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Mechanical resonance of quartz microfibers and boundary condition
effects
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We have measured the mechanical resonance of microscale quartz fibers to qualify the method of
obtaining the Young’s modulus of nanowires from their resonance frequency and geometry. An
equation for a circular beam with a linearly varying cross-section is derived and used to calculate the
resonance frequency shift. We have established a model to discuss the boundary condition effect on
the resonance frequency. The Young's modulus of the quartz fibers has been determined by
measuring the resonance frequency, and the geometry, and by applying the model that treats the
influence of the type of clamp. The mean value from measurements of the fundamental resonance
on 14 different microfibers is 706 GPa. This mean value is close to 72 GPa, the Young’s modulus

of bulk fused quartz. Four resonance modes were observed in high vacuum and air. The mechanical
resonance in high vacuum is linear at the fundamental vibration mode, and nonlinear for higher
modes. ©2004 American Institute of Physic§DOI: 10.1063/1.1697635

I. INTRODUCTION Quartz fiber finds wide applications in optical communi-
cations, and the mechanical properties of quartz fiber are also

Resonance vibration measurement offers a straightforeritical for its potential applications in microscale or nanos-
ward method for fitting the Young’s modulus of nanostruc-cale systems as a mechanical resonator and for structural
tures compared to tensile loading measurements. Carbapplications such as in glass fiber reinforced composites. The
nanotubes have been resonantly excited at the fundament&nsile modulus of microscale quartz fibers is reported in
frequency and higher harmonics and their elastic modulRefs. 5 and 6, and the values vary from 56.3 to 72.3 GPa.
were determined=® We have recently measured the reso-The values reported in the literature are somewhat inconsis-
nance response of three amorphous,$i0-2 by electron-  tent, and the detailed experimental method used was, unfor-

energy-loss spectroscopEELS) characterizatioh nanow- tunately,_ not well described. Here, we have measured the
ires and reported their mechanical properfie/shile even mechanical resonance at the fundamental and first overtone

smaller diameter amorphous SiBanowires k~2 by EELS frequencies to fit the Young’s modulus values of quartz fibers

N : . : . that we made with a glass puller in our laboratory.
characterizationwere driven into resonance in a transmis-
sion electron microscopeBoth of these studies on the amor-
phous SiQ nanowireé* yielded anomolously low Young’s Il. EXPERIMENTS

modulus values. relative to the fused siliGahich is also The quartz fibers were made by pulling a 2-mm diameter
amorphous studied here. For exgmple, _the mean value forg gaq quartz rodGE Quartz, Inc., Ohip Fourteen fibers
Young's modulus for the three Sihanofibers whose reso- \yith diameters varying from 20 to 130m and lengths vary-
nance was fit in Ref. 4 was 47 GPa and for the five,SiO ing from 4 to 30 mm were chosen for the measurements.
nanofibers studied in Ref. 2 the mean value was 28 qu'hey were bonded onto short copper W|(Mh diameter of
These values should be contrasted with the value of bullp.5 mm with Elmer’s glue(Ohio) for support.

fused quartz of 72 GPa. There is, therefore, the question of The copper wires were then fixed onto a piezoelectric
whether the mechanical resonance method is providing theultilayer bendefNoliac A/S, Denmark, ceramic multilayer
correct value for the modulus of nanostructures. In part fobender B} for measurement of mechanical resonance. The
this reason, we have chosen to stunigroscalequartz fibers  copper wires and attached quartz fibers were aligned parallel
as a way of qualifying the mechanical resonance method foio the piezoelectric multilayer bender to obtain the largest
obtaining Young’s modulus values for the ever-growing class/ibration amplitude. Most experiments were done under an
of newly synthesized nanoscale fibers, wires, and tubes. @ptical microscopg10x to 40X Zoom Stereomicroscopes
there are “problems” associated with microscale samples, iffom Edmund Scientific, New Jerseyand the peak fre-

is likely that the same sorts of issues will arise with nanosduéncy was measured by observing the resonance by eye
cale samples. under the optical microscope. The fiber diameters were mea-

sured in a scanning electron microscofd=O 1525 FE-
SEM) and the fibers were rotated and imaged, which con-
Airmed that they were round. The fiber length was measured
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Fiber  Supporting and are shown in Figs(@, 2(b), 2(c), and 2d), respectively.
The theoretical displacement of a uniform singly-clamped

