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Abstract

Many arenas of research are rapidly advancing due to a combined effort between engineering and science. In some

cases, fields of research that were stagnating under the exclusive domain of one discipline have been imbued with new

discoveries through collaboration with practitioners from the second discipline. In computational mechanics, we are

particularly concerned about the technological engineering interest by combining engineering technology and basic

sciences through modeling and simulations. These goals have become particularly relevant due to the emergence of the

field of nanotechnology, and the related burst of interest in nanoscale research. In this introductory article, we first

briefly review the essential tools used by nanoscale researchers. These simulation methods include the broad areas of

quantum mechanics, molecular dynamics and multiple-scale approaches, based on coupling the atomistic and con-

tinuum models. Upon completing this review, we shall conclusively demonstrate that the atomistic simulation tools

themselves are not sufficient for many of the interesting and fundamental problems that arise in computational

mechanics, and that these deficiencies lead to the thrust of multiple-scale methods. We summarize the strengths and

limitations of currently available multiple-scale techniques, where the emphasis is made on the latest perspective ap-

proaches, such as the bridging scale method, multi-scale boundary conditions, and multi-scale fluidics. Example

problems, in which multiple-scale simulation methods yield equivalent results to full atomistic simulations at fractions

of the computational cost, are shown. We conclude by discussing future research directions and needs in multiple-scale

analysis, and also discuss the ramifications of the integration of current nanoscale research into education.
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1. Introduction

The rapid advances in nanotechnology, nanomaterials and nanomechanics offer huge potentials in na-

tional defense, homeland security, and private industry. An emphasis on nanoscale entities will make our
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manufacturing technologies and infrastructure more sustainable in terms of reduced energy usage and
environmental pollution. Recent advances in the research community on this topic have stimulated ever-

broader research activities in science and engineering devoted to their development and their applications.

With the confluence of interest in nanotechnology, the availability of experimental tools to synthesize

and characterize systems in the nanometer scale, and computational tools widely accessible to model micro-

scale systems by coupled continuum/molecular/quantum mechanics, we are poised to unravel the tradi-

tional gap between the atomic and the macroscopic world in mechanics and materials. This in turn opens

up new opportunities in education and research.

Over the past three decades, we have acquired new tools and techniques to synthesize nanoscale objects
and to learn their many incredible properties. Today�s high-resolution electron microscopes can routinely

see individual atoms. Scanning probe techniques allow us to manipulate atoms one at a time. Advanced

materials synthesis provides the technology to tailor-design systems from as small as molecules to structures

as large as the fuselage of a plane. We now have the technology to detect single molecules, bacteria or virus

particles. We can make protective coatings more wear-resistant than diamond and fabricate alloys and

composites stronger than ever before.

Advances in the synthesis of nanoscale materials have stimulated ever-broader research activities in

science and engineering devoted entirely to these materials and their applications. This is due in large part
to the combination of their expected structural perfection, small size, low density, high stiffness, high

strength and excellent electronic properties. As a result, nanoscale materials may find use in a wide range of

applications in material reinforcement, field emission panel display, chemical sensing, drug delivery,

nanoelectronics and tailor-designed materials. Nanoscale devices have great potential as sensors and as

medical diagnostic and delivery systems.

In most of these applications, nanoscale materials will be used in conjunction with other components that

are larger, and have different response times, thus operating at different time and length scales. Single scale

methods such as ‘‘ab initio’’ quantum mechanical methods or molecular dynamics (MD) will have difficulty
in analyzing such hybrid structures due to the limitations in terms of the time and length scales that each

method is confined to. Because of the availability of accurate interatomic potentials for a range of materials,

classical MD simulations have become prominent as a tool for elucidating complex physical phenomena.

However, the length and time scales that can be probed using MD are still fairly limited. For the study of

nanoscale mechanics and materials, we must model up to a scale of several microns, consisting of billions of

atoms, which is too large for MD simulations to-date. Hence, we need to develop multi-scale approaches for

this class of problems. One possible approach that can be applied to many problems is to use MD only in

localized regions in which the atomic-scale dynamics are important, and a continuum simulation method,
such as the finite element [1–3] or meshfree [4–16] method, everywhere else. This general approach has been

taken by several different groups using methods that have had varying degrees of success. In particular, these

methods do not satisfactorily address the issue of disparate time scales in the two regions, and provide

a rather simplified treatment of the interface between the atomistic and continuum regimes.

Current research in engineering is just beginning to impact molecular scale mechanics and materials and

would benefit from interaction with basic sciences. For solids, research in the area of plasticity and damage

has experienced some success in advancing micro-scale component design. Development of carbon na-

notubes [17–31] is also an area in which nanoscale research has clearly played a major role. Other areas of
opportunities include nanocomposites [32–38] and nanoalloys [39–42]. For fluids, coupling physics phe-

nomena at the nanoscale is crucial in designing components at the micro-scale [43–48,151]. Electrophoresis

and electro-osmotic flows coupled with particulate motion in a liquid have been important research areas

that have had great impact in the homeland security area. Micro-fluidic devices often comprise components

that couple chemistry, and even electrochemistry, with fluid motion. Once the physics-based models are

determined for the solids and fluids, computational approaches will need to be employed or developed to

capture the coupled physics phenomena.
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The material presented in this review paper informs researchers and educators about specific funda-
mental concepts and tools in nanomechanics and materials, including solids and fluids. It is envisioned that

this work will serve as a starting point from which interested researchers may jump into and contribute

to the emerging field of computational nanotechnology.

The paper�s outline is given by the following. Section 2 reviews the fundamentals of classical molecular

dynamic simulations, such as the Lagrangian and Hamiltonian formulations, and the structure of inter-

atomic potential functions. Section 3 informs the reader on the relevant quantum mechanical approaches

and explains the energetic link between the quantum and classical systems. In Section 4, we outline the

intrinsic limitations of molecular dynamic simulations and emphasize the necessity in developing the
coupled multi-scale methods. Section 5 reviews available multi-scale approaches: hierarchical and con-

current coupling of the atomistic and continuum simulations (with the emphasis on the bridging scale

method), multi-scale boundary conditions and multiple-scale fluidics. Section 6 concludes the paper by

discussing future research needs in multiple-scale analysis, and the impact the current research has on the

graduate curriculum at Northwestern.
2. Molecular dynamics

Molecular dynamics (MD) was first used in thermodynamics and physical chemistry to calculate the

collective or average thermochemical properties of various physical systems including gases, liquids, and

solids. It has been recently applied to simulate the instantaneous atomic behavior of a material system.

There are two basic assumptions made in standard molecular dynamics simulations [49–52]:

(1) Molecules or atoms are described as a system of interacting material points, whose motion is descri-

bed dynamically with a vector of instantaneous positions and velocities. The atomic interaction has
a strong dependence on the spatial orientation and distances between separate atoms. This model is

often referred to as the soft sphere model, where the softness is analogous to the electron clouds of

atoms.

(2) No mass changes in the system. Equivalently, the number of atoms in the system remains the same.

The simulated system is usually treated as an isolated domain system with conserved energy. However,

non-conservative techniques [53–58] are available which model the dissipation of the kinetic energy into the

surrounding media. These techniques will prove to be useful in the multiple-scale simulation methods
presented later in this paper.

2.1. Lagrangian equations of motion

The equation of motion of a system of interacting material points (particles, atoms), having in total s
degrees of freedom, can be most generally written in terms of a Lagrangian function L, e.g. [59,60]:

d

dt
oL
o _qa

� oL
oqa

¼ 0; a ¼ 1; 2; . . . ; s: ð1Þ

Here q are the generalized coordinates, the arbitrary observables that uniquely define spatial positions of
the atoms, and the superposed dot denotes time derivatives. As will be discussed in Section 2.2, Eq. (1) can

be rewritten in terms of the generalized coordinates and momenta, and successively utilized within the

statistical mechanics formulation.

The molecular dynamics simulation is most typically run with reference to a Cartesian coordinate

systems, where Eq. (1) can be simplified to give



X

Y

Z

ri

rj

rij

Fig. 1. Coordination in atomic systems.
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d

dt
oL
o_ri

� oL
ori

¼ 0; i ¼ 1; 2; . . . ;N : ð2Þ

Here, ri ¼ ðxi; yi; ziÞ is the radius vector of atom i, Fig. 1, and N is the total number of simulated atoms,

N ¼ s=3 within the three-dimensional settings. The spatial volume occupied by these N atoms is usually

referred to as the MD domain.

Due to the homogeneity of time and space, and also isotropy of space in inertial coordinate systems,
the equations of motion (2) must not depend on the choice of initial time of observation, the origin of

the coordinate system, and directions of its axes. These basic principles are equivalent to the require-

ments that the Lagrangian function cannot explicitly depend on time, directions of the radius and veloc-

ity vectors ri and _ri, and it can only depend on the absolute value of the velocity vector _ri. In order

to provide identical equations of motions in all inertial coordinate systems, the Lagrangian function

must also comply with the Galilean relativity principle. One function satisfying all these requirements reads

[60]

L ¼
XN
i¼1

mi

2
ð _x2i þ _y2i þ _z2i Þ �

XN
i¼1

mi _r
2
i

2
; ð3Þ

for a system of free, non-interacting, particles; mi is the mass of particle i.
Interaction between the particles can be described by adding to (3) a particular function of atomic

coordinates U , depending on properties of this interaction. Such a function is defined with a negative sign,

so that the system�s Lagrangian acquires the form:

L ¼
XN
i¼1

mi _r
2
i

2
� Uðr1; r1; . . . ; rN Þ; ð4Þ

where the two terms represent the system�s kinetic and potential energy, respectively (note the additivity of

the kinetic energy term). This gives the general structure of Lagrangian for a conservative system of

interacting material points in Cartesian coordinates. It is important to note two features of this Lagrangian:

the additivity of the kinetic energy term and the absence of an explicit dependence on time. The fact that the

potential energy term only depends on spatial configuration of the particles implies that any change in this

configuration results in an immediate effect on the motion of all particles within the simulated domain. The
inevitability of this assumption is related to the relativity principle. Indeed, if such an effect propagated with

a finite speed, the former would depend on the choice of an inertial system. In this case the laws of motion

(in particular, the MD solutions) would be dissimilar in various systems; that would contradict the rela-

tivity principle.
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By substituting the Lagrangian (4) to Eq. (2), the equations of motion can finally be written in the
Newtonian form,

mi€ri ¼ � oUðr1; r2; . . . ; rN Þ
ori

� Fi; i ¼ 1; 2; . . . ;N ð5Þ

The force Fi is usually referred to as the internal force, i.e. the force exerted on atom i due to specifics of the
environment it is exposed to. Eq. (5) are further solved for a given set of initial conditions to get trajectories
of the atomic motion in the simulated system.

An important issue arising in MD simulations is accounting for a mechanism of the conduction of heat

away from a localized area of interest. The MD domain is usually far too small to properly describe this

process within a conservative system. Modern computer power allows modeling domains with a maximum

of only several hundred million atoms; that corresponds to a material specimen of size only about

0.1 · 0.1 · 0.1 lm. MD simulations are most often performed using periodic boundary conditions, implying

that the total energy in the system remains constant; see Section 4 for detail. One common solution to this

problem is to apply damping forces to a group of atoms along the boundaries of the MD domain. That is
known as the heat bath technique, see Section 4.2 for detail. However, this approach cannot capture the

true mechanism of dissipation in real systems. Furthermore, the potential energy term shown in Eq. (4),

having no explicit dependence in time, implies the use of conservative models. According to some recent

studies [56–58], non-conservative models can also be constructed, using this basic form of the Lagrangian

and implementing the so-called ‘‘wave-transmitting’’ boundary conditions to describe energy dissipation

from the molecular dynamics domain into the surrounding media. The basic idea of such an approach is to

calculate the response of the outer region to excitations originating from the MD domain at each time step

of the simulation. The outward heat flow is then cancelled due to negative work done by the corresponding
response forces applied to boundary atoms within the localized area of interest.

The classical Lagrangian formulation, discussed in this section, is typically used for those molecular

dynamics simulations aimed on the analysis of detailed atomic motion, rather than on obtaining averaged

(statistical) characteristics [49]. In the latter case, the Hamiltonian formulation can be alternatively used,

as will be discussed in Section 2.2.

2.2. Hamiltonian equations of motion

The Lagrangian formulation for the MD equations of motion discussed in Section 2.1 assumes

description of the mechanical state of simulated system by means of generalized coordinates and velocities.

This description, however, is not the only one possible. An alternative description, in terms of the gen-

eralized coordinates and momentum, is utilized within the Hamiltonian formulation, e.g. [59,60]. The

former provides a series of advantages, particularly in studying general or averaged features of the simu-

lated systems, such as the specifics of energy distribution and thermal flow, as well as in computing the

physical observables (thermodynamic quantities), such as temperature, volume and pressure. In the latter

case, the methods of statistical mechanics methods are employed, and those typically utilize the Hamil-
tonian formulation in describing the state and evolution of many-particle systems.

Transition to the new set of independent variables can be accomplished as the following. First employ

the complete differential of the Lagrangian function of Eq. (1),

dL ¼
X

a

oL
oqa

dqa þ
X

a

oL
o _qa

d _qa; a ¼ 1; 2; . . . ; s; ð6Þ

and rewrite this as

dL ¼
X

a

_pa dqa þ
X

a

pa d _qa; ð7Þ
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where the generalized momenta are defined to be

pa ¼
oL
o _qa

: ð8Þ

The right-hand side of Eq. (7) can be rearranged as

dL ¼
X

a

_pa dqa þ d
X

a

pa _qa

 !
�
X

a

_qa dpa; ð9Þ

d
X

a

pa _qa

 
� L

!
¼
X

a

_qa dpa �
X

a

_pa dqa; ð10Þ

where the function

Hðp; q; tÞ ¼
X

a

pa _qa � L ð11Þ

is referred to as the (classical) Hamiltonian of the system. The value of the Hamiltonian function is an

integral of motion for conservative systems, and it is defined to be the total energy of the system in terms of

the generalized coordinates and momenta.

Thus, we have obtained

dH ¼
X

a

_qa dpa �
X

a

_pa dqa; ð12Þ

and therefore

_qa ¼
oH
opa

; _pa ¼ � oH
oqa

: ð13Þ

These are the Hamiltonian equations of motion in terms of new variable p and q. They comprise a system of

2s first-order ODEs on 2s unknown functions pðtÞ and qðtÞ. A set of values of these functions at a given time

represents the state of the system at this time. This set can also be viewed as a vector in a 2s-dimensional
vector space known as the phase space. A complete set of these vectors, observed in the course of temporal

evolution of the system, defines a hyper-surface in the phase space, known as the phase space trajectory.

