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We have measured the mechanical resonance of microscale quartz fibers to qualify the method of
obtaining the Young’s modulus of nanowires from their resonance frequency and geometry. An
equation for a circular beam with a linearly varying cross-section is derived and used to calculate the
resonance frequency shift. We have established a model to discuss the boundary condition effect on
the resonance frequency. The Young’s modulus of the quartz fibers has been determined by
measuring the resonance frequency, and the geometry, and by applying the model that treats the
influence of the type of clamp. The mean value from measurements of the fundamental resonance
on 14 different microfibers is 7066 GPa. This mean value is close to 72 GPa, the Young’s modulus
of bulk fused quartz. Four resonance modes were observed in high vacuum and air. The mechanical
resonance in high vacuum is linear at the fundamental vibration mode, and nonlinear for higher
modes. ©2004 American Institute of Physics.@DOI: 10.1063/1.1697635#

I. INTRODUCTION

Resonance vibration measurement offers a straightfor-
ward method for fitting the Young’s modulus of nanostruc-
tures compared to tensile loading measurements. Carbon
nanotubes have been resonantly excited at the fundamental
frequency and higher harmonics and their elastic moduli
were determined.1–3 We have recently measured the reso-
nance response of three amorphous SiOx @x;2 by electron-
energy-loss spectroscopy~EELS! characterization# nanow-
ires and reported their mechanical properties,4 while even
smaller diameter amorphous SiOx nanowires (x;2 by EELS
characterization! were driven into resonance in a transmis-
sion electron microscope.2 Both of these studies on the amor-
phous SiOx nanowires2,4 yielded anomolously low Young’s
modulus values relative to the fused silica~which is also
amorphous! studied here. For example, the mean value for
Young’s modulus for the three SiOx nanofibers whose reso-
nance was fit in Ref. 4 was 47 GPa and for the five SiOx

nanofibers studied in Ref. 2 the mean value was 28 GPa.
These values should be contrasted with the value of bulk
fused quartz of 72 GPa. There is, therefore, the question of
whether the mechanical resonance method is providing the
correct value for the modulus of nanostructures. In part for
this reason, we have chosen to studymicroscalequartz fibers
as a way of qualifying the mechanical resonance method for
obtaining Young’s modulus values for the ever-growing class
of newly synthesized nanoscale fibers, wires, and tubes. If
there are ‘‘problems’’ associated with microscale samples, it
is likely that the same sorts of issues will arise with nanos-
cale samples.

Quartz fiber finds wide applications in optical communi-
cations, and the mechanical properties of quartz fiber are also
critical for its potential applications in microscale or nanos-
cale systems as a mechanical resonator and for structural
applications such as in glass fiber reinforced composites. The
tensile modulus of microscale quartz fibers is reported in
Refs. 5 and 6, and the values vary from 56.3 to 72.3 GPa.
The values reported in the literature are somewhat inconsis-
tent, and the detailed experimental method used was, unfor-
tunately, not well described. Here, we have measured the
mechanical resonance at the fundamental and first overtone
frequencies to fit the Young’s modulus values of quartz fibers
that we made with a glass puller in our laboratory.

II. EXPERIMENTS

The quartz fibers were made by pulling a 2-mm diameter
fused quartz rod~GE Quartz, Inc., Ohio!. Fourteen fibers
with diameters varying from 20 to 130mm and lengths vary-
ing from 4 to 30 mm were chosen for the measurements.
They were bonded onto short copper wires~with diameter of
0.5 mm! with Elmer’s glue~Ohio! for support.

The copper wires were then fixed onto a piezoelectric
multilayer bender~Noliac A/S, Denmark, ceramic multilayer
bender B1! for measurement of mechanical resonance. The
copper wires and attached quartz fibers were aligned parallel
to the piezoelectric multilayer bender to obtain the largest
vibration amplitude. Most experiments were done under an
optical microscope~103 to 403 Zoom Stereomicroscopes
from Edmund Scientific, New Jersey!, and the peak fre-
quency was measured by observing the resonance by eye
under the optical microscope. The fiber diameters were mea-
sured in a scanning electron microscope~LEO 1525 FE-
SEM! and the fibers were rotated and imaged, which con-
firmed that they were round. The fiber length was measured
under a wide stereomicroscope~Heerbrugg, Switzerland,
Model WILD M32!. To compare the mechanical resonance
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in air versus vacuum, the resonance of the fibers was also
measured in the SEM~at a pressure of 1026– 1027 Torr).

The schematic of the experimental setup is shown in Fig.
1. An ac electric field was applied to the piezoelectric bender
actuator and the driving frequency was swept with a synthe-
sized function generator~Stanford Research Systems, Cali-
fornia, Model DS345!. The oscillating bender plate excited
the harmonic resonances of the microscale fibers.

III. RESULTS AND DISCUSSION

A. Realization of the first four harmonic resonances

For a singly-clamped uniform beam, the mechanical
resonance frequencyf n for the nth mode is7

f n5
bn

2

2p
A EI

mL4
, ~1!

whereE is the Young’s modulus of the beam,I the cross-
sectional area moment of the inertia,m the mass per unit
length,L the beam length, andbn the associated eigenvalue
~the solution to cosbn coshbn521). The first four modes
have eigenvalues ofb051.875,b154.694,b257.855, and
b3510.996.

Figure 2 shows the optical images of an oscillating mi-
crofiber. The first four harmonic resonance modes are excited

and are shown in Figs. 2~a!, 2~b!, 2~c!, and 2~d!, respectively.
The theoretical displacement of a uniform singly-clamped
beam along the lengthL is7

fn~x!5An@~sinbnL2sinhbnL !~sinbnx2sinhbnx!