C wire beam along the length is’
dn(X)=A,[(sinB,L—sinhB,L)(sinBXx—sinhB,x)
+(cosB,L +coshB,L)(cosB,x—coshBx)],
Bimorph actuator 2

FIG. 1. Schematic drawing of the experimental setup. The supporting WiréNhere ¢n(x) is Fhe displacgmgnt at pOiIXtOf the beam fO'I’
holding a microfiber is fixed at the end of the bender actuator. moden and A, is a normalization constant. The theoretical

displacement curves for each mode are also plotted in Fig. 2.
This result indicates that the node positions as predicted by
in air versus vacuum, the resonance of the fibers was alsog. (2) and as measured, are in close agreement.
measured in the SENat a pressure of 1¢—10 7 Torr).
The schematic of the experimental setup is shown in Fig . o :
i . . - B. Effect of linear variation in cross section
1. An ac electric field was applied to the piezoelectric bender
actuator and the driving frequency was swept with a synthe- One of the goals of these experiments is fitting the
sized function generatqiStanford Research Systems, Cali- Young’s modulus of the microscalgn diametef quartz fi-
fornia, Model DS34%h The oscillating bender plate excited bers according to Eql). The quartz fibers were excited in
the harmonic resonances of the microscale fibers. air with the piezoelectric bender to find the resonance fre-
quency at the fundamental and the first overtone. We find
that the fundamental resonance could be observed easily; ob-
IIl. RESULTS AND DISCUSSION servation of the overtone resonance was found to depend on
A. Realization of the first four harmonic resonances the ratio of the fiber length to the cross-section diameter. The
For a singly-clamped uniform beam, the mechanical;/ar!ation of the cross-section diametgr of the fibers a_long
resonance frequendy, for the nth mode i€ ’ he!r !ength was megsured and gll fibers showed a linear
variation, which we find to be typical for our pulled quartz
ﬁﬁ El fibers. The effect of this variation in cross section was taken
=5\ @ (1) into account by using a modified expression for the natural
mL frequency based on a perturbation solution in the small pa-
whereE is the Young's modulus of the bearhthe cross- rameters=(D;—Dg)/Dy, whereDg is the diameter at the
sectional area moment of the inertim, the mass per unit fixed end of the vibrating fiber and; is the diameter at the
length, L the beam length, an@,, the associated eigenvalue free end. The cross-sectional area and moment of inertia as
(the solution to co@,coshB,=—1). The first four modes functions of the length of the beam are then given, to the first

have eigenvalues g8,=1.875,8,=4.694,8,=7.855, and order, by

P3=10.996. - o A=A 1+sa(x)], (3)
Figure 2 shows the optical images of an oscillating mi-

crofiber. The first four harmonic resonance modes are excited 1(x) g

AX) A

a(x)=2x/L, 5

where the subscript “0” indicates a quantity measured at the
fixed end of the beam. The shift in frequency can then be
computed according t@see Ref. 8 for details

1:n:fn,o(l"'svn)r (6)

fa

[1+ea(x)], 4

1 (L |L?
Vn:ifo ¢n[,8_ﬁ(2a rt+da’ ¢ +ag, |dx. (7

In these expression$, q is the natural frequency of mode
computed using the parameters measured at the fixed end.
Primes ong¢,, and a represent derivatives with respectxo

For a given mode, the integral in the expressionifocan be
evaluated numerically. The results for the first few modes are
(a) for the fundamental modey= —0.420, (b) for the first

_ ) _ o o overtonerv,=0.218,(c) for the second overtone,=0.402,

FIG. 2. Optical microscope pictures of an oscillating quartz microfit@gr. and (d) for the third overtones; = 0.450.