The phase space trajectory provides a complete description of the system�s dynamics.
Although both the kinetic and potential energies do usually vary or fluctuate in time, the phase space

trajectory determined from Eq. (13) conserves the total energy of the system. Indeed, the time rate of

change of the Hamiltonian is equal to zero,

dH
dt

¼ oH
ot

þ
X

a

oH
oqa

_qa þ
X

a

oH
opa

_pa ¼
oH
ot

¼ 0 ð14Þ

since it has no explicit dependence on time in the case of a conservative system, as follows from (11) and (3).

For a conservative system of N interacting atoms in a Cartesian coordinate system, the Hamiltonian

description acquires the following form:

Hðr1; r2; . . . ; rN ; p1; p2; . . . ; pN Þ ¼
X
i

p2i
2mi

þ Uðr1; r2; . . . ; rN Þ; ð15Þ

_ri ¼
oH
opi

; _pi ¼ � oH
ori

; ð16Þ

where the momenta are related to the radius vectors as pi ¼ mi _ri.



W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529–1578 1535
If the Hamiltonian function and an initial state of the atoms in the system are known, one can com-
pute the instantaneous positions and momentums of the atoms at all successive times, solving Eq. (16).

That gives the phase space trajectory of the atomic motion, which can be of particular importance in

studying the dynamic evolution of atomic structure and bonds, as well as the thermodynamic states of the

system. We note, however, that the Newtonian equation (5), following from the Lagrangian formula-

tion (1), can be more appropriate in studying particular details of the atomistic processes, especially in

solids. The Newtonian formulation is usually more convenient in terms of imposing external forces and

constraints (for instance, periodic boundary conditions), as well as the post-processing and visualization

of the results.

2.3. Interatomic potentials

According to Eq. (5), the general structure of the governing equations for molecular dynamics simu-

lations is given by a straightforward second-order ODE. However, the potential function for (5) can be an

extremely complicated object, when accurately representing the atomic interactions within the simulated

system. The nature of this interaction is due to complicated quantum effects taking place at the subatomic

level that are responsible for chemical properties such as valence and bond energy; quantum effects also are
responsible for the spatial arrangement (topology) of the interatomic bonds, their formation and breakage.

In order to obtain reliable results in molecular dynamic simulations, the classical interatomic potential

should accurately account for these quantum mechanical processes, though in an averaged sense, as out-

lined in Section 3.

The issues related to the form of the potential function for various classes of atomic systems have been

extensively discussed in literature. The general structure of this function is presented by the following:

Uðr1; r2; . . . ; rNÞ ¼
X
i

V1ðriÞ þ
X
i;j>i

V2ðri; rjÞ þ
X

i;j>i;k>j

V3ðri; rj; rkÞ þ � � � ; ð17Þ

where rn is the radius vector of the nth particle, and function Vm is called the m-body potential. The first term
of (17) represents the energy due an external force field, such as gravitational or electrostatic, which the

system is immersed into; the second shows pair-wise interactions of the particles, the third gives the three-

body components, etc. In practice, the external field term is usually ignored, while all the multi-body effects
are incorporated into V2 in order to reduce the computational expense of the simulations.
2.3.1. Two-body (pair) potentials

At the subatomic level, the electrostatic field due to the positively charged atomic nucleus is neutralized

by the negatively charged electron clouds surrounding the nucleus. Within the quantum mechanical

description of electron motion, a probabilistic approach is employed to evaluate the probability densities at

which the electrons can occupy particular spatial locations. The term ‘‘electron cloud’’ is typically used

in relation to spatial distributions of these densities.
The negatively charged electron clouds, however, experience cross-atomic attraction, which grows as the

distance between the nuclei decreases. On reaching some particular distance, which is referred to as the

equilibrium bond length, this attraction is equilibrated by the repulsive force due to the positively charged

nuclei. A further decrease in the internuclei distance results in a quick growth of the resultant repulsive

force.

There exist a variety of mathematical models to describe the above physical phenomena. In 1924, Jones

[61,62] proposed the following potential function to describe pair-wise atomic interactions:

V ðri; rjÞ ¼ V ðrÞ ¼ 4e
r
r

� �12�
þ � r

r

� �6�
; r ¼ jrijj ¼ jri � rjj: ð18Þ
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This model is currently known as the Lennard–Jones (LJ) potential, and it is used in simulations of a
great variety of atomistic systems and processes. Here, rij is the interatomic radius-vector, see Fig. 1, r is the

collision diameter, the distance at which V ðrÞ ¼ 0, and e shows the bonding/dislocation energy––the

minimum of function (18) to occur for an atomic pair in equilibrium. The first term of this potential

represents atomic repulsion, dominating at small separation distances while the second term shows at-

traction (bonding) between two atoms. Since the square bracket quantity is dimensionless, the choice of

units for V depends on the definition of e. Typically, e 	 10�19; . . . ; 10�18 joule (J), therefore it is more

convenient to use a smaller energy unit, such as electron volt (eV), rather than joules. 1 eV¼ 1.602 · 10�19 J,
which represents the work done if an elementary charge is accelerated by an electrostatic field of a unit
voltage. The energy e represents the amount of work that needs to be done in order to remove one of two

coupled atoms from its equilibrium position q to infinity. The value q is also known as the equilibrium bond

length, and it is related to the collision diameter as q ¼
ffiffiffiffiffiffi
2r6

p
. In a typical atomistic system, the collision

diameter r is equal to several angstroms (�A), 1 �A¼ 10�10 m.

The corresponding force between the two atoms can be expressed as a function of the interatomic

distance,

F ðrÞ ¼ � oV ðrÞ
or

¼ 24
e
r

2
r
r

� �13�
� r

r

� �7�
: ð19Þ

The potential and force functions (18) and (19) are plotted versus the interatomic distance in Fig. 2a, using
dimensionless quantities.

Another popular model for pair-wise interactions is known as the Morse potential, Fig. 2b:

V ðrÞ ¼ e½e2bðq�rÞ � 2ebðq�rÞ�; F ðrÞ ¼ 2eb½e2bðq�rÞ � ebðq�rÞ�; ð20Þ
where q and e are the equilibrium bond length and dislocation energy respectively; b is an inverse length

scaling factor. Similar to the Lennard–Jones model, the first term of this potential is repulsive and the

second is attractive, which is interpreted as representing bonding. The Morse potential (20) has been

adapted for modeling atomic interaction in various types of materials and interfaces; examples can be

found elsewhere [63,64].

The Lennard–Jones and Morse potentials are most commonly used in molecular dynamics simulations,

based on the pair-wise approximation, in chemistry, physics and engineering.
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Fig. 2. Pair-wise potentials and the interatomic forces: (a) Lennard–Jones, (b) Morse.
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2.3.2. Cut-off radius of the potential function

One important issue arising from molecular dynamics simulations relates to the truncation of the po-

tential functions, such as (18) and (20). Note that computing the internal force for the equations of motion

(5) due only to pair-wise interaction requires ðN 2 � NÞ=2 terms, where N is the total number of atoms. This

value corresponds to the case when one takes into account the interaction of each current atom i with all

other simulated atoms j 6¼ i; this can be expensive even for considerably small systems. Assuming that the

current atom interacts with just its nearest neighbors can reduce the computational effort significantly.

Therefore, a cut-off radius, R, is typically introduced and defined as some maximum value of the modulus
of the radius vector. The truncated pair-wise potential can then be written as the following:

V ðtrÞðrÞ ¼ V ðrÞ r6R;
0 r > R:

	
ð21aÞ

If each atom interacts with only n atoms in its R-vicinity, the evaluation of the internal pair-wise forces will
involve nN=2 terms.

To assure continuity (differentiability) of V , according to (5), a‘‘skin’’ factor can be alternatively

introduced for the truncated potential by means of a smooth step-like function fc, which is referred to as

the cut-off function,

V ðtrÞðrÞ ¼ fcðrÞV ðrÞ; ð21bÞ
fc assures a smooth and quick transition from 1 to 0 when the value of r approaches R, and is usually

chosen to take the form of a simple analytical function of the interatomic distance r. One example of a
trigonometric cut-off function is shown in Eq. (25) of Section 2.3.3.

2.3.3. Multi-body interaction

The higher-order terms of the potential function (17) are typically employed in simulations of solids and

complex molecular structures to account for chemical bond formation, their topology and spatial

arrangement, as well as the chemical valence of atoms. However, practical implementation of the multi-

body interaction can be extremely involved. As a result, all the multi-body terms of the order higher than

three are usually ignored.
Essentially, the three-body potential V3 is intended to provide contributions to the potential energy

due to the change of angle between radius vectors rij ¼ ri � rj, in addition to the change of absolute values

jrijj. This accounts for changes in molecular shapes and bonding geometries in atomistic structure, e.g.

[65,66].

However, the general three-body potentials, such as V3 in Eq. (17), have been criticized for their inability
to describe the energetics of all possible bonding geometries [67–69], while a general form for a four- and

five-body potential appears intractable, and would contain too many free parameters. As a result, a variety

of advanced two-body potentials have been proposed to efficiently account for the specifics of a local

atomistic environment by incorporating some particular multi-body dependence inside the function V2,
known as bond-order functions, rather than introducing the multi-body potential functions Vm>2. These
terms implicitly include the angular dependence of interatomic forces by introducing the so-called bond-

order function, while the overall pair-wise formulation is preserved. Also, these potentials are usu-

ally treated as short-range ones, i.e. accounting for interaction between a current atom and several

neighbors only. Some of the most common models of this type are the following: the Tersoff potential [69–

71] for a class of covalent systems, such as carbon, silicon and germanium, the Brenner [72–74] and REBO

[75] potentials for carbon and hydrocarbon molecules, and the Finnis–Sinclair potential for BCC metals
[76,77].

In spite of the variety of existing local environment potentials, all of them feature a common overall

structure, given by the following expression:
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V2ðri; rjÞ � Vij ¼ ðVRðrijÞ � BijVAðrijÞÞ; rij ¼ jrijj; ð22Þ
where VR and VA are pair-wise repulsive and attractive interactions, respectively, and the bond-order

function B is intended to represent the multi-body effects by accounting for spatial arrangements of the

bonds in a current atom�s vicinity.
The silicon potential model by Tersoff [69] gives an example of the local environment approach:

Vij ¼ fcðrijÞðAe�k1rij � Bije�k2rijÞ; ð23aÞ

Bij ¼ ð1þ bnfnijÞ
�1=2n

;

fij ¼
X
k 6¼i;j

fcðrikÞgðhijkÞek3
2
ðrij�rikÞ3 ;

gðhÞ ¼ 1þ c2=d2 � c2=½d2 þ ðh� cos hÞ2�:

ð23bÞ

Here, the cutoff function is chosen as

fcðrÞ ¼
1

2

2 r < R� D;
1� sinðpðr � RÞ=2DÞ R� D < r < Rþ D;
0 r > Rþ D;

8<
: ð24Þ

where the middle interval function is known as the ‘‘skin’’ of the potential. Note that if the local bond-order

is ignored, so that B ¼ 2A ¼ const, and k1 ¼ 2k2, potential (23) reduces to the Morse model (20) at
r < R� D. In other words, all deviations from a simple pair potential are ascribed to the dependence of the

function B on the local atomic environment. The value of this function is determined by the number of

competing bonds, the strength k of the bonds and the angles h between them (hijk shows the angle between
bonds ij and ik). The function f of (23) is a weighted measure of the number of bonds competing with the

bond i–j, and the parameter n shows how much the closer neighbors are favored over more distant ones

in the competition to form bonds.

The potentials proposed by Brenner and co-workers [72,75] are usually viewed as more accurate, though

more involved, extensions of the Tersoff models [69–71]. The Brenner potentials include more detailed
terms VA, VR and Bij to account for different types of chemical bonds that occur in the diamond and graphite
phases of the carbon, as well in hydrocarbon molecules.

Another special form of the multi-body potential is provided by the embedded atom method (EAM) for

metallic systems [78–80]. One appealing aspect of the EAM is its physical picture of metallic bonding, where

each atom is embedded in a host electron gas created by all neighboring atoms. The atom-host interaction is

inherently more complicated than the simple pair-wise model. This interaction is described in a cumulative

way, in terms of an empirical embedding energy function. The embedding function incorporates some

important many-atom effects by providing the amount of energy (work) required to insert one atom into
the electron gas of a given density. The total potential energy U includes the embedding energies G of all

of atoms in the system, and the electrostatic pair-wise interaction energies V :

U ¼
X
i

Gi

X
j 6¼i

qa
j ðrijÞ

 !
þ
X
i;j>i

VijðrijÞ: ð25Þ

Here, qa
j is the averaged electron density for a host atom j, viewed as a function of the distance between this

atom and the embedded atom i. Thus, the host electron density is employed as a linear superposition of

contributions from individual atoms, which in turn are assumed to be spherically symmetric. The embedded

atom method has been applied successfully to studying defects and fracture, grain boundaries, interdiffu-
sion in alloys, liquid metals, and other metallic systems and processes [78].
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3. Energetic link between MD and quantum mechanics

Within the molecular dynamics method, the interacting particles are viewed either as material points

exerting potential forces into their vicinity, or as solid spheres with no internal structure. In other words,

the internal state of the atoms and molecules does not vary in the course of the simulation, and there is no

energy exchange between the MD system and the separate subatomic objects, the electrons and nuclei.

However, each of the atoms within the MD system represents a complicated physical domain that can

evolve in time and switch its internal state by exchanging energy with the surrounding media. Most
importantly, the nature of averaged interatomic forces that are employed in the MD simulations is in fact

determined by characteristics of the subatomic processes and states.

The dependence of the potential function U on the separation between atoms and molecules and their

mutual orientation can in principle be obtained from quantum mechanical (QM) calculations. The further

use of this function within a classical MD simulation provides an ‘‘energetic link’’ between the atomistic

and subatomic scales. These arguments are employed in any multiscale approach designed to accurately

relate the MD and QM simulations. Indeed, in the absence of information about the trajectories of particles

within a quantum mechanical model, the energy arguments are solely appropriate for establishing the
exchange of the information between the MD and QM subsystems.

To illustrate the general idea of MD/QM coupling, consider a simple example with two interacting

hydrogen atoms. Those comprise one hydrogen molecule H2, which consists of two proton nuclei (+) and

two electrons ()). The positions of the electrons with respect to each other and the nuclei are defined by the
lengths r12 and rai, a ¼ a; b, i ¼ 1, 2, and the separation distance between two atoms is given by r, as
depicted in Fig. 3.

