracks. In each step, the linking process is
dominated by the energy release rate for the macrocrack to extend toward the microcrack,
while the effect of the other microcracks is secondary. The simplified configuration in Figure
2 can be interpreted as follows. On one hand, one can treat the effect of other cracks (assuming
completely random orientation) as an isotropic weakening of the elastic modulus, which bears
no effect on the stress intensity factor near the tip of the macrocrack. On the other hand,
the macrocrack-microcrack interaction shown in Figure 2 resembles the exact situation for
the case that the microcrack is newly created by the high stress field, accompanied by the
propagation of the macrocrack.

According to this model, the process shown in Figure 2 repeats itself. The SIF for the
macrocrack and the energy release rate criteria are discussed in Section 2.2, through Expres-
sions (7), (8) and (9). Each step causes a small vertical shift. Aftern steps of microcrack
connections, those vertical shifts may sum to a sizable deviation from the original crack
extension line. The distribution of the microcracks is simulated as follows. The center of the
microcrack nearest to the semi-infinite crack appears with equal probability 1/2π along a cir-
cle centered at the tip of the macrocrack. The radius of the circle is denoted byd, and remains
constant in all connecting steps. All microcracks are assumed to have an equal length 2a.
Suppose that macrocrack–microcrack linking does occur; the linking probability of the semi-
infinite crack towards a microcrack in the directionϕ is denoted bypϕ, which is calculated
by

pϕ =
∫ θ2(ϕ)

θ1(ϕ)

f (θ)dθ
/∫ +ϕ0

−ϕ0

∫ θ2(ϕ)

θ1(ϕ)

f (θ)dθ dϕ . (20)

In the above equation,f (θ)(−π/2 6 θ 6 π/2) is a normalized microcrack orientation
distribution function. Under a given remote stress intensity factor,ϕ0 is furnished by (11)
andθ1 (or θ2) by (12) for a givenϕ 6 ϕ0. Any microcrack with its orientation outside the
range of[θ1(ϕ), θ2(ϕ)] could not connect to the semi-infinite crack extending in the direction
ϕ. The standard deviation of the tilting of the semi-infinite crack is

s2 =
∫ +ϕ0

−ϕ0

(ϕ − ϕ̄)2pϕ dϕ (21)

whereϕ̄ is the expected value ofϕ

ϕ̄ =
∫ +ϕ0

−ϕ0

ϕpϕ dϕ. (22)

The symmetry of the problem leaves the estimation of the probabilitypϕ only on the upper
half planeϕ > 0, and the expected anglēϕ becomes zero. A threshold value of the remote
stress, denoted byK∞th , satisfies the following equation

K∞th =
√
EGc

FI(a/d,0,0)
. (23)

The semi-infinite crack could not connect to any arbitrary oriented microcracks ifK∞I is less
thanK∞th . Otherwise, a linking probability exists. As a demonstrative example, we evaluate
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Figure 4. Linking probability versus microcrack orientation.

the distributionpϕ atK∞I = 1.2K∞th under uniform orientation distribution of microcracks
(f (θ) = 1/π). The calculated distribution ofpϕ is depicted in Figure 4. This distribution
approximately resembles a normal distribution. Data fitting according to (21) gives a standard
deviation of 0.25 for the probability distributionpϕ in Figure 4. As shown in the figure, the
probability for crack tilting is symmetric with respect to thex-axis, and favors a tilting by
small angles. A tilting angle beyond 0.22π is prohibited by the crack shielding effect.

We next discuss the vertical shift after the semi-infinite crack extendsn steps. Denote the
tilting direction for theith step byϕi, then the vertical shifthi in that step is given by

hi = d × sin ϕi ≈ d × ϕi. (24)

Hered is a constant. The approximation in the last step holds when the extension directionϕi
is much smaller thanπ/2. In this case,ϕi andhi has the same probability distribution, denoted
by pi(hi). The total vertical shift aftern steps is denoted byHn, and is evaluated by

Hn =
n∑
i=1

hi. (25)

Expression (25) resembles a random walk solution. Random walking, in a strict sense, refers
to equal possibilities to walk into any direction. Nevertheless, the walker will not stay at the
starting point, but drift farther and farther away. The problem here is a modified random walk
problem, since the probability of the tilting angle (calculated and plotted in Figure 4) is not
uniform, but is concentrated along the crack extension line.