The fundamental resonandb) the first overtone resonangg) the second . . .
overtone resonance, arid) the third overtone resonance of the fiber. The Note that forD,>Dy, the shift in frequency is negative

insets are the theoretical displacement curves. for the fundamental mode due to the increase of mass near
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FIG. 4. Schematic drawing of the model of a beam-embedded-in-an-elastic
5.51 . foundation.
50 be determined by considering the case in which the beam is

03 -02 -01 00 01 02 03 subjected to a uniformly distributed unit force.
(D.-D )/D Figure 4 depicts the mechanics model in which the beam
170770 is embedded in an elastic foundation. Since only vibration in
FIG. 3. The frequency ratio of the first overtone to the fundamental reso-the plane of Fig. 4 is F’f IntereSt’ the clamping is simplified in
nance vs the variation of the cross-sectional diameter. The solid line is ththe model by sandwiching the beam between glue layers.
theoretical value and the dots are plotted based on the experimental dataFrom the Euler—Bernoulli beam theo"r\)he governing equa-
tion for the beam deflectiop(x) under a uniformly distrib-

. _ uted unit force along the beam is
the end of the beam, but positive for the higher modes, for

which increased stiffness dominates over the increased mass. d*y(x)
Thus, if Dg>D,, the ratio of f,/f;<<6.267, which is the dx
theoretical value of the ratio for a uniform beam; DX,
<Dq, thenf,/f;>6.267. According to Eq(6), we can see
that the ratio isf;/fo=(f10/fo0)(1+0.21&)/(1—0.42C)
=6.267(1+0.21&)/(1—-0.42¢). Figure 3 shows the fre- 1 x<O0
guency ratio of the first overtone to the fundamental versus H) = 0 x=0
the variation of the cross-sectional diameter. The experimen-

+ANH(X)Y(X)= é 9

where \*=K/4EI, K is the stiffness of the elastic founda-
tion, and

tal values agree well with the analysis. Using the boundary conditions for the free endatl,, the
deflection of the beam for the positive section can be written
C. Boundary condition effects as
In the previous section, the formula for the resonance v (x)= %Ul_x)umﬁﬁ' (0=<x<l,) (10)

frequency was based upon the assumption of perfect clamp-
ing. However, we do not achieve a perfectly rigid clamp inwhile for the negative section, the general solution to the
these experiments. We used Elmer’s glue to attach the mijeflection of the beam can be represented as
crofibers on the copper wires. Our tensile-loading experi-
ments (DMA 2980 Dynamic Mechanical Analyzer, TA In-
struments, Delawajeshow that the Young’s modulus of this 1
glue is ~0.6 GPa, which means the clamp is much more +De Msin\x+ K (—1,=x=<0). (12
compliant than the microfibers. Using the perfect-clamping
assumption thus substantially underestimates the Younghe six unknowns in Eqg10) and (11) can be determined
modulus of the microfibers. In what follows, the clamping by two boundary conditions at=—1, and by compatibility
effect on the resonance frequency of the microfibers is takeponditions atx=0. The compatibility conditions require that
into account by using abeam-embedded-in-an-elastic- the deflection and the first three derivatives match between
foundationmodel. the solutions for the two segments

Based on the energy conservation concept in a damping- _ PO
free vibration, the fundamental angular frequensy(wq Y1(0)=¥2(0). - y1(0)=y2(0),

yo(X) =AM sin\x+BeM coshx+ Ce ** coskx

=2mxf,) can be approximated by the following formula: y1(0)=y5(0), y7(0)=y5(0).
5 JLEI[Y"(x)]%dx The boundary conditions at= — 1, must conform to the
wp=—————————, (8)  experiments. In the experiments, the left end of the fiber is
Jimly(x)]%dx

embedded in the glug@t does not stick out of the glue clamp
wherey(x) is the deflection of the beam, aigll, andmare  nor is it perfectly flush with the end of the glue deposit—it is
the Young’s modulus, the momentum of inertia, and unitin the interior of the glue depositSince the glue is compli-
mass of the beam, respectively. The integrations are evalant, the end X=—1,) of the fiber is neither perfectly
ated along the length of the bedm clamped nor completely free, but constrained with a condi-
To ensure the accuracy of the frequency using Bg. tion between these two limiting cases. By considering these
the deflection function is chosen such that the boundary cortwo extreme conditions, the upper and lower limits of the
ditions are satisfied. In practice, the deflection function carfrequency can be obtained. These two extreme conditions are
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yo(—12)=0, y5(—1,)=0, for a fixed end 1.00
and

0.98

yo(—=1,)=0, y5(—1,)=0, for a free end.