Obviously, the total energy E of this system consists of the energies of two unbound hydrogen atoms, Ea
and Eb, plus an atomic binding energy term U ,

E ¼ Ea þ Eb þ U : ð26Þ
Since the classical MD models assume no energy absorption by the simulated atoms, the values E, Ea and
Eb should relate to the atomic states with minimum possible energies, i.e. the so-called ground states.

Provided that these energies are known from quantum mechanical calculations, and the full energy of the

coupled system is available for various values r, one obtains a dependence EðrÞ, and therefore the energy

of pair-wise atomic interactions as a function of r:

UðrÞ � V2ðrÞ ¼ EðrÞ � Ea � Eb: ð27Þ
When necessary, this function can be interpolated with a smooth curve, and next utilized in the classical

molecular dynamics equations of motion (5) or (15) and (16); that is the general idea of establishing the link

between the quantum mechanical and MD simulations.

The energies Ea and Eb can be found by solving the stationary Schr€odinger wave equation [81–84] for

each non-interacting hydrogen atom, i.e. when they are formally put at the infinite separation distance,
r ! 1. This equation gives the functional eigenvalue problem
r

1 2

+ +

b2ra2r
12r

a b

H2 a1r b1r

Fig. 3. Coordination in the hydrogen molecule.
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ĥwa ¼ Eawa; ð28aÞ

ĥ ¼ � �h2

2m
Da �

e2

ra
; Da ¼

o2

or2
; a ¼ a; b: ð28bÞ

Here �h, m and e are Planck�s constant, the electron mass and charge, respectively; D is the Laplace operator,

and ra � ra1, rb � rb2. ĥ is the one-electron Hamiltonian operator. This operator resembles the Hamiltonian
function of classical dynamics (15) which represents the total energy of a system in terms of the coordinates

and momenta of the particles. Similarly, the first term in (28b) is the kinetic energy operator, and the second

term gives the Coulomb potential of the electrostatic electron-proton interaction. Obviously, Ea ¼ Eb and
wa ¼ wb for two identical atoms in the ground states. We will nevertheless preserve the above notation

for generality, because similar arguments hold also for a pair of distinct atoms.

The wave function solution, such as wa, provides the complete description of a quantum mechanical

system in the corresponding energy state. At the same time, the wave function itself gives no immedi-

ate physical insight. It serves as a mathematical tool only and cannot be determined experimentally. It
is used in further calculations in order to obtain observable quantities. For instance, the product

w�
awa, where the star notation means complex conjugate, provides a real-valued probability-density func-

tion of electron. Its integration over a spatial domain in the vicinity of the nucleus of the unbound

atom a results in the probability of finding the electron in this spatial domain. The one-electron wave

function wa is often referred to as the hydrogen atomic orbital. All hydrogen orbitals and the corre-

sponding energy levels are known in closed form that can be found elsewhere in quantum mechanics

textbooks [81–84].

In principle, the full energy E of the bound diatomic system H2 in the ground state can be obtained for a
given separation distance r between the nuclei by solving the molecular two-electron Schr€odinger equation,

ĤW ¼ EW; ð29Þ

Ĥ ¼ � �h2

2m
D �

X
a;i

e2

rai
þ e2

r12
þ e2

r
; ð30Þ

where the Laplacian D involves all the electronic degrees of freedom, and Ĥ and W are the molecular

Hamiltonian and the two-electron wave function, describing the ground state of the coupled system.

Remark: the protons are usually taken stationary at the distance r; that is known as the Born–Oppenheimer
approximation in quantum mechanics, e.g. [81,85]. This approximation holds with a high accuracy, because

the proton is 1800 times more massive than the electron. As far as r is a constant parameter in (30), the

solution to (30) will be only in terms of the electronic coordinates rai and r12.

Though the complete Hamiltonian Ĥ for any complex molecule is easily determined (see textbooks on

quantum chemistry [85–88]), solving the resultant Schr€odinger equation is usually difficult even for simple

cases, such as the hydrogen molecule discussed. A variety of numerical methods have been developed to

obtain approximate multi-atom/multi-electron wave functions. Some of these methods are outlined in

Sections 3.1 and 3.2. The tight binding method utilizes the exact hydrogen orbitals to give the so-called

molecular orbital ~w, an approximate wave function solution for a single electron interacting with several

arbitrarily arranged nuclei. The Hartree–Fock and related methods employ these molecular orbitals to
provide an approximate wave function ~W for the entire molecule, i.e. for several electrons interacting with

the same group of nuclei. In principle, the tight binding method ‘‘adds nuclei/atoms’’, while the Hartree–

Fock method ‘‘adds the electrons’’ to the hydrogen-like system. The molecular shape can also be investi-

gated by finding the configuration with a minimum of the total energy.
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In all cases, when an approximate N -electron wave function ~W is available, the total energy of the system
can be computed as an integral over the electronic variables, instead of directly solving the Schr€odinger
equation (29). For the H2 molecule, it gives

E �
R
. . .
R
~W�Ĥ ~Wdra1; . . . ; drb2 dr12R

. . .
R
~W� ~Wdra1; . . . ; drb2 dr12

; ð31aÞ

where the star notation implies the complex conjugate. The formula (31a) is obtained by premultiplying the

wave equation (29) with the complex conjugate solution ~W� and integrating it over all electronic degrees of

freedom. The configuration integrals, such as those in (31), are usually written in quantum mechanics

concisely as

E � h ~WjĤ j ~Wi
h ~Wj ~Wi

; ð31bÞ

which implies integration over all electronic coordinates. According to (27) and (31b), the MD/QM linkage

then gives

UðrÞ ¼ h ~WðrÞjĤ j ~WðrÞi
h ~WðrÞj ~WðrÞi

� Ea � Eb; ð32Þ

where the polyatomic multi-electron wave function ~W depends on the interatomic distance r parametrically.
Finally, the system of coupled MD/QM equations can be expressed as

ĤW ¼ U

 
þ
X

a

Ea

!
W; mi€ri ¼ � oU

ori
ð33Þ

which represents the concurrent coupling between the subatomic and atomistic simulations of nanostruc-

tured systems (for more details, see [143]).
The density functional methods, Section 3.3, are based on alternative arguments. Instead of evaluating

the multi-electron wave function, an approximate electron density function qðrÞ is derived to give the

probability density of finding electrons in the vicinity of a group of nuclei. In contrast to the molecular

wave function, the function qðrÞ of any system depends only on three spatial variables, the components of a

radius vector x, y and z. Deriving a proper form of qðrÞ is an important intermediate task in this method.

The ground state energy E of a molecular system is then found as a functional operator over qðrÞ without
involving the multi-electron wave function formulation. Collectively, the density functional and Hartree–

Fock methods are often referred to as the ab initio methods.
3.1. Tight binding method

The tight binding method, or the method of linear combination of atomic orbitals (LCAO) was origi-

nally proposed by Bloch [89] and later revised by Slater and Koster [90] in the context of periodic potential

problems. The objective of this method is to construct an approximate wave function of a single electron in

a non-central field due to two or more point sources (nuclei). Such a wave function is referred to as the

molecular orbital (MO) and is further used in obtaining approximate trial functions for the corresponding
multi-electron systems within the Hartree–Fock and related methods, Section 3.2.

The tight binding method is based on the assumption that the molecular orbital can be approximated as

a linear combination of the corresponding atomic orbitals, i.e. from the readily available hydrogen type

orbitals for each of the nuclei comprising the given molecular configuration. For the hydrogen ion Hþ
2 ,
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Fig. 4. Coordination in the hydrogen ion.
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Fig. 4, consisting of two proton nuclei and one electron, the tight binding method provides the following

approximate molecular orbital, e.g. [86,87]:

~w ¼ cawa þ cbwb: ð34Þ
The physical interpretation of this approximation is that in the vicinities of nuclei a and b, the sought

molecular orbital should resemble the atomic orbitals wa and wb respectively.

According to the variational principle of quantum mechanics, the energy for a given (chosen) approxi-

mate wave function is always greater than for the true, or a more accurate, wave function. Therefore, the

coefficients ca and cb for (34) can be found by minimizing the integral (31). Due to (31) and (34), the

approximate ground state energy ~EPE gives

~E ¼ h~wjĥj~wi
h~wj~wi

¼ c2aHaa þ c2bHbb þ 2cacbHab

c2a þ c2b þ 2cacbSab
; ð35Þ

where

Sab ¼ hwajwbi; Hab ¼ hwajĥjwbi; a ¼ a; b and b ¼ a; b; ð36Þ

ĥ ¼ � �h2

2m
D � e2

ra1
� e2

rb1
þ e2

r
; ð37Þ

ĥ is the Hamiltonian operator for a single electron in the field of two protons and r is the separation be-

tween two protons. In deriving (35), it was also assumed that the atomic orbitals obey the normalization
condition

Saa ¼ hwajwai ¼ 1 ð38Þ
as well as the symmetries Sab ¼ Sba and Hab ¼ Hba that hold for the hydrogen ion.

At the variational minimum, we have the conditions o~E=oca ¼ 0, o~E=ocb ¼ 0. Employing these condi-

tions and the symmetry Haa ¼ Hbb, we obtain

c2a � c2b ¼ 0; ð39Þ
which is only possible when

ca ¼ cb or ca ¼ �cb: ð40Þ
Thus, there exist two molecular orbitals for the Hþ

2 ion, one symmetric and one antisymmetric:

~wðþÞ ¼ N ðþÞðwa þ wbÞ; ~wð�Þ ¼ N ð�Þðwa � wbÞ; ð41Þ

where N ð�Þ are normalization factors, which can be found from the condition similar to (38). According

to (40) and (35) these molecular states are characterized by the energies

~EðþÞ ¼ Haa þ Hab

1þ Sab
; ~Eð�Þ ¼ Haa � Hab

1� Sab
: ð42Þ
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3.2. Hartree–Fock and related methods

In this section, we outline a group of numerical methods enabling one to build the ground state multi-

electron wave function ~W based on either the exact hydrogen wave functions wa or the approximate

one-electron molecular orbitals ~w of the type (41). The hydrogen wave functions are used for solving multi-

electron systems in a central field, and the molecular orbitals––for polyatomic multi-electron systems,

in particular, H2. For both types of input wave functions, we will use the unified notation wi, where

the subscript index denotes the number of the electron in the system.
One commonly used approach is the approximation of independent electrons, which is equivalent to

ignoring the term e2=r12 in the Hamiltonian (30). This approximation gives the two-electron wave function

as the second-order Slater determinant,

~W ¼ 1ffiffiffi
2

p w1ð1Þ w2ð1Þ
w1ð2Þ w2ð2Þ

����
���� ¼ 1ffiffiffi

2
p ðw1ð1Þw2ð2Þ � w1ð2Þw2ð1ÞÞ; ð43aÞ

where wiðjÞ is the wave function of electron i written in terms of the variables of electron j. For a multi-

electron system, one obtains the N -order determinant,

~W ¼ 1ffiffiffiffiffi
N !

p

w1ð1Þ w2ð1Þ . . . wNð1Þ
w1ð2Þ w2ð2Þ . . . wNð2Þ

..

. ..
. ..

.

w1ðNÞ w2ðNÞ . . . wN ðNÞ

���������

���������
; ð43bÞ

where N is the total number of electrons in the system.

The functions (43) comply with the Pauli principle, stating that two electrons cannot simultaneously exist

in the same one-electron state. Indeed, if for example wið1Þ ¼ wjð2Þ at i 6¼ j, then the Slater determinant

becomes trivial to indicate that such a state does not occur. As a result, the tight binding molecular orbitals
(34), if used in (43), may require additional terms describing non-ground (excited) states of the hydrogen

atom.

The electron–electron interaction can be taken into account with the use of the Hartree method

[91]. Similar to the tight binding method, the variational principle is invoked to assume that the ground

state energy for a chosen approximate wave function is always greater than for a more accurate wave

function. The trial (zero-order) function can be adopted from the independent electron assumption, in

particular:

~W ¼ wð0Þ
1 ð1Þwð0Þ

2 ð2Þ; ð44Þ

where wð0Þ
i are the one-electron hydrogen eigenfunctions found by solving (28), or the tight-binding

molecular orbitals according to (41). More accurate one-electron orbitals for (44) are next sought, in order

to minimize the integral (31). This minimization problem reduces to the iteration procedure, where the

updated orbitals are found by solving the system of one-electron Schr€odinger equations,"
� �h2

2m
D �

X
a

e2

rai
þ e2

r
þ vð0Þ

i � Ei

#
wð1Þ
i ¼ 0; i ¼ 1; 2; . . . ;N ð45Þ

with the energy integrals vi involving the trial orbitals of (44),

vð0Þ
i ¼

X
j 6¼i

wð0Þ
j

e2

rij

����
����wð0Þ

j

� �
; i ¼ 1; 2; . . . ;N ; ð46aÞ
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where rij are the interelectron distances. For a two-electron system, one obtains

vð0Þ
1 ¼ wð0Þ

2

D ��� e2
r12

wð0Þ
2

��� E
; vð0Þ

2 ¼ wð0Þ
1

D ��� e2
r12

wð0Þ
1

��� E
: ð46bÞ

Next, the functions wð1Þ
i are substituted into (46), instead of wð0Þ

i to find the new value vð1Þ
i . The former is

substituted back to (45) to evaluate wð2Þ
i , etc. If this procedure converges, then the system (45) will yield

almost identical wave functions, wðkÞ
i ’ wðk�1Þ

i , for some k. These functions will represent the desired one-

electron orbitals for (44). The corresponding value vðkÞ
i is known as the Hartree self-consistent field. For

polyatomic molecules, Eq. (45) is solved with the tight binding method at each iteration step; this updates

the values of coefficients in the linear representations, similar to (34).
According to (45) and (46), the physical interpretation of this method is in the assumption that the

electron–electron interaction occurs through the averaged field vðkÞ
i , and for a given electron, this field is

created by the rest of electrons in the system.

The Hartree method does not comply with the Pauli principle. Using the trial function form (43) instead

of (44) allows writing a set of equations for the one-electron wave functions to constitute a multi-electron

wave function that satisfies the Pauli principle. This function accounts for some additional characteristics of

the quantum system, such as the spin variables of the electrons. Such an approach of solving the multi-

electron problem is known as the Hartree–Fock method [92]. The resultant one-electron equations, as

compared to (45), include additional terms of the type vjiw
ð1Þ
i , where vji is the exchange integral

vji ¼ wj

D ��� e2
rij

wi

��� E
: ð47Þ

The successive iteration procedure, similar to (45)–(46), yields the modified molecular orbitals for (43),

known as the Hartree–Fock orbitals. The corresponding values Ei in (45) are called Hartree–Fock orbital
energies. The Hartree–Fock approximation has been used successfully for solving a variety of problems

in quantum physics and chemistry. A more detailed description of this method can be found in [93].