Denote the probability for the semi-infinite crack tip to get to the heightH aftern connec-
tions byp(H); on then has

p(H) =
∫ +∞
−∞

{∫ +∞
−∞

. . .

∫ +∞
−∞

n−1∏
i=1

pi(hi)pn(H −Hn−1)dhi

}
dhn. (26)

The convolution integral in (26) suggest a solution by Fourier transform

p̃(η) =
∫ +∞
−∞

exp(−iηH)p(H)dH. (27)
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Substituting (26) into (27), one arrives at

p̃(η) =
n∏
i=1

p̃i(η) (28)

where the Fourier transforms ofpi(hi), i = 1,2, . . . n, are denoted bỹpi(η). For the case of
a semi-infinite crack, each extension step of the macrocrack is self-similar, thus

p1(h1) = pi(hi), i = 1,2, . . . , n (29)

which reduces (28) to

p̃(η) = [p̃1(η)]n. (30)

As remarked in the calculation leading to Figure 4, the probability distribution ofpϕ can
be approximated by a normal distribution. The approximation (24) henceforth implies that the
probability distribution ofpi(hi) for the vertical shift of each linking step can be represented
by a normal distribution

pi(h) = 1√
2πs

exp

(
− h

2

2s2

)
, i = 1,2, . . . , n (31)

where the standard deviations can be estimated by data fitting. For example,s equals ap-
proximately 0.25d for the case ofK∞I = 1.2K∞th under the approximation (24). The Fourier
transform of (31) gives

p̃i(η) = 2√
2πs

∫ +∞
0

cos(ηh) exp

(
− h

2

2s2

)
dh = exp(−s2η2/2) (32)

and consequently from (30) one has

p̃(η) = exp(−ns2η2/2). (33)

The inverse transformation gives

p(H) = 1

π

∫ +∞
0

cos(ηH) exp(−ns2η2/2)dη = 1√
2πns

exp

(
− H 2

2ns2

)
. (34)

The above equation indicates that the vertical shift can be described by a normal distribution.
The possible locations of the main crack are centered aty = 0, as indicated in (34), where
H = 0 defines the mean value of the normal distribution of the vertical shift. However, (34)
also indicates that the standard deviation, and consequently the vertical shift of the macrocrack
tip, increase in proportion to the square root of the linking stepsn as

√
ns.

5. Concluding remarks

The present paper explores two issues: the expected extension length and the expected vertical
shift of a macrocrack by connecting nearby microcracks. Under a prescribed remote stress
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intensity factor, it is revealed that the expected extension length depends not only on the mi-
crocrack density, but also on the fluctuation of the ligament sizes. The number of microcracks
also plays a role on the expected extension of the macrocrack, giving rise to a scaling effect.

The other issue is related to the statistical analysis on the vertical shift of a semi-infinite
crack. A scenario of macrocrack extension by linking arbitrarily positioned and oriented
microcracks is proposed, and the linking probability to microcracks of different inclination
angles is calculated. It is found the linking probability distribution resembles a normal distrib-
ution. Thus, a random walk scheme is adopted to predict the distribution of vertical shift after
n steps of macrocrack-microcrack linkages. Statistical analysis indicates that the main crack
has a vertical shift proportional to the square root ofn.

Consider a macrocrack propagating in a microcrack-weakened geological structure. Sup-
pose there is another major geological fault parallel to the macrocrack, and lying above or
below by a vertical distance ofH . Though we only work out the remote mode I loading here,
it is believed that the present scheme may also be adopted for the remote mode II loading. The
macrocrack extends a lengthd by connecting one nearby microcrack. The macrocrack will
connect to the faulting, with disastrous consequence such as an eartquake, when

s
√
nd = H (35)

wherend = Lexpect is the expected crack extension length as discussed in Section 3, and
depends on the microcrack density, the ligament fluctuation, the number of microcracks, and
the remote stress intensity factor. The standard deviations increases asK∞I /K∞th increases,
as discussed in Section 4. These results, in combination with formula (35), provide a fairly
complete description on the problem of a macrocrack connecting to a geological fault.
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