The only undetermined variable in the above equations 0.96

is the stiffness of the elastic foundatigiie glue clampK,

which is related to the Young’'s modul& and the geometry

of the glue. To establish this relationship, only the embedded

segment of the beam is considered in the following analysis.
Assume that the embedded segment of the beam under- 092 i

goes a uniform downward displacemeéit The resultant

force per unit length on the segment can be written as

2E'bé
F= Ft0p+ Fbottom: h ) (12) FIG. 5. The correction factor as a function of the Young’s modulus of the
clamp. The solid line was plotted for the case where the fiber was attached

whereb is the width of the glue layers, arftis the thickness by glue on each sidéop and bottomto solid foundations; the dashed line

. . ' . epresents the case where the fiber is only attached by glue to a substrate
of the glue layers, as seen in Elg. 1. Qn the other hand, if Wg_ c-t the microfiber.
regard the glue layer as a series of linear springs, one has

F=Fop+ Fborom™= (KiopT Kpotom 6= K4, (13 reinforcement of the clamp. Thus the experimental condi-
where the subscripts “top” and “bottom” denote the contri- tions are intermediate between the two plotted limiting cases
butions from the top and bottom glue layers, respectivelyin Fig. 5. For the glue with Young's modulus of 0.6 GPa, the
Combining Eqgs(12) and(13), the stiffness of the glue foun- difference between the two limiting cases is just 0.3%. To

0.94 4

Correction factor

001 01 1 10 100 1000 10000
Young's modulus of glue (GPa)

dation is simplify the treatment, we chose the first case to calculate the
JE'D correction factors for our microfibers.

=— - (14) In many resonance experiments, the nanowires that are

h driven into resonance were simply attached onto a substrate

The fundamental angular frequency of the beam embeddedf? ©ne end without any intentional clamp. In such cases, the

in the glue at one end can thus be written as relatively weak van der Waals force and any adhesive force

that may be present, are the only force acting between the

wo=E(K, I /1) g9 ) (15  nanowire and the substrate. The above derivation is appli-

where ¢ is the correction factor that is a function of the cable for this case except that the stiffness of the foundation

stiffness of the glue foundation and the length of the sectior’i‘eeds to be computedhis case will be discussed in a sepa-

that is embedded into the glue, aa§<(I,) is the fundamen- 3t article) _ _
tal angular frequency of the beam in the case of perfect It should be mentioned that the analysis presented above
clamping at x=0. In the limiting case of K—oo, 'S validforbeams with a uniform cross-section. The solution

£(K,1,/1,)—1, andw, approachesF(1,). If, on the other to the deflection function is very tedious if a linearly varying

han(’j ZK_l)O a’nd theopoint ak— | 0 is t)érfe'ctly clamped cross-section is considered. Decoupling these two effects is

£(K |,2/|1)—’>|2(|1+|2)2 and w, épproaches towfY(1, " possible here since the cross-section diameter varied slowly
] 1 ’ 0

+1,). We used the geometry of one of the measured microfiy‘”th the length of the microfibers.
bers to estimate the correction factor, which is a function ofD Fit Yound's modulus

the Young’s modulus of the glue. The length and the diam-~" 9
eter of the computed fiber are 8.93 mm and 23.30, re- Fourteen microfibers have been mechanically excited
spectively. Based on our observation with both scanningand Table | shows the geometry of these fibers and their
electron and optical microscopy, the thickness of the glugesonance frequency. The shifts of the resonance frequency
layer is approximately 7m, |, is 1 mm, and the width of caused by cross-sectional linear variation were estimated
the glue layer is assumed to be the same as the fiber diarbased on Eq(6). The correction factors caused by the com-
eter. The plot was made based on the boundary condition gfliant clamp were estimated according to ELp). The fixed