3.3. Density functional theory

Though the Hartree–Fock calculations provide reliable results, they are computationally expensive and

cannot be applied to large systems. Density functional methods provide an alternative route to yield

comparable results at a lower expense, allowing the simulation of molecules with hundreds of atoms.
Within the Hartree–Fock method, the consideration begins with an exact Hamiltonian, similar to (30),

but an approximate trial wave function. This wave function is written by combining the readily available

one-electron orbitals, according to (43) or (44), and it is next improved by optimizing the one-electron

solutions. In contrast, the density functional model starts with a Hamiltonian, relating to an ‘‘idealized’’

many-electron system, for which the exact wave function is readily available. This solution is updated

at each iteration step by optimizing the ideal system closer and closer to the real system [85].

The density functional theory was pioneered by Hohenberg and Kohn [94], who showed that the ground

state energy of multi-electron system is a unique functional of the electronic-density of the type

E ¼ T ½qðrÞ� þ VC½qðrÞ� þ EXC½qðrÞ�; ð48Þ
where T and VC are known functionals corresponding to the kinetic energy of the electrons and the potential
energy of electron–nucleus (or electron–ion) and nucleus–nucleus (or ion–ion) Coulomb interactions,

respectively. For large multi-electron atoms, only the outer (valence) electrons are usually considered to

contribute to the electronic density of interest, while core electrons and the nucleus are treated together as

an ion. In this case, the corresponding electron–ion and ion–ion interaction energies are employed for
deriving the VC term.
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An advantage of the density functional theory is that, according to Eq. (48), the ground state energy is
obtained without involving a multi-electron wave function, in contrast with formula (33). However, a

proper form of the exchange-correlation functional EXC for (47) is in quest here, and it varies in different

modifications of this method. In the simplest approach, called local density functional theory [95], the ex-

change and correlation energy is determined as an integral of some function of the total electron density,

EXC ¼
Z

qðrÞeXC½qðrÞ�dr; ð49Þ

where eXC is the exchange-correlation energy per electron in a homogeneous electron gas of constant
density.

For a system of N -electrons, the electron density function is expressed through the modulus of the one-

electron Kohn–Sham orbitals wi,

qðrÞ ¼
XN
i¼1

jwiðrÞj
2 ¼

XN
i¼1

w�
i ðrÞwiðrÞ: ð50Þ

The initial guess for wi is obtained from a set of exact basis functions, the plane waves that give the solution
to the Schr€odinger equation for a free electron, while the participation coefficients are optimised in a way

similar to the Hartree–Fock method, as described below. The updated orbitals are found by solving the

Kohn–Sham equation,"
� �h2

2m
D �

X
a

e2

rai
þ e2

r
þ
Z

qðrÞ
jr� r0j dr

0 þ VXC � Ei

#
wð1Þ
i ðrÞ ¼ 0; i ¼ 1; 2; . . . ;N : ð51Þ

Here, the terms Ei are the Kohn–Sham orbital energies and VXC is the derivative of the exchange-correlation
functional (48) with respect to the electron density:

VXC½q� ¼
dEXC½q�

dq
: ð52Þ

The improved set of Kohn–Sham orbitals, wð1Þ
i , is next used to compute a more accurate density function,

according to (49). These iterations repeat until the exchange-correlation energy and the density converge

to within some tolerance.

The local density functional theory provides a very rough approximation for the molecular system,

because it assumes a uniform total electron density throughout the molecular system. Non-local density

functional approaches have been also developed to account for variations in the total density, e.g. [96–98].

This is accomplished by introducing a dependence of ground state energy also on the gradient of the

electron density, besides the density itself.
The original density functional procedure (49)–(52) in general involves OðN 3Þ order of computation, N is

the number of electrons, as compared with OðN 4Þ for the Hartree–Fock and tight binding methods.

Important improvements have been made using the Car–Parrinello MD method [99] and conjugate gra-

dient method [100]. The Car–Parrinello method reduces the order to OðN 2Þ, while the conjugate-gradient
method can, as shown in [100], be even more efficient. Standard computer packages are currently available

to accomplish ab initio calculations based on the density functional theory; as an example, we mention the

VASP code, which was developed at the University of Vienna [101].
4. Limitations of MD simulations

Molecular dynamics (MD) simulations have become a powerful tool for elucidating complex physical

phenomena. However, the length and time scales that can be probed using MD are still fairly limited. For
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the study of problems such as nanoscale coatings, ion-beam deposition, nanoindentation and stiction in
MEMS devices, models need to be on the scale of several microns, consisting of billions of atoms, which is

too large for current MD simulations.

The major task of the MD simulation is to predict the time-dependent trajectories in a system of

interacting particles. For this purpose, time-integration algorithms were devised to solve the equations of

motion (5) based upon truncated Taylor�s expansions with respect to time. Detailed descriptions of these

simulation algorithms can be found elsewhere [51,52].

Efficiency and accuracy are the two most important criteria guiding the development of simulation

methods. Both depend on the complexity of the interatomic potentials and the time-integration algorithms
used in the simulation. With the computational power available today, a typical MD simulation domain

contains several millions of atoms. Consequently, MD simulations have their own limitations, which will

be discussed below in Sections 4.1 and 4.2.

4.1. Effect of boundary conditions

Due to the limitations in computer performance, MD simulations consider only small representative

volume elements of the full system under analysis, while the true effect of the surrounding media is typically
ignored with the use of rigid or periodic boundary conditions. Therefore, the physical behavior and

properties of representative volume elements cannot be unambiguously attributed to a corresponding

macro-scale system of interest.

In a small MD system, a large fraction of atoms is located on the surface of the domain. As a result,

these surface effects dominate the properties of the simulated material. The use of periodic boundary

conditions (PBC) can overcome the surface effects to a certain extent. However, it introduces artificial

periodicity into the simulated system. It is thus arguable whether a small simulation box with imposed PBC

represents the macroscopic system it intends to simulate.
In general, the effect of PBC depends on the range of the interatomic potentials and the phenomena

under investigation. A simulation is considered to be valid only when the size of the simulated domain is

larger than the cut-off radius of the interatomic potential and the effective range of the phenomenon under

investigation. Consider, for example, the induction of compressive stresses in carbon thin films grown via

ion beam deposition [102,103]. The dominant mechanisms responsible for stress formation are defect

production and recombination within displacement and thermal spikes induced by energetic carbon neu-

trals. Such a physical process takes place within a region on the order of 1 nm centered around the

impacting carbon neutrals, provided that the impact energy of the carbon neutrals is less than 200 eV. Note
that since the carbon-carbon interaction is short-ranged, a valid MD simulation for this case can be based

on a substrate with size on the order of 1 nm.

The use of fixed or periodic boundary conditions may not be capable of capturing long-ranged physical

processes. For example, in simulating ion-beam deposition, a non-zero Kapitza resistance is generated,

which leads to anomalous heating at the boundaries of the molecular model. Waves that are generated in

the molecular mechanics domain cannot pass into the surrounding media. Instead, waves are reflected back

into the atomistic domain, as shown in Fig. 5a. In reality, the thermal energy in the form of localized lattice

vibrations would be dissipated away by phonons. Failure to model these correctly leads to unphysical
behavior of the simulated system. The reflected wave interacts with other physical processes, causing

pronounced simulation errors, such as bouncing of the deposited ions due to the increase in kinetic energy

of the lattice atoms, Fig. 5b. One commonly used technique to avoid spurious wave reflection is to apply

fictitious damping forces to several layers of atoms next to the boundaries. However, this method is still

ad fhoc and is particularly ineffective for coherent waves.

Another example is the simulation of nanoindentation processes [104–107], Fig. 6. In a nanoindentation

experiment, the size of a typical indenter is of the order of tens of nanometers. To minimize the boundary



Fig. 5. Ion-beam deposition: (a) waves due to ion–lattice collisions are reflected from the boundaries; (b) the collisions heat up the

lattice causing unrealistic bouncing of the deposited ions.

Fig. 6. Indentation pattern in a golden substrate: MD simulation. Actual imprint size can be tens-to-hundreds of nanometers.
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effects, the substrate for the MD simulations must be at least an order of magnitude larger than the in-
denter. A model for this system would easily fall beyond the affordable range of the modern computer

power. To reduce the computational requirements, a virtual potential is often introduced to mimic the

indenter. The effective domain of this potential is much smaller than that of a real indenter. Rigid boundary

conditions are typically applied on the bottom of the substrate with periodic boundary conditions in the

indentation plane. These boundary conditions artificially stiffen the material, which suppresses the nucle-

ation of dislocations. Furthermore, the evolution of any emitted dislocations may also be affected by these

boundary conditions. The validity of the corresponding force versus indentation depth curve becomes

questionable, especially when a small domain is simulated.
Reliability studies of the simulation results require the estimation of PBC effects. However, studies of

PBC effects are frequently hampered by the difficulty in isolating the periodicity effects from other effects. A

standard approach is to test the simulation results repeatedly with increasing simulation domain sizes.

MD simulations of dynamic fracture have been fairly successful in recent years. However, one potential

limitation of using MD only lies in the fact that huge numbers of atoms must be used in the fracture

simulations [144,145]. The reason for this is due to the fact that it is crucial in MD fracture simulations to

allow waves that have been emitted from the crack tip region to propagate unimpeded away from the crack.

If this is not allowed to happen, then the waves reflect from the MD boundaries and continue to incorrectly
participate in the crack tip dynamics. Two snapshots of an MD fracture simulation, depicted in Fig. 7,



Fig. 7. A potential energy profile for MD fracture simulation: the fracture dynamics is affected by elastic waves, emitted by the crack

tip (left) and reflected back by the MD domain boundaries (right).
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illustrate this process. The wave created due to opening the fracture surfaces heads out towards the MD

boundary, reflects from it, and propagates back in towards the crack. Once the wave hits the crack, it will

interfere with the crack dynamics. In this simulation, the wave front is plane and parallel to the crack face.

In order to avoid this spurious interference, MD simulations of fracture must be very large, typically on
the order of many millions of atoms, to ensure a domain that is large enough to prevent wave interference

at the crack tip. Though the increase in computational power has made million atom MD calculations

fairly commonplace, it appears to be computationally and physically unnecessary to have full atomistic

resolution far from the crack tip.

Because of the large domain requirement on the MD region, it appears that this type of problem would

be well suited to multiple-scale analysis techniques. Another issue which supports this is the fact that the

waves emitted from the crack tip are usually elastic in nature, and do not cause atomic imperfections (i.e.

dislocations) far from the crack tip. Therefore, we will discuss application of the bridging scale method, a
multiple-scale method that will be introduced in detail later in this work, to this problem. The crack

propagation can be correctly modeled using full atomistic resolution, while the propagation of the elastic

waves away from the crack tip can be accurately modeled and captured using a continuum formulation.

The usage of finite elements far from the crack tip would reduce the computational expense of having full

atomistic resolution, while still accurately capturing the necessary physics.
4.2. Coupling to an external bath

In MD simulations, it is often required to maintain a certain temperature in the ensemble. For example,

in an ion-deposition process, part of the kinetic energy of the impacting ions is transmitted to thermal

energy in the form of concentrated lattice vibration. In reality, the thermal energy would be damped away

by phonons. However, the use of PBC prohibits the transmission of the thermal energy to the surrounding

media. This may result in a spurious growth of the system temperature and consequent evaporation of the

surface atoms. Furthermore, studying temperature-dependence macroscopic properties also requires con-

trol of the system temperature.

A general method of controlling temperature in a molecular system is to couple the molecular system to
an external bath, thereby allowing heat exchange between the system and the external bath [53]. Such a

coupling can be accomplished by adding stochastic and friction terms in the equations of motion, yielding

a Langevin equation for selected atom i,
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mi _vi ¼ Fi � micivi þ R; ð53Þ
where ci is the damping constant that determines the strength of the coupling to the bath, and R is the

Gaussian stochastic variable.

Through the Langevin equation, the system not only globally couples to the external bath, but is also

subjected to random noise. In the case where the global coupling is the only interest, the coupling can be

established by

mi _vi ¼ Fi þ mic
T0
T

�
� 1

�
vi; ð54Þ

where T0 is the reference temperature, and T is the kinetic temperature of the system. Note that in Eq. (54),

the friction constants for all the selected atoms are equal, i.e., ci ¼ c. Effectively, this coupling propor-

tionally scales the velocity by a factor of k per time step, with k ¼ 1þ cDtðT0=T � 1Þ. Eq. (54) shows that
the exchange of thermal energy between the external bath and the system is solely based on their tem-

perature difference. When T0 < T , thermal energy is dissipated away into the external bath; when T0 > T ,
the system absorbs energy from the external bath.

Another issue lies in choosing the magnitude of the damping constant. On the one hand, the damping
constant must be large enough such that energy can be removed efficiently from the atoms without causing

substantial temperature change. On the other, it should be small enough that the trajectories of individual

particles are not perturbed too strongly by the coupling.

In the study of nanotribology [108,109], it is of great interest in evaluating the dissipated energy by

friction from the simulated ensemble and the external bath. The above analysis shows that the dissipated

energy per step can be written as

Ed ¼
X
i

fdampi � viDt; ð55Þ

where fdampi ¼ micðT0=T � 1Þvi is the damping force for atom i. The index i runs over all the atoms that are
coupled to the external bath for each time step. The average frictional force can be computed from the

accumulated energy dissipation and the sliding distance. Equivalently, one can calculate the frictional

forces through the discrete summation of the atomic force, as shown in Fig. 8.
Fig. 8. Friction behavior of a hydrocarbon system [109]: (a) simulation model of friction between two molecular surfaces; (b) com-

parison of the friction coefficients for hydrogen-terminated carbon surfaces and clean carbon surfaces.



Fig. 9. Using varying time-step in the simulation of ion-beam deposition. (a) Maximum velocity of atoms in the system. The peaks

correspond to the deposition of an energetic ion. (b) Time step in the simulation based on the maximum velocity profile.
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Thermal coupling virtually mimics the heat exchange between the domain under investigation and its
surrounding medium. Representing the underlying physical process by simply applying an artificial friction

force to selected Langevin atoms may not be sufficient. Unfortunately, no advanced replacement of this

coupling technique is currently available. This weakness motivates the usage of multi-scale simulations in

which the bulk material that surrounds the MD domain is allowed to influence the energetics of the MD

domain. This topic will be addressed in Section 5.

4.3. Time step

In MD simulations, the time step is one of the crucial parameters that determines computational ex-

pense. Two criteria must be followed in choosing the value of the time step. First, the time step should be

small enough so that the trajectory of each atom is realistic. Note that the truncation error in a simulation is

power-law proportional to the time step. A large time step would lead to divergent physical behavior.

Secondly, the time step should be large enough so that the simulation is efficient.

A constant time step is commonly implemented in MD simulations for the simplicity of the algorithm. In

the case of simulating large time-scale phenomena, using a constant time-step would require tremendous

power. In a dynamic process, where the maximum atom velocity varies, a varying time step can be used to
improve the efficiency of the simulation. Specifically, it can be chosen inversely proportional to the max-

imum velocity of particles in the ensemble. One way to assign a time step for the next integration step,

ðDtÞnþ1, is to account for the maximum atomic velocities on two successive steps, as

Dtnþ1 ¼
Dtnð1þ aðV max

n � V max
nþ1 Þ=V max

nþ1 Þ V max
nþ1 6 V max

n ;
Dtmax V max

nþ1 > V max
n ;

	
ð56Þ

where a is the time-step increment parameter. Note that the truncation error is proportional to the time

step, a maximum time step is chosen in Eq. (56). This varying time-step strategy has been used in simulating

the ion-beam deposition process; see Fig. 9. It is found that the efficiency of simulations can be markedly

improved without considerably affecting the simulation results.
5. Multi-scale simulation methods

Over the past few decades, continuum methods have dominated materials modeling research. This ap-

proach of predicting material deformation and failure by implicitly averaging atomic scale dynamics and
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defect evolution over time and space, however, is valid only for large enough systems that include a sub-
stantial number of defects. As a result, numerous experimental observations of material behavior cannot be

readily explained within the continuum mechanics framework: dislocation patterns in fatigue and creep,

surface roughening and crack nucleation in fatigue, the inherent inhomogeneity of plastic deformation, the

statistical nature of brittle failure, plastic flow localization in shear bands, and the effects of size, geometry,

and stress state on yield properties. Thus, there is a considerable effort to find fundamental descriptions for

strength and failure properties of nanoscale materials, taking into account their atomic structures. The use

of MD simulations has provided useful information of chemical interactions at the nanoscale. However,

MD simulations have their own limitations, as discussed in the previous section. Typical atomistic simu-
lations are still restricted to very small systems consisting of several million atoms or less and timescales on

the order of picoseconds. Thus, even for nanoscale structures and materials, atomistic modeling would be

computationally prohibitive.

The limitations of atomistic simulations and continuum mechanics, along with practical needs arising

from the heterogeneous nature of engineering materials, have motivated research on multi-scale simula-

tions that bridge atomistic simulations and continuum modeling [110–117,125–132]. In order to make

the computations tractable, multi-scale models generally make use of a coarse-fine decomposition. An

atomistic simulation method, such as MD, is used in a small subregion of the domain in which it is cru-
cial to capture the individual atomistic dynamics accurately. A continuum simulation is used in all

other regions of the domain in which the deformation is considered to be homogeneous and smooth.

Since the continuum region is usually chosen to be much larger than the atomistic region, the overall

domain of interest can be considerably large. A purely atomistic solution is normally not affordable on

this domain, though the multi-scale solution would presumably provide the detailed atomistic informa-

tion only when and where it is necessary. The key issue is then the coupling between the coarse and fine

scales. Depending on the method of information exchange between the coarse and fine regions, multi-

scale methods can be classified into three groups: hierarchical, concurrent, and multi-scale boundary
conditions.

Hierarchical approaches (Section 5.1) embed the intrinsic atomistic properties of the solid in the con-

tinuum formulation according to the Cauchy–Born rule, so that small scales depend on large scales in some

predictable way. Hierarchical techniques are based on the assumption of homogeneous lattice deformation;

therefore they are more effective for elastic single-phase problems. Difficulties typically arise from modeling

defects in atomic lattices, dislocations, and failure phenomena.

Within concurrent methods (Sections 5.2, 5.3 and 5.5), the behavior at each length scale depends strongly

on the others. An appropriate model is solved at each length scale simultaneously (continuum mechanics
for macro-elastic media, molecular dynamics for large groups of atoms and quantum mechanics for bond

breaking), while a smooth coupling is introduced between the different scales. The interscale dependence is

complicated, and it is not pre-assigned. Concurrent approaches are more relevant for studying complicated

problems, involving inhomogeneous lattice deformation, fracture in multi-phase macroscopic materials,

and nanofluidics. However, two arguable issues do typically arise: (a) how to separate the scales, and (b)

what is the adequate mechanism of coupling the atomistic and continuum simulations.

Multi-scale boundary conditions for molecular dynamic simulations (Section 5.4) is an emerging ap-

proach not to involve the explicit continuum model, so that the issues of separating the scales and coupling
the simulations do not arise. In this case, the coarse grain behavior is taken into account on the fine/coarse

grain interface at the atomistic level through the lattice impedance techniques. These methods, though, may

appear to be more effective than the concurrent methods only for a particular class of problems with linear

coarse grains in solids. Alternatively, the multi-scale boundary conditions are employed within concurrent

coupling methods to represent atomistic behavior in the continuum domain. That results in a smooth

FE/MD coupling, without involving an artificial handshake region at the atomistic/continuum interface

and a dense FE mesh scaled down the chemical bond lengths.



1552 W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529–1578
5.1. Hierarchical modelling of heterogeneous materials

The heterogeneous nature of engineering materials calls for a multi-field decomposition technique in

modeling material deformation and failure [110–128]. Within the framework of continuum mechanics, a

multi-field decomposition takes the localized deformation of materials into account by including a high-

order term in the constitutive relation [125]. A general idea of this technique is to decompose the defor-

mation field into macro- and micro-components,

uð�xþ yÞ ¼ uð�xÞ þ umð�xþ yÞ; ð57Þ
where uð�xþ yÞ is the total displacement field, uð�xÞ is the displacement at the center of the micro-scale cell,
and umð�xþ yÞ is the relative displacement to the center of the micro-cell. This displacement field decom-

position leads to the following form of system potential energy:

W ¼
Z

Xx

ðrijeij þ r0
ijðvij � FijÞ þ skjivij;kÞdX þ

Z
Xx

ðbiui þ BijvijÞdX þ
Z

Cx

ðtiui þ TijvijÞdC; ð58Þ

where rij, r0
ij and skji the macro-stress, micro-stress and the second micro-stress tensors, respectively, Fij and

vij are the macro- and micro-deformation gradients, eij is the symmetric part of Fij, Xx is the volume of the

computational domain, Cx is the boundary of the domain Xx, bi and Bij are the body force and the body

couple, and ti and Tij are the applied force and moment on the boundary, respectively. The principle of

virtual work leads to following point-wise governing equations in terms of the macro-scale and the micro-

field deformation gradient, as

ðrij � r0
ijÞ;j ¼ bi; r0

ij � skji;k ¼ Bij in Xx; ð59aÞ

ðrij � r0
ijÞnj ¼ ti; skjink ¼ Tij on Cx; ð59bÞ

where nj is the normal at the boundary. Differing from the conventional continuum mechanics formulation,
the equilibrium condition here consists of both the force and couple balance in the domain and on the

boundary, respectively.

In order to solve the boundary value problem described by (59), the constitutive laws at different scales

must be established. The heterogeneous nature of the materials under investigation suggests a hierarchical

modeling technique. A general feature of hierarchical methods is that simulations at different length scales

are performed separately. The coupling between scales is realized by embedding the information gained

from the fine-scale simulation into the coarser scale simulation.

A hierarchical model has been proposed for quantum design of Cybersteel that contains particles on
different length scales [126], as shown in Fig. 10. The primary inclusions, which improve the yielding

strength of the material, are on the order of 1 lm; the secondary particles, which enhance the ductility of

the material, are on the order of 0.1 lm. The failure of the Cybersteel involves particle–matrix interface

debonding, void nucleation and growth, shear localization and ductile fracture. These failure phenomena

occur on different length scales: the particle–matrix interface debonding takes place on the quantum scale,

void nucleation and growth on the sub-micron scale, shear localization on the micro scale and fracture on

the macroscopic scale. In order to establish a reliable macroscopic constitutive equation for the Cybersteel,

computational tools are needed to bridge the physics at different length scales hierarchically. The objective
of quantum steel design is to use these computational tools in the multi-physics based design of high-

strength and high-toughness steels for naval applications.

Fig. 10 presents a bottom-up multi-scale strategy for modeling the macroscopic fracture of the Cyber-

steel. Starting from the quantum scale, the particle–matrix interface decohesion is characterized by a first-

principles based traction-separation law, which is embedded into the simulation of the submicro-cell that

contains secondary particles. This procedure is repeated hierarchically for the micro-cell that contains the



Fig. 10. Hierarchical modeling of Cybersteel [126]: (a) Quantum mechanics calculations yield the traction-separation law. (b) Con-

current modeling of the submicro-cell with embedded traction-separation law. (c) Concurrent modeling of the micro-cell with

embedded constitutive law of the submicro-cell. (d) Modeling the fracture of the Cybersteel with embedded constitutive law of the

micro-cell. (e) Fracture toughness and yield strength of the Cybersteel as a function of decohesion energy, determined by geometry

of the nanostructures. (f) Snap-shots of the localization induced debonding process. (g) Experimental observations.
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primary inclusions to establish the macroscopic constitutive law that is in turn used to simulate the macro-

scopic fracture of the Cybersteel. Detailed descriptions of the computational strategy at different length
scales are presented as follows.

(I) Quantum scale: The interfacial traction-separation law of the inclusion-matrix is established based on

first-principles calculations (Fig. 10a). The traction-separation law is determined by the material compo-

sition of both the particles and the matrix. Key parameters that characterize the traction-separation law are

determined, such as the peak force, the critical separation at which the traction vanishes, and the interface

binding energy. As the interfacial cohesive law serves as a fundamental governing equation that ultimately

determines the mechanical properties of the bulk materials, these key parameters are regarded as design

parameters for the Cybersteel.
(II) Submicro-scale: Within the framework of energy conservation, the first principles-based interfacial

traction-separation law is embedded into the modeling of the constitutive law for the submicro-cell (Fig.

10b). The particle–matrix debonding process is modeled by employing a concurrent method. Specifically,

the particles and the matrix are modeled by finite elements, while the interface is modeled by molecular

dynamics. The deformation behavior, typically characterized by interface debonding induced void nucle-

ation and growth, is determined by not only the key parameters associated with the traction-separation law,
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but also the volume fraction, orientation and distribution of the secondary particles. A comprehensive
modeling at various loading conditions gives rise to a constitutive law of the submicro-cell that takes into

account all the abovementioned effects, as

Rm ¼ UmðNm; gT-S; gSPÞ; ð60Þ

where gT-S represents all the key parameters of the first-principles based traction-separation law of the

interface, while gSP represents the parameters that are associated with the secondary particles. Rm and Nm

are the average stress and strain of the submicro-cell, respectively, and defined as

Rm ¼ 1

Vm

Z
Vm

rm dV ; ð61aÞ

Nm ¼ 1

Vm

Z
Vm

Em dV : ð61bÞ

Note that both the Cauchy stress rm and the normal strain Em are defined within the framework of con-

tinuum mechanics.

Besides the constitutive law, a plastic flow rule of the submicro-cell can be established by a series of shear
tests of the cell.

(III) Micro-scale: The constitutive relation and the plastic flow rule established for the submicro-cell, in

conjunction with the first-principles based traction-separation law for interfacial decohesion, are incor-

porated into the modeling of the deformation of the micro-cell (Fig. 10c). A similar concurrent method can

be employed for the modeling. Based on the simulation results, the constitutive law of the micro-cell, along

with the plastic flow rule can be established similarly as for submicro-cell. For simplicity, the constitutive

law of the micro-cell is written as

Re ¼ UeðNe; gÞ; ð62Þ

where g includes not only the parameters that are inherited from the submicro-cell, but also those asso-

ciated with the primary inclusions. Re and Ne are the averages of the Cauchy stress and normal strain of the

micro-cell, respectively. An associated plastic flow rule is also established through the simulation.

(IV) Macro-scale: The constitutive law established for the micro-cell is considered as the macroscopic

constitutive relations of the Cybersteel with which problems such as fracture and damage can are simulated

using multi-field decomposition methods (Fig. 10d). The macroscopic properties, such as fracture tough-
ness, frequently represented by the crack opening displacement (COD), and strength of the steel can be

obtained (Fig. 10e).

The hierarchical modeling described above establishes a direct relationship between the macroscopic

properties and the key nanoscale parameters, which provides guidelines for both the development of im-

proved material fabrication processes as well as helping to facilitate the mechanical design of the material.

Thus, the final results, as shown in Fig. 10, serves as a design curve from which optimal nanoscale

parameters can be determined for specified macroscopic properties. Given an experimentally established

relationship between the fabrication process and the interfacial traction-separation law, the design curve
can be further used to optimize fabrication conditions of the material.

The multi-field decomposition technique combined with the hierarchical modeling described above is

general and applicable to other heterogeneous materials. However, this integrated method suffers its own

limitations: the study of the material response in the fine scale may not be complete, or it may not be

possible to explicitly include all the information of the material behavior in one scale and pass it to another

scale without information loss. These problems become more pronounced when the field is decomposed

into more than two length scales.
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5.2. Concurrent methods

To avoid information loss when passing information from one length scale to another, researchers have

expended a great deal of effort in developing concurrent methods to achieve a seamless bridging between

different length scales. In a concurrent method, simulations at different length scales are performed

simultaneously and the information interfaces between different length scales continually transmit infor-

mation from one simulation to the other. In the following, three representative concurrent methods are

briefly presented.
5.2.1. MAAD

MAAD was developed by Abraham, Broughton and co-workers [110,111] and named after the com-

putation at three different length scales: macroscopic, atomistic, and ab initio dynamics. In this method,

three different computational methods, namely tight-binding (TB), molecular dynamics (MD) and finite-

element (FE) are concurrently linked together to simulate crack propagation in a brittle solid. Tight binding

is used to simulate the atomic bond breaking right at the crack-tip; molecular dynamics at the region

around the crack-tip; finite elements are used in the region far from the crack-tip where the deformation
field is generally smooth. The dynamics of the entire system is governed by a total Hamiltonian function

that combines the separate Hamiltonians of the three different regions. In this method, the finite-element

mesh is graded down to the lattice size. While MAAD has been successfully applied to brittle fracture in

Silicon, two major issues remain. The first is that all three equations of motion (TB, MD and FE) are

integrated forward in time using the same timestep, i.e. the smallest, or TB timestep. Because of this, many

timesteps are wasted in updating the MD and FE equations of motion, as the timescales governing those

simulations are orders of magnitude larger. The second lingering issue lies in the coupling of the differing

simulations. In MAAD, the coupling is accomplished by assuming in the transition region that each sim-
ulation contributes an equal amount of energy to the total energy. However, no rigorous studies have been

performed to quantify the effectiveness of this method in eliminating spurious wave reflection at the sim-

ulation boundaries.
5.2.2. Quasi-continuum method

Another method developed recently is the quasi-continuum (QC) method [113–117]. In this method, the

continuum framework and continuum particle concept are retained, while the macroscopic constitutive law

is replaced by that from direct atomistic calculations. Each continuum particle is regarded as a small
crystallite surrounding a representative atom. The strain energy associated with the representative atom can

be computed by summing up the interatomic potential of the crystallite following the Cauchy–Born rule.