the fixed end case and is shown as Fig. 5. The correctioand boundary condition was used for this computati{@he
factor approaches unity as the Young's modulus of the glue isorrection factors based on the two limiting boundary condi-
increased. The solid line was plotted for the case where thegons discussed above are very close, because of the long
fiber was attached by glue on each sitlgp and bottomto ~ embedded sectionThe values of the Young’s modulus have
solid foundations; the dashed line represents the case whebeen fit according to Eq1). The density of the quartz fibers
the fiber is only attached by glue to a substrate beneath the assumed to be 2.2 g/énwhich is based on data for the 2
microfiber. In the actual experiment, while the bottom gluemm fused quartz rod from which they were fabricated by
layer is attached to a solid foundation, the glue on top of theulling. E, is the Young’s modulus calculated from the fun-
microfiber, being only attached to the bottom glue layer, isdamental resonance frequency. The mean value for the
more compliant and does not contribute significantly to theYoung’s modulus of 14 quartz microfibers determined from
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TABLE I. Young's modulus of quartz fiber measured with resonance method.
L (mm) Do (um) Dj (um) fo (H2) f1 (Hz)

Number (x£0.00 (+=0.01 (+0.00 (1) (*1) filfo Factor 1 Factor 2 E, (GPa)

1 8.93 23.30 18.20 249 1349 5.42 1.09 0.983 Fa()f3)

2 8.22 31.94 25.53 397 2158 5.44 1.08 0.977 ol )

3 7.18 32.28 33.50 461 2971 6.44 0.984 0.973 66.4

4 3.92 36.06 32.86 1733 10307 5.95 1.04 0.948 £8.8

5 7.71 38.14 34.89 490 2964 6.05 1.04 0.972 QA

6 6.79 36.24 35.28 571 3531 6.18 1.01 0.970 &6neE!

7 7.61 41.42 35.95 537 3039 5.66 1.06 0.970 6Mm4

8 5.53 45.88 51.74 997 6821 6.84 0.946 0.956 608

9 6.35 56.70 68.74 987 7042 7.13 0.911 0.955 784

10 9.58 62.46 70.50 504 3274 6.50 0.946 0.968 8.4

11 6.53 73.95 77.00 1274 8243 6.47 0.983 0.947 F0.@

12 5.70 103.3 103.4 2451 B . 1.000 0.925 78105

13 37.8 123 126 72 460 6.39 0.990 0.986 860064

14 30.4 133 129 119 722 6.07 1.01 0.982 78014

8 : length; D, : diameter at the fixed end, : free end diameterf,: fundamental resonance frequendy; first overtone resonance frequency; Factor 1:
correction factor based on the treatment of linear variation of the cross-section of the fibers; Factor 2: correction factor based on the treatmerdebf t
of a beam-embedded-in-an-elastic foundation.

the fundamental resonance is 70 GPa, reasonably close to thdferent. The quality facto of the fundamental resonance
Young’s modulus 72 GPa of the precursor 2-mm diametein vacuum was~2000; in air there was a large damping and
bulk fused quart2® The result suggests that resonance vibra-Q was only 25.
tion may be a reasonable method to use to obtain the me- A second mechanical resonance for the natural reso-
chanical properties of microfibers if sufficient care is takennance was detected in vacuum. This is an out-of-plane vibra-
in the treatments of the boundary condifignand a large tion. The small difference in values for the natural frequency
number of specimens are measured. It also suggests thatisaprobably caused by a slight geometric asymmetry of the
relatively large number of samples need to be measured teross section of the quartz fiber at the free end. In Fig. 6, the
achieve a mean value that one might trust as being mearriangles indicate increasing driving frequency and the
ingful. circles indicate decreasing driving frequency. For the funda-
mental resonance, the two curves match closely. For over-
tones, they evidently match well in air because of the huge
damping effect; however in vacuum, a nonlinear effect was
Vibration amplitude and frequency at the fundamentalobserved and the curves show hysteresis. As the driving fre-
mode for a quartz microfiber mounted at different Orienta-quency is increased from below, the response amplitude
tions with respect to the bender plate was also studied. The
quartz fiber orientation was varied from parallel to perpen-
dicular. The vibration amplitude is a maximum when the 4 ,
fiber is parallel to the bender actuator and decreases mono- (@
tonically reaching a minimum value when it is perpendicular
to the bender actuator. The change of the vibration amplitude
is attributed to the variation of the perpendicular driving
force component on the fiber. The perpendicular driving
force component is a maximum when the fiber is parallel to o
the bender and a minimum when it is perpendicular to the 94)00 450 500 550 600 2800 2900 3000 3100