The fundamentals of this method are presented below.

Under an applied external stress/strain, the material under investigation undergoes a motion described

by a deformation map w from the initial, undeformed configuration to the current, deformed configuration.

For quasi-static analysis, the equilibrium conditions are obtained by minimizing the total potential energy

of the system

PðwÞ ¼ W intðwÞ � W extðwÞ; ð63Þ

where PðwÞ is the total potential energy of the system, W intðwÞ ¼
R
V0
wðwÞdV is the internal energy, W extðwÞ

is the external energy and wðwÞ is the strain-energy density. In finite element calculations, the integration

can be conveniently performed by numerical quadrature at the continuum level, asZ
V0

wðwÞdV ¼
XM
e¼1

XQ
q¼1

keqw½wðn
e
qÞ�; ð64Þ
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where M is the total element number in the finite-element calculation, Q is the order of the quadrature rule,

keq and neq are the quadrature weights and points for element e.
The multi-scale concept is brought into picture in computing the strain-energy at quadrature points.

In the local QC method, each continuum point in the solid is represented locally by an infinite crystal

subjected to homogeneous deformation.

The energetics of a continuum can be connected to that of the underlying atoms through the Cauchy–

Born rule, which hypothesizes that the infinite crystal underlying each continuum particle deforms

according to a locally uniform, continuum deformation gradient. Therefore, the strain-energy density at
a continuum point can be approximated by an atomistic model. In a Bravais lattice, lattice vectors deform

by a deformation gradient F,

r ¼ Fr0; ð65Þ
where r0 and r are the lattice vectors at the reference and current, deformed configuration, respectively. Due

to the periodicity of the Bravais lattice, the strain energy per atom can be written as

K ¼ 1

2

X
j

V ðrjÞ; ð66Þ

where V is the potential between the atom and its neighboring atoms, rj is the spatial distance between the

atom and the atom j that is located within a prescribed cut-off radius. Note that the strain energy per unit
reference volume, w, is related to the energy per atom K by w ¼ K=X0, where X0 is the volume of the

reference unit cell.

By placing in correspondence the deformation of a continuum particle and the underlying crystal at

the atomic scale, traditional continuum measures of stress and material modulus can be directly com-

puted from the same atomistic model. For example, the Cauchy stress at the current configuration is ob-

tained as

r ¼ 1

2X

X
j

oV
orj

rj � rj
rj

; ð67Þ

where X is the volume of the current unit cell. The above expressions are of a local QC formulation. Be-

cause of the homogeneous deformation restriction that the Cauchy–Born rules enforces upon the under-

lying atomistic system, a non-local QC formulation [118] was developed, which allows atomistic defects
such as dislocations to occur. Furthermore, a finite-temperature quasi-continuum model has been devel-

oped, as shown in the Ref. [119].

The QC method has been used in simulation of dislocation motion, interactions among grain bound-

aries, nanoindentation and fracture. Complications of this method are introduced by requiring the con-

tinuum mesh to be graded down to the scale of the atomic lattice in regions of localized deformation.

A more detailed review on the quasi-continuum and related methods can be found in [120].

5.3. Bridging scale method

In overcoming the requirement of grading finite-element mesh down to the lattice size, as in QC and

MAAD methods, a concurrent coupling method has been recently developed by Liu and co-workers

[57,58,125, 127–130]. A unique characteristic of this method is that it is formally assumed that the FE and

MD solutions exist simultaneously in the entire computational domain and MD calculations are performed

only in the regions that are necessary. The basic idea is to decompose the total displacement field uðxÞ into
coarse and fine scales

uðx; tÞ ¼ �uðx; tÞ þ u0ðx; tÞ; ð68Þ
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where �uðx; tÞ is the coarse-scale solution and u0ðx; tÞ is the fine-scale solution, corresponding to the part that
has a vanishing projection onto the coarse scale basis functions. The coarse scale solution can be inter-

polated by basic finite-element shape functions as �u ¼ Nd, where d is the FE solution and N is the shape

function evaluated at atomic locations. Wagner and Liu [129] demonstrated that u0 ¼ Qq, where q is the

MD solution, Q ¼ I� P, P is a projection operator that depends on both shape functions and the prop-

erties of the atomic lattice, and I is the identity matrix.
5.3.1. Quasi-static problems

Within the bridging scale method, the governing equations are obtained by employing the principle of

virtual work to give

NTf intðd; qÞ ¼ NTfextðd; qÞ; ð69aÞ

QTf intðd; qÞ ¼ QTfextðd; qÞ; ð69bÞ

where f int ¼ �oUðuÞ=ou is the internal force, and fext is the external force. The first equation is solved over

the entire domain, while the solution of the second equation in (69) is equivalent to that from MD sim-

ulation, and is hence only solved in localized region. Note that these two Eq. (69) are coupled. A Newton�s
method can be used to iteratively solve the coupled equations. Bridging between the coarse and fine scale

is realized by transparently exchanging information between coarse and fine scale regions.
It remains to be shown how the internal forces are calculated for the coarse scale simulation. Note that

the energy density associated with a is directly related to the bond vector over an effective domain, DVa in

the deformed configuration. The total potential energy in the system can be written as a discrete summation

over all the atoms: the coarse scale simulation provides boundary conditions for the fine scale simulation,

while the fine scale simulation provides an accurate approximation of the internal force that enriches the

coarse scale:

U ¼
X

a

X
b6¼a

wðrabÞDVa; ð70Þ

where b runs over all the neighbors of atom a within a prescribed cut-off radius, and w is an energy density

function. In the coarse scale, the atomic bond vector is deformed according to the coarse scale deformation

field. Thus it can be interpolated by the nodal displacement d. By definition, Nf int ¼ owðrabÞ=od, one has

Nf int ¼
X

a

X
b6¼a

owðrabÞ
orab

½NðXbÞ �NðXaÞ�DVa: ð71Þ

The discrete summation of the right-hand side of the above equation makes the evaluation computationally

intensive. In practice, the strain energy can be considered as a smooth function. Thus, the discrete sum-

mation over the atoms in Eq. (71) can be replaced by evaluations at quadrature points, as

Nf int ¼
X
�a

X
�b6¼�a

k�a
owðr�a�bÞ
or�a�b

½NðX�bÞ �NðX�aÞ�: ð72Þ

The advantages of the bridging scale method over other concurrent methods are the following. First, it does

not involve the calculation of any high-order tensors, such as the Piola-Kirchoff stress, which makes it

computationally more efficient. Secondly, no mesh gradation is required. Finally, the bridging scale method

can be extended to the dynamic case [128,129], as outlined in Section 5.3.2, while the quasi-continuum

method has currently been shown only for quasi-static processes. All these factors have made the bridging

scale method an increasingly popular approach to simulating nanostructured materials.
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The bridging scale method has been successfully used in modeling buckling of multi-walled carbon
nanotubes [127]. In these simulations, a 15-walled Carbon nanotube (CNT) is considered with the outer-

most shell being a ð140; 140Þ nanotube, and all inner shells of the ðn; nÞ type; from the outer most shell, n
reduces by 5 every layer. The length of the tube is 90 nm and the original MD system contains about 3

million atoms. This is replaced with a system of 27,450 particles. In addition to the particles, two sections

along the tube are enriched with molecular structures of multi-walled nanotubes. The position of the

enrichment region is determined by a multi-resolution analysis of the coarse scale simulation. Therefore, the

scheme is adaptive. The length of each enrichment region is 3.6 nm. Each section contains 49,400 atoms and

this adds 296,400 more atomic degrees of freedom. A bending angle with increment of 0.25 degree/step is
imposed on both ends of the tube for a total of 100 steps. The multi-scale configuration is illustrated in Fig.

11a. Fig. 11b shows the buckling pattern approximated by meshfree approximation at the final stage of

loading, followed by the energy density contour plot for each layer of CNT. Two distinctive buckling

patterns can be seen from the meshfree approximation, while the contour plot shows clearly the strain

energy concentration at the buckling point. A unique advantage of using the multi-scale method is that we

are able to reveal the details of the molecular structure at the kinks, which cannot be resolved by the coarse

scale representation alone. The atomic structure of the buckling region for each layer of multi-walled CNT

are plotted on the right-hand side of Fig. 11b.

5.3.2. Dynamic simulations

The dynamic formulation for the bridging scale method is obtained according to the Lagrangian for-

malism. Importantly, the decomposition (68) leads to a Lagrangian of the system in which the kinetic

energies of the two scales are uncoupled [129]:

L ¼ 1
2
_dTM _dþ 1

2
_qTA _q� UðuÞ; A ¼ QTMAQ: ð73Þ

This in turn provides a convenient form of force coupling between the coarse and fine scale equations of

motion:

Mf
A
€qf ¼ ffðuÞ;

M€d ¼ NTfðuÞ;
ð74Þ

where M and MA are the FE and MD mass matrices, respectively. This form of the equations of motion

formally implies that the atomistic MD and continuum FE solutions q and d exist simultaneously and
Fig. 11. Multi-scale analysis of a 15-walled CNT by a bridging scale method: (a) The multi-scale simulation model consists of 10 rings

of carbon atoms (with 49,400 atoms each) and a meshfree continuum approximation of the 15-walled CNT by 27,450 nodes. (b) The

global buckling pattern captured by meshfree method whereas the detailed local buckling of the ten rings of atoms are captured by

a concurrent bridging scale molecular dynamic simulation.
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everywhere in the computational domain; the upper script index ‘‘f’’ in the first equation stands for the full

MD displacement and force vectors, and the atomic mass matrix. This concept is illustrated in Fig. 12.

From the practical point of view, the explicit Lagrangian formulation (74a) is of little merit, because it

requires solving the MD equations throughout the continuum; that is in most cases not affordable com-

putationally. Therefore, it is next assumed that the atomistic processes of interest are localized on a small

region that features large amplitudes of the relative atomic motion (the fine scale). The rest of the domain

(the coarse scale) displays mostly group harmonic character of the atomic motion, so that the corre-

sponding continuum model behaves more or less homogeneously. The atomistic degrees of freedom within
the coarse scale are then eliminated from the formulation, and their cumulative effect upon the boundary

atoms in the fine scale is taken into account through the impedance force, f imp, incorporated into the right-

hand side of the reduced system of MD equations of motion:

MA€q ¼ fðuÞ þ f imp;
M€d ¼ NTfðuÞ:

ð75aÞ

Here, the MD equation, as compared with (74), involves reduced force and displacement vectors and the

mass matrix.

The structure of impedance force resembles the generalized Langevin equation [133,134],

f impðtÞ ¼
Z t

0

Hðt � sÞðqðsÞ � �uðsÞÞds þ RðtÞ; ð75bÞ

where H is a memory kernel function that describes renormalization of the atomic interaction along the

boundary of reduced MD domain, and R is a random function that accounts for thermal atomic motion in

the coarse scale. Importantly, the impedance force for the bridging scale formulation is obtained by uti-

lizing the multi-scale boundary conditions for lattice structures (81b); therefore it involves analytically exact

structural response at the atomistic level. This is a distinctive feature of the present method, as compared

with the ‘‘ghost’’ atom technique to provide the interface displacements and forces based on the FE shape

function interpolation.
Fig. 12. Illustration of the bridging scale approach: the MD and FE solutions are coupled through the projection technique. The

ubiquitous atomistic resolution is replaced with a reduced MD region by utilizing the impedance boundary conditions. The dashed red

line shows boundary of the domain of interest.



1560 W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529–1578
According to (75b), the physical nature of the force (75b) is due to inertia of the atomic lattice and
thermal effects outside the MD domain. The coupled system of Eq. (75) can be solved using existing FE and

MD codes along with suitable techniques for exchanging information about the internal forces. The kernel

H function can also be viewed as a lattice impedance matrix, since it encapsulates the impedance of the

atomic structure in the coarse grain.

The idea beneath the formulation (74–75) is illustrated in Fig. 12. As can be seen from this figure, the

coarse scale FE model covers the entire model, and the atomistics are solved explicitly only on a selected

region of interest. The atomic motion outside this domain is represented by the impedance boundary

conditions according to (75). The reduced MD domain then evolves in time similarly, as if it was still a part
of the full MD domain.

One issue relating to the formulation (75) is the large size of matrix H, which is typically m� m, where m
is number of atomistic degrees of freedom along the MD domain boundary. Each element of this matrix

has to be calculated for a time large enough to capture the impedance effects accurately. This also requires a

numerical inversion of the Laplace transform that can itself be computationally expensive. However, recent

works by Karpov et al. [57] and Wagner et al. [58] have shown that exploiting the intrinsic symmetry and

spatial repetitiveness of the atomistic structure in crystalline solids can drastically simplify and reduce the

size and computational expense associated with these matrices. Based on Fourier analysis of periodic
structures [135–137], this approach provides the impedance boundary conditions in terms of the lattice

response functions, also known as the lattice dynamics Green�s function in solid-state physics [138]. These

functions provide a compact memory function, similar to H of (75), to describe the renormalization of the

interatomic interaction at the boundaries of the simulated domain. The matrices in the memory kernel are

only mB � mB, where mB is at most the number of degrees of freedom in a Bravais lattice [139,140], i.e. one

repetitive lattice cell. Though the original formalism (75) was derived assuming harmonic character of the

atomic motion along the fine/coarse grain interface, the current form of the impedance force (75b) provides

a reliable first-order approximation that treats moderately nonlinear interfaces satisfactorily [112,128].
Karpov and Liu [141] have shown that for stronger non-linearities, the performance of the impedance

boundary conditions can be improved with an update based on the perturbation approach.

Finally, the quantum mechanical enrichment of the bridging scale formulation can be expressed,

according to (33) and (75), as

ĤW ¼ U

 
þ
X

a

Ea

!
W; fðuÞ ¼ � oU

ou
;

MA€q ¼ fðuÞ þ
Z t

0

Hðt � sÞðqðsÞ � �uðsÞÞds;

M€d ¼ NTfðuÞ:

ð75cÞ

This set of equations stands for the concurrent coupling of simulations at the three scales: subatomic,

atomistic and continuum; in more details, see Ref. [143].

The dynamic bridging scale method with the impedance boundary conditions on the MD/continuum

interface was applied by Park et al. [128] in studying wave propagation, and crack initiation and growth in

the (1 1 1) plane of a face-centered cubic lattice structure governed by a two-body Lennard–Jones potential
(18). Fig. 13 shows a comparison of the MD region displacements after a Gaussian-type wave with a

combination of high and low frequency components that originated in the MD region has propagated into

the surrounding continuum region.

By comparing the Fig. 13a and b, it is evident that if the high frequency waves emitted from the MD

region are not treated in a mathematically rigorous manner, they reflect back from the MD/continuum

(finite element) interface. The high frequency reflections are seen in the wake of the wave that has departed



Fig. 13. Wave propagation through the atomistic domain in the FCC lattice structure: (a) impedance boundary conditions are in-

volved at the MD/continuum interface, (b) continuity boundary conditions.
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the MD region. These high frequency waves must be properly accounted for, particularly if they represent

the majority of the initial energy of the MD system.

In the crack propagation problem, Fig. 14, considered by the same authors [128], the central part of the

simulated domain initially contains anomalies in the regular crystal lattice that cause initiation and growth

of a crack due to external in-plane loads. These loads are modeled with velocity boundary conditions

applied to the boundaries of the coarse scale. Atomistic resolution is introduced in the area close to the
crack. The coarse scale information eventually propagates into the MD region, and consequently the crack

begins to propagate. Two snapshots of this process are given in Fig. 14a and b; the first snap shot captures

initiation of the crack, and the second shows the configuration just before complete separation of the

structure. Accuracy of the bridging scale simulation was verified by comparing it with a benchmark MD

simulation, where the atomistic resolution was set throughout the entire coarse grain. The authors observed

a very good agreement of the results: (1) the crack propagation speed was virtually identical in both cases;

(2) the bridging scale model captures all specific details of the process within the fine grain, such as initiation

and emission of the lattice dislocations away from the crack tip, see Fig. 14c.
For sufficiently large initial velocities, the authors observed complete fracture of the atomic lattice into

two separate sections, depicted in Fig. 15. The multi-scale simulation of the entire region is shown in Fig.

15b, where the FE mesh is present everywhere, and MD model––in a smaller subsection of the total do-

main. The zoom Fig. 15c shows only the region in which both the FE and MD models exist, as opposed to

the entire domain. The bridging scale simulation can be seen to agree very well with the benchmark MD

simulation, Fig. 15a. It is also noteworthy that complete fracture of the underlying MD lattice is allowed in
Fig. 14. Bridging multi-scale modeling of crack propagation: (a) initiation of a crack in the MD region, (b) pre-separation phase, (c)

lattice dislocation pattern at the crack tip.



Fig. 15. Comparison of crack simulations at the lattice separation stage: (a) the full MD model, (b) the bridging multi-scale model.

(c) The subdomain of coexisting of the MD and FE solutions (zoom in).
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the coupled simulation––this is because the finite element simulation in that region is simply carried along

by the MD simulation. The crack opening is shown in the Figs. 14a–b and 15 by magnifying the y-com-
ponent of the displacement by a factor of three.

The bridging multi-scale formulation was also utilized in the context of fine scale enrichment of finite

element models by Kadowaki and Liu [125]. The authors solved a two-dimensional dynamic shear strain

localization problem, where a rectangular bar was discretized by the coarse-scale finite elements and only a
small central region was discretized by the fine-scale finite elements. The edge length of the coarse-scale

elements is eight times larger than that of the fine-scale elements. The bar is compressed by the impact

velocity applied at both ends of the bar. Fig. 16 shows the effective plastic strain distribution of the coarse-

scale FEM and the fine-scale FEM after the localized failure. The detail of the deformation in the shear-

band is captured by the fine-scale FEM, while the computational cost is reduced by limiting the fine-scale

FEM calculation near the failure region.
5.3.3. Temperature dependent processes

An important factor in multi-scale coupling is the need for a separate energy equation at the coarse scale.

At the fine scale, there is no need for a separate concept of temperature or internal energy, since all of the

dynamics are contained in the momentum equation for the atoms. However, in many problems of interest,
Fig. 16. Bridging multi-scale simulation of shear localization in a continuous bar.
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a large amount of fine scale energy is generated in the region to be simulated with MD, and the propagation
of this energy as heat into the coarse scale region is of great importance in accurately simulating the

dynamics. At the boundaries of the fine scale region, the internal energy that passes out of the MD model

should be tracked in the coarse scale region in an averaged sense through an energy equation

Formally, this averaging is done through an ensemble average. It has been shown by Wagner and Liu

[129] that the ensemble average of the kinetic energy is

hKi ¼ 1
2
_dTM _dþ 3

2
kBT ðNa � ncÞ; ð76Þ

where kB is Boltzmann constant, Na is the number of atoms, nc is the number of coarse scale nodes, and T is

the temperature. The first term on the right-hand side is simply the coarse scale kinetic energy, while the
second term can be thought of as the contribution of temperature to internal energy, i.e. the kinetic energy

that is not represented by the coarse scale description. Clearly, this internal energy goes to zero in the limit

as the number of coarse scale nodes approaches the number of atoms, i.e. as the coarse scale mesh ap-

proaches the atomic lattice size. This occurs because each node of the continuum mesh corresponds to

an atom and the continuum mesh can then model the fine scale behavior.

An alternative approach was recently proposed by Park et al. [130], which is based on the microscopic

definition of temperature. Using the projection operator technique, the authors derived a continuum (FE)

temperature equation, which only requires information that is readily available from MD simulation,
namely the MD velocities and atomic masses:X

J

MIJTJ ¼
1

kB

X
n

NIðXnÞm2
n _q

2
nbn; ð77Þ

where the summation is performed over a discrete set of quadrature points Xn; MIJ are the components of

FE mass matrix, T are the nodal temperatures, and m, _q and b are the representative FE mass, atomic

velocity and quadrature weight associated with point Xn, respectively. At those locations, where no direct

MD solution is available (the coarse continuum), the velocities were computed by means of an evolution

kernel function w, as

_qnðtÞ ¼
Z t

0

_wnðt � sÞq0ðsÞds; ð78Þ

where q0 is the displacement at the atomistic/continuum interface. The kernel function w describes temporal

and spatial evolution of atomic lattice dynamics, and its behavior solely depends on the atomic lattice

geometry and on the form of the MD potential.

Eq. (77) was shown to give an accurate comparison to the actual MD temperature for a benchmark

problem with the 1D monoatomic chain. Fig. 17 compares the temperature gradients for in a thermal wave

propagation process: the first is computed based on the full atomistic resolution throughout the compu-

tational domain, and the second on the multi-scale temperature equation (77). One issue left for future
research is to examine how the multi-scale heat conduction equations can be formulated for definitions

of temperature posed according to (76) or (77) and (78).

5.4. Multi-scale boundary conditions

The key issue of a concurrent simulation approach is the coupling between the coarse and fine scales. An

approximation is necessary along the fine-coarse grain interface, due to the fundamental incompatibility of

the atomistic and continuum descriptions, e.g. [155]. This incompatibility is imposed by the mismatch of
dispersion characteristics of the continuous and discrete media in dynamic simulations, and by non-local

character of the atomic interaction in both dynamic and quasi-static simulations. Most of the concurrent

approaches, excluding the bridging scale method, involve an artificial handshake or pad region [120], where



Fig. 17. Snapshot of temperature gradient in a 1D thermal wave propagation process; comparison made for the full atomistic

resolution (red) and the bridging multi-scale model (blue).
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pseudoatoms are available on the continuum part of the interface and share physical space with finite

elements. At the front end of the continuum interface, the finite elements have to be scaled down the

chemical or ion bond lengths; that may call forth costly inversions of large and ill-conditioned stiffness

matrices.

The purpose of the handshake region is to assure a smoother coupling between the atomistic and

continuum regimes. The group of pseudoatoms serves to eliminate the non-physical surface in the atomistic
lattice structure, so that the real atoms along the interface have a full set of interactive neighbors in the

continuum domain. In dynamic simulations, the handshake also serves as a damper/absorbent to reduce

spurious reflection of high frequency phonons that cannot pass into the coarse scale domain. In both

dynamic and quasi-static simulations, an extremely fine finite element mesh is required in order to provide

accurate positions of the pseudoatoms, as those are dictated by interpolation from the finite element nodal

positions [120].

An alternative methodology has been proposed recently by Karpov et al. [57,142] and Wagner et al. [58],

where positions of actual next-to-interface atoms from the coarse grain are computed at the intrinsic
atomistic level by means of a functional operator over the interface atomic displacements; that eliminates

the need in a costly handshake domain. The sole purpose of a continuum model, when used in conjunction

with multi-scale boundary conditions [128], is to represent effects of the peripheral (coarse grain) boundary

conditions into the central atomistic region of interest. Provided that this effect is ignorable, at least in the

analytical sense, the multi-scale boundary conditions can also serve as a self-contained multiple-scale

method not to involve the Cauchy–Born rule and the consequent continuum model [142]. Atomistic res-

olution along the interface phase along with the intrinsic regularity of the internal structure of the crys-

talline solids allows calculating the structural response of the coarse scale on the atomistic level, based on
a group of lattice mechanics techniques.

5.4.1. Quasi-static problems

The basic idea of the quasi-static multi-scale boundary conditions, proposed by Karpov et al. [142], is

explained on the 1D example problem depicted in Fig. 18. The boundary atom n ¼ 0 of the MD domain is



Fig. 18. An illustration to the concept of multi-scale boundary conditions: behavior of the MD boundary is governed by a deformable

boundary equation, which accounts for the effect of a coarse scale domain.
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subjected to a load due to some atomistic process on the left and the response of a coarse grain on the right.

The solution for the interface atom can be computed, without solving the entire coarse scale, provided that

a relationship between the displacements of atoms 1 and 0 is established,

u1 ¼ AðaÞfu0g: ð79aÞ
Here, AðaÞ is a linear operator, whose form depends on the lattice properties and the coarse scale size

parameter a. Only the first neighbor interaction is assumed in (79a) for clarity. More general coarse grain
boundary conditions ua 6¼ 0, rather than the shown case ua ¼ 0, may also contribute to this solution, so that

u1 ¼ AðaÞfu0; uag: ð79bÞ
Based on elementary arguments, one obtains, for the 1D problem depicted in Fig. 18,

u1 ¼
a� 1

a
u0 þ

1

a
ua: ð79cÞ

Relationships of the type (79) are referred to as the multi-scale boundary conditions. They are solved

simultaneously with the MD equations for the fine grain to yield an atomistic solution, which incorporates
effects of the adjacent coarse scale domain. The corresponding position of atom 1 can be also viewed as a

deformable boundary of the MD domain.

For more general multi-dimensional problems, the multi-scale boundary conditions can be obtained with

the use of the Fourier analysis of periodic structures [135–137]. This approach was verified on a benchmark

nanoindentation problem with the 3D FCC gold lattice [142], as schematically shown in Fig. 19.

The bottom part of the substrate is considered as a bulk coarse scale that features almost homogeneous

deformation patterns, and whose degrees of freedom can be eliminated from the explicit MD model.

Periodic boundary conditions were applied along side-cut of the substrate. The atomic displacements along
Fig. 19. Multi-scale boundary conditions for nanoindentation problems.
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the deformable boundary layer in the reduced MD domain were co-related with the displacements of atoms
in the adjacent layer through the discrete convolution operator

u1;m;l ¼ AðaÞfu0;m;lg ¼
X
m0;l0

HðaÞ
m�m0 ;l�l0u0;m0 ;l0 : ð80Þ

Here, the kernel matrix H depends solely on the choice of the interatomic potential and the size of the

coarse scale, and indexes m, l show numbering of atoms on the given layer. Eq. (80) involves no coarse scale

boundary conditions ua;m;l (along the bottom layer of the substrate), as those are usually set trivial in

nanoindentation simulations.

The multi-scale boundary conditions according to (80) were shown to perform well for a wide range of

the indentation depths, where a good agreement with the benchmark full domain solution was observed.

Most importantly, the approach adequately reproduces the plasticity phenomena in the substrate around

the indenter tip. Those result in the discontinuous character of the load/indentation depth curve depicted in
Fig. 19. Coarse scale lattice defects caused by the nanoindentation process are not restrained, because the

method formulation assumes spatial regularity of the lattice structure only in the immediate vicinity of each

given atom on the deformable boundary layer.

5.4.2. Dynamic problems

The general dynamic formulation of the multi-scale boundary conditions is identical with the quasi-static

case, i.e.

u1ðtÞ ¼ AðaÞfu0ðtÞ; uaðtÞg; ð81aÞ
where AðaÞ is some functional linear operator.

In many dynamic problems, the coarse scale can often be viewed in the infinite sense, so that the effect of

its boundary condition ua is not present in the MD domain of interest. This situation is common for dy-

namic simulations due to the availability of a finite speed with which any mechanical excitation propagates

through the molecular lattice as a progressive wave package. Recall that in such problems as the heat wave

propagation from a localized source (Fig. 13), ion beam deposition (Fig. 5) and nanoindentation (Figs. 6

and 19), one observes the ‘‘one-way’’ wave flow from inside the domain of interest. Distant boundaries of a

coarse grain domain then behave passively and usually remain stationary, unless the simulation time is

large enough for the wave flow to reach the edges of the coarse grain. Due to physical arguments, and also
for the sake of saving the computer efforts, it is then appropriate to assume that the progressive waves never

reach the traction-free coarse scale boundaries, so that no inward flow of information occurs in the

abovementioned problems, and

u1ðtÞ ¼ Afu0ðtÞg: ð81bÞ
Here, the operator A no longer depends on the coarse scale size parameter a. This form of the dynamic

multi-scale boundary conditions is also referred to as theimpedance boundary conditions.
From the knowledge of displacements u0ðtÞ, u1ðtÞ, and also the interatomic potential function, one can

compute the force exerted by the coarse scale onto each given atom at the MD domain boundary. Note that

this force will be analogous to the impedance force utilized within the dynamic bridging scale formulation

(74)–(75).

As was shown by Karpov et al. [57] and Wagner et al. [58], the form of operator A is particularly

compact for the MD/coarse grain interface with a regular crystalline structure and harmonic character of

the motion. For a plane-like interface, it acts as a time convolution integral and discrete spatial summation

over the interface degrees of freedom. For the 2D lattice problem depicted in Fig. 20,

u1;mðtÞ ¼
Xmþmc

m0¼m�mc

Z t

0

Hm�m0 ðt � sÞu0;m0 ðsÞds; ð82Þ



Fig. 20. Plane MD/coarse scale interface in a 2D cubic lattice. Index m shows atomic numbering along the interface.
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where the impedance kernel function H depends only on the form of the interatomic potential, and mc is
some critical difference jm� m0j after which the summation is truncated. More complicated boundary

shapes, such as a rectangle or parallelepiped, are assembled by combining several plane-like interfaces,

where each face is treated according to (82). Calculation of the kernel matrix H involves a Laplace

transform inversion, which can be accomplished numerically based on Weeks [146], Papoulis [147], or other

[148,149] algorithms. A crucial aspect is that the amplitude of this function decays in time and with the

growth of the spatial parameter m, and it typically behaves as shown in Fig. 21.