E. Comparison of vibration in air and vacuum

=]

W
=

—

Amplitude (a.n.)
)

Amplitude (a.n.)

bender. It is known that tensile or compressive force on a Frequency (Hz) Frequency (Hz)

beam can affect its resonance frequeheg that if there is 1200 , . —

some force component along the fiber length, its resonance © sl (d) [y

frequency may shift from its true resonance. We note that the 5 gy 5 = ?

frequency shift was negligible for measurement of the same < e %

microfiber oriented parallel, and also 30, 60, and 90° off § 400/ & 2

parallel. However, the amplitude varied frofyy (for paral- & '5200

lel) to 0.87, 0.78, and 0.60A, for 30, 60, and 90° off par- < ob_B8a JM I 0 OOLAD Qaa

allel, respectively. 484 488 42 4% 2000 2950 3000 3050
We also compared the mechanical resonance of the same Frequency (Hz) Frequency (Hz)

microfiber in a scanning electron microscopy vacuum cham-

ber and in air, shown in Fig. 6. The results indicate that thélG. 6. (&) The fundamental anb) first overtone vibration amplitude vs
’ T he driving frequency in air of a quartz microfibg) and (d) show the

resonance frequenpy of the principal peak is 'ess.ent'iglly th@bration amplitude vs the driving frequency curve of the first two modes in
same, but the quality factor of the resonance is significantlyiigh vacuum(triangle: frequency increasing; circle: frequency decreasing
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reaches a maximum and then decreases; as the driving fréBIMat) under Award No. NCC-1-02037. We thank H.
guency decreases from above, the response amplitude iRiecke for an insightful suggestion regarding the mathemati-
creases until a higher point is reached. At that frequency, theal derivations and A. L. Ruoff for discussions regarding the
amplitude jumps to a lower value. This softening behaviorcompliant clamp.

results from the effect of the beam momentum in the axial

direction. The axial force is developed by the transverse deAPPENDIX

flection of the fiber. The effect might be negligible for small In the calculations of the unknown coefficients in Egs.
amplitude motion. However, it results in this nonlinear effect(10) and(11), careful treatment must be introduced to avoid
when the amplitude is large. For the doubly clamped beanroundoff errors. Here, all the unknowns are represented by a
the axial force will bend the amplitude-frequency curve toTaylor-series expansion

the rlght wher_1 thle a_mplltude of the vibration |s“greater t_han £=éot+ £18+0(£2), (A1)

the critical pointt! This has been known as the “hard-spring

effect.” The axial force has a more significant effect on thewhere stands for the unknowns, anrd=e~ "'z is a small
overtones than on the fundamental, since the ratio of axial totumber based on the experimental set; £, are the ze-
transverse motion is larger for the overtorisse Ref. 12 for ~roth and first-order terms of, respectively. In our simula-

a detailed mathematical treatmgent tion, the second- and higher-order terms are ignored. Accord-
ingly, the numerical error is on the order ofs?). For the
IV. CONCLUSIONS calculation ofa and B, we used the following formula:
We have investigated the mechanical resonance of quartz 1 1 a

. (8p#0). (A2)

- — &
)

microfibers pulled from a quartz rod. A best-fit equation fora  aj,+a;e  a,
circular beam with linearly varying cross-sectional diameter th K btained. the int i .
was derived and used to calculate the resonance frequen%ﬂCe € unknowns are obtained, the integrations In(&q.

shift. An analytical model, in which the effects of nonrigid . ere calculated in a similar way, i.e., by splitting each of the

clamping conditions on the natural resonance frequency alngtegratlons into two terms: the zeroth- and first-order terms,

taken into account, was developed. The Young’s modulus o\th'Ch were then separately calculated.
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