The use of numeric Laplace inversion techniques [146–149] normally implies a limited range for the

arguments of the computed functions of H (82), from t ¼ 0 to some critical value tc for the difference t � s.
Therefore it is important to investigate the effect of temporal truncation for the convolution integral in (82)

at various tc. However, such a truncation considerably decreases the computational cost and computer

memory requirements.

Performance of the method, as depending on the choice the parameters mc and tc, was studied by Karpov
et al. [57] on an example 2D cubic lattice. A square boundary shape for the lattice was chosen. Fig. 21
Fig. 21. Impedance kernel function for the 2D cubic lattice.



Fig. 22. Typical performance of the impedance boundary condition: dependence of the reflection coefficient on method parameters.
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presents the impedance kernel computed for this lattice. The authors introduced the reflectivity coefficient R
as a measure of efficiency of the boundary conditions (82). The value R gives the ratio between the kinetic

energy of wave flow reflected by the MD/coarse grain interface and the energy of incident waves,

R ¼ Erefl

Eincid
: ð83Þ

In the ideal case of fully transparent boundary conditions, the value R is trivial. The results of the calcu-

lations are presented in Fig. 22. Analysis of Figs. 21 and 22 indicates that the use of 2 or 3 full oscillations of

the kernel functions at mc ¼ 4 is sufficient to dissipate more than 99% of the incident kinetic energy at the
MD/coarse scale interface.

As soon as the MD simulation is performed over a considerably small atomistic domain, the effect of

surrounding media can be taken into account by utilizing the above techniques. Note that physical behavior

and properties of simulated domains cannot be unambiguously attributed to a corresponding macro-scale

system, unless the MD boundary conditions most rigorously describe this effect. In contrast to the heat bath

technique, Section 4.2, the multi-scale boundary conditions represent the true physical behavior of the MD

domain boundaries and accurately describe absorption of the thermal waves passing through MD/coarse

grain interface.
5.4.3. Non-harmonic operator

The harmonic formulations for the multi-scale boundary conditions, outlined in Sections 5.4.1 and 5.4.2,

satisfactorily treats weak non-linearities in the interface atomic behavior [112,128,142]. Stronger non-lin-

earities can be treated with an update by Karpov and Liu [141] based on a perturbation approach, where

the non-harmonic component is treated as a perturbation to the linear model. Within the non-harmonic

settings, the functional operator A for (79) and (81) takes a more general form, rather than the simple

convolution sum (80) and integrals (82). The perturbation approach enables one to accomplish a series
expansion of this operator A. For the dynamic 1D system, for example, the first two terms in this expansion

give the following:
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AfuðtÞg ¼
Z t

0

H1ðt � s1ÞuðsÞds1 þ
Z t

0

Z t

0

H2ðt; s1; s2Þuðs1Þuðs2Þds1 ds2 þ � � � : ð84Þ

A two term expansion is expected to be sufficient for moderate non-linearities in the interface atomic

behavior. Similar to the linear impedance matrix H1, the second-order matrix H2 solely depends on the

lattice geometry and the form of interatomic potential. Other representations for the operator A may be

possible, for example, based on successive iteration procedures, or on the exact solutions for non-linear

lattice dynamics proposed by Toda [150]; these issues require further investigation.

5.5. Multi-scale fluidics: the immersed finite element method

The microscopic behavior of blood flow is essential in the performance of blood wetted artificial organs,

where the designer�s aim is to minimize biologically spurious processes, such as hemolysis and clotting. One

determining mechanism of these processes is the aggregation of red blood cells (RBC), which can strongly

influence the bio-mechanical properties of blood flow and blood�s function in micro-vessels. Blood is a

highly concentrated suspension of interacting and deformable RBCs, therefore the computer modeling of

such a multi-phase material is rather challenging. In blood flow, one normally encounters a large range of
length and time scales. Though the RBC has a diameter of about 10 lm, the interaction between neigh-

boring RBCs typically involves nanoscale molecular forces.

Liu et al. [151] recently proposed a method of studying the phenomena of RBC aggregation, and its

effect on the dynamic properties of blood flow. The method is based on coupling the Navier–Stokes

equation with cell–cell interaction or protein molecular dynamics. The computer model to tackle the

coupled fluid–solid system is derived from the Immersed Finite Element Method [152,153] and pro-

tein molecular dynamics. The authors consider a three-dimensional flexible structure completely immersed

in a viscous fluid domain. The Eulerian and Lagrangian variables are adopted in the equations of
motions for fluid and structural mechanics, respectively. In essence, a Lagrangian structural mesh is

constructed to move on top of a background Eulerian fluid mesh. The coupling between the immersed solid

and the surrounding fluid is accomplished by the discretized delta function (or mapping) between these two

meshes.

An outline of the IFEM algorithm with the molecular cell–cell interaction is given as follows:

1. The fluid velocity and pressure are solved by the Eulerian fluid solver with an equivalent fluid–structure

(fluid-RBC) interaction force fFSI,

qf ov

ot

�
þ v � rv

�
¼ r � rf þ fFSI; r � v ¼ 0:

2. The fluid–structure force vector is evaluated at the solid material points by the Lagrangian solid solver,

fFSI;s ¼ �ðqs � qfÞ2 o
2vs

ot2
þ ors

ox

�
� orf

ox

�
þ ðqs � qfÞg � fC–C;

where fFSI;s is the equivalent fluid–structure interaction force evaluated within the solid domain and the

cell–cell interaction force is defined as the gradient of a molecular potential U ,

fC–C ¼
X
i

f i ¼ �
X
i

oU
ori

;

which is introduced to represent the protein dynamics between cell–cell contact.

3. Use RKPM window function as the discretized Dirac delta function to distribute fluid–structure inter-

action force onto the fluid equation,
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fFSIðx; tÞ ¼
Z

X
fFSI;sðXs; tÞ/ðx� xsÞdX:

4. The same Dirac delta function is also employed for the computation of solid velocity,

vsðXs; tÞ ¼
Z

X
vðx; tÞ/ðx� xsÞdX:

The basic behavior of the interaction between two RBCs can be described such that weak attraction

forces occur at far distances and strong repulsive forces occur at short distances. This aggregation process is

modeled by utilizing a potential function, similar to the interatomic potential (17), though experimental

study is required in order to identify the exact mechanism of RBC aggregation. The authors adopted the

Morse potential (20), and quantitatively reproduced the aggregation behavior seen in experimental
observation. Based on the experimental observation [154], the potential function is chosen such that the

RBCs will de-aggregate at the shear rate of above 0.5 s�1.

After the finite element discretization of the solid domain, the cell–cell interaction force fC–C is lumped

at the solid nodes, as part of the nodal forces. This procedure is also applicable to non-uniform meshes.

As an illustrative example, Liu et al. [151] considered the RBCs passing through a vessel contraction,

where the strong viscous shear introduced by such a flow contraction leads to the phenomena of RBC

aggregation. It is shown in Fig. 23 that as RBCs pass the diffuser stage of the contraction, the deceleration

of the RBCs forms blockage for the incoming RBCs. Therefore, dilation of RBCs is coupled with the pile-
up of RBCs. Aggregation of RBCs is observed at the outlet of the narrower part of the vessel.

In the second example, the authors applied a shear flow on an RBC aggregate, which forms a single

blockage pattern [151]. As shown in Fig. 24, the RBCs initially begin to rotate as a group. As the RBCs

align themselves with the shear flow, the RBC aggregates start to peel off as the viscous shear forces cause

disintegration of the RBC aggregates. When individual RBCs are separated from the other RBCs to a

critical distance at which the cell–cell interaction forces become zero, the RBC aggregate becomes com-

pletely separated.

Three-dimensional simulations of a single red blood cell squeezing through a capillary vessel were also
presented [151]. The RBC diameter is 1.2 times larger than that of the capillary vessel, which leads to the

divergence of the cytoplasm (the liquid phase) to the two ends of the capsule by deforming into a slug

during the squeezing process. During the exiting process, there is a radial expansion of the slug due to the

convergence of the cytoplasm, which deforms the capsule into a jellyfish shape. In Fig. 25, four snapshots

illustrate various stages of the red blood cell�s passage through the capillary vessel. The driven pressure

trend within the capillary vessel is presented in Fig. 26. The maximum level of the pressure corresponds

to the initial stage of the plugged flow, when the deformable cell is entering the capillary vessel.
Fig. 23. The RBCs flow at 10 lm/s. at t ¼ 0 s, t ¼ 2:0 s, t ¼ 4:0 s, and t ¼ 6:0 s. The different colors indicate the value of stress exerted

on RBCs. The aggregates of RBCs are clearly seen behind the narrow vessel.



Fig. 24. The shear of 4 RBCs at the shear rate of 3.0 s�1, at t ¼ 0 s, t ¼ 1:0 s, t ¼ 2:0 s, and t ¼ 3:0 s. The arrows show the fluid vortexes

induced by the fluid-cell and cell–cell interactions.

Fig. 25. Three-dimensional simulation of a single red blood cell (essentially a hollow sphere for simplicity) squeezing through a

capillary vessel.

Fig. 26. The history of the driven pressure during the squeezing process.

W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529–1578 1571



1572 W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529–1578
6. Conclusion

We have reviewed the basic tools utilized in computational nanomechanics and materials, including the

relevant underlying principles and concepts. These tools range from subatomic ab initio methods to

classical molecular dynamics and multiple-scale approaches. The energetic link between the quantum

mechanical and classical systems has been discussed, and limitations of the standing alone molecular

dynamics simulations have been shown on a series of illustrative examples. The need for multi-scale sim-

ulation methods to tackle nanoscale aspects of material behavior was therefore emphasized; that was
followed by a review and classification of the mainstream and emerging multi-scale methods. In this

conclusion, we refer to Table 1, which summarizes the basic governing equations for various classes of the

multiple-scale approaches.

In great generality, three major issues are still to be challenged by future researchers in the area of

multiple-scale simulations. The first is to correctly account for the non-harmonic high frequency infor-

mation that emanates from the molecular simulation when the information reaches the continuum. The

second is the temperature dependent multi-scale formulations; in more details this issue is discussed in [128].

And the third is extending the time range currently available in standard MD simulations, so that the
continuum and atomistic simulations may each evolve naturally on its natural time scale. It is noted that

while the multi-scale methods reviewed in this work reduce the spatial computational requirements, they

are still limited by the fact that MD simulations cannot be run for arbitrarily long periods of time. One of

the efforts ongoing to relieve this restriction is the work by Voter and co-workers [156–158] on the so-called

hyper molecular dynamics approach. This method appears well suited for problems in which the physical

phenomena of interest occurs infrequently over long periods of time, with diffusion being a prime example.

Other approaches have included the work by Huang et al. [159], in which thin film deposition in three

dimensions is simulated by speeding up the surface diffusion of atoms.
Fundamental nanoscale research is being performed all around the world, and as this research is more

and more being turned into viable engineering applications, our ability to model the performance of

nanoscale structures remains limited. Continuum-based computational approaches are clearly not appli-

cable over the full range of operational conditions for these nanoscale devices, as non-continuum behavior

is observed in the large deformation behavior of carbon nanotubes, ion deposition processes, material

mechanics, amongst many others.

More crucially, nanoscale components will likely be used in conjunction with components that are

larger, and therefore have a mechanical response that is on much larger length and time scales than the
nanoscale component. In such hybrid systems, typical single scale simulation methods such as molecular

dynamics or quantum mechanics may not be applicable due to the disparity in length and time scales of the

structure. For such systems, the computer-aided engineering tools must be able to span length scales from

nanometers to microns, and time scales from femtoseconds to micro-seconds. Therefore, these systems

cannot be modeled by continuum methods alone, because they are too small, or by molecular methods
Table 1

Summary of the multiple-scale formulations

Subatomic/atomistic coupling Atomistic/continuum coupling

Hierarchical U ¼ E �
P

a Ea; M€x ¼ � oU
ox

� fðxÞ Rm ¼ UmðNm; gT-S; gSPÞ
Re ¼ UeðNe; gÞ

Concurrent ĤW ¼ U þ
P

a Ea

� �
W; M€x ¼ � oU

ox
MA€q ¼ fðuÞ þ f imp

M€d ¼ NTfðuÞ

Multi-scale BC – u1 ¼ AðaÞfu0; uag
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alone, because they are too large. To support the design and qualification of nanostructured materials, a
range of simulation tools must be available to designers just as they are today available at the macroscopic

scales in general purpose software. However, considerable research is still required to establish the foun-

dations for such software and to develop computational capabilities that span the scales from the atomistic

to continuum. These capabilities should include a variety of tools, from finite elements to molecular

dynamics and quantum mechanical methods, in order to provide powerful multi-scale methodologies. We

hope that this work will be viewed as a step in the right direction in making the multi-scale goal a reality.

Nanotechnology will undoubtedly have a profound impact on the basic research being performed in

medicine, electronics, materials science and many other areas in the upcoming years. However, in order to
make nanotechnology a basic aspect of product design, it will be imperative that engineering software that

can be used for nanoscale design be developed. Similar to the computer-aided design tools that are readily

available for larger scale engineering simulations, we envision that nanoscale design tools will provide

the engineer with similar capabilities in nanoengineering.

It is crucial that the knowledge underlying these recent developments in computational nanotechnology

be transferred to scientists of today and tomorrow. We have developed two methods of disseminating this

information. First, at Northwestern using NSF/IGERT funding we have created a new graduate program

that is geared towards the application of molecular methods and their relation to and integration with
continuum mechanics methods. These new courses, which include such topics as multi-scale simulations

and their correlations to experiments and the application of surface science to nanomechanics and nano-

tribology, will ensure that the fundamental ideas presented in this work will be successfully passed down

to the next generation of scientists and researchers.

Our second development is an NSF-sponsored summer institute on nanomechanics and materials, which

was held for the first time at Northwestern in the summer of 2003. The goal of the summer institute is to

bring together any interested scientists and engineers and expose them to lectures, hands-on laboratory

experiments and simulation methods all taught by the leading researchers in nanotechnology today. It is
hoped that the interest generated in nanotechnology by the summer institute will spur the bright minds in

science and engineering to become the new leaders and innovators in this technologically crucial area of

science.
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