1~cosbnL1coshbnL !~cosbnx2coshbnx!#,

~2!

wherefn(x) is the displacement at pointx of the beam for
moden and An is a normalization constant. The theoretical
displacement curves for each mode are also plotted in Fig. 2.
This result indicates that the node positions as predicted by
Eq. ~2! and as measured, are in close agreement.

B. Effect of linear variation in cross section

One of the goals of these experiments is fitting the
Young’s modulus of the microscale~in diameter! quartz fi-
bers according to Eq.~1!. The quartz fibers were excited in
air with the piezoelectric bender to find the resonance fre-
quency at the fundamental and the first overtone. We find
that the fundamental resonance could be observed easily; ob-
servation of the overtone resonance was found to depend on
the ratio of the fiber length to the cross-section diameter. The
variation of the cross-section diameter of the fibers along
their length was measured and all fibers showed a linear
variation, which we find to be typical for our pulled quartz
fibers. The effect of this variation in cross section was taken
into account by using a modified expression for the natural
frequency based on a perturbation solution in the small pa-
rameter«5(D12D0)/D0 , whereD0 is the diameter at the
fixed end of the vibrating fiber andD1 is the diameter at the
free end. The cross-sectional area and moment of inertia as
functions of the length of the beam are then given, to the first
order, by

A~x!5A0@11«a~x!#, ~3!

I ~x!

A~x!
5

I 0

A0
@11«a~x!#, ~4!

a~x!52x/L, ~5!

where the subscript ‘‘0’’ indicates a quantity measured at the
fixed end of the beam. The shift in frequency can then be
computed according to~see Ref. 8 for details!:

f n5 f n,0~11«nn!, ~6!
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In these expressions,f n,0 is the natural frequency of moden
computed using the parameters measured at the fixed end.
Primes onfn anda represent derivatives with respect tox.
For a given mode, the integral in the expression fornn can be
evaluated numerically. The results for the first few modes are
~a! for the fundamental moden0520.420, ~b! for the first
overtonen150.218,~c! for the second overtonen250.402,
and ~d! for the third overtonen350.450.

Note that forD1.D0 , the shift in frequency is negative
for the fundamental mode due to the increase of mass near

FIG. 1. Schematic drawing of the experimental setup. The supporting wire
holding a microfiber is fixed at the end of the bender actuator.

FIG. 2. Optical microscope pictures of an oscillating quartz microfiber.~a!
The fundamental resonance,~b! the first overtone resonance,~c! the second
overtone resonance, and~d! the third overtone resonance of the fiber. The
insets are the theoretical displacement curves.
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the end of the beam, but positive for the higher modes, for
which increased stiffness dominates over the increased mass.
Thus, if D0.D1 , the ratio of f 1 / f 0,6.267, which is the
theoretical value of the ratio for a uniform beam; ifD0

,D1 , then f 1 / f 0.6.267. According to Eq.~6!, we can see
that the ratio isf 1 / f 05( f 1,0/ f 0,0)(110.218«)/(120.420«)
56.267(110.218«)/(120.420«). Figure 3 shows the fre-
quency ratio of the first overtone to the fundamental versus
the variation of the cross-sectional diameter. The experimen-
tal values agree well with the analysis.

C. Boundary condition effects

In the previous section, the formula for the resonance
frequency was based upon the assumption of perfect clamp-
ing. However, we do not achieve a perfectly rigid clamp in
these experiments. We used Elmer’s glue to attach the mi-
crofibers on the copper wires. Our tensile-loading experi-
ments ~DMA 2980 Dynamic Mechanical Analyzer, TA In-
struments, Delaware! show that the Young’s modulus of this
glue is ;0.6 GPa, which means the clamp is much more
compliant than the microfibers. Using the perfect-clamping
assumption thus substantially underestimates the Young’s
modulus of the microfibers. In what follows, the clamping
effect on the resonance frequency of the microfibers is taken
into account by using abeam-embedded-in-an-elastic-
foundationmodel.

Based on the energy conservation concept in a damping-
free vibration, the fundamental angular frequencyv0 (v0

52p f 0) can be approximated by the following formula:9

v0
25

*LEI@y9~x!#2dx

*Lm@y~x!#2dx
, ~8!

wherey(x) is the deflection of the beam, andE, I, andm are
the Young’s modulus, the momentum of inertia, and unit
mass of the beam, respectively. The integrations are evalu-
ated along the length of the beamL.

To ensure the accuracy of the frequency using Eq.~8!,
the deflection function is chosen such that the boundary con-
ditions are satisfied. In practice, the deflection function can

be determined by considering the case in which the beam is
subjected to a uniformly distributed unit force.

Figure 4 depicts the mechanics model in which the beam
is embedded in an elastic foundation. Since only vibration in
the plane of Fig. 4 is of interest, the clamping is simplified in
the model by sandwiching the beam between glue layers.
From the Euler–Bernoulli beam theory,9 the governing equa-
tion for the beam deflectiony(x) under a uniformly distrib-
uted unit force along the beam is

d4y~x!

dx
14l4H~x!y~x!5

1

EI
, ~9!

wherel45K/4EI, K is the stiffness of the elastic founda-
tion, and

H~x!5H 1 x,0

0 x>0
.

Using the boundary conditions for the free end atx5 l 1 , the
deflection of the beam for the positive section can be written
as

y1~x!5
1

24EI
~ l 12x!41ax1b, ~0<x< l 1! ~10!

while for the negative section, the general solution to the
deflection of the beam can be represented as

y2~x!5Aelx sinlx1Belx coslx1Ce2lx coslx

1De2lx sinlx1
1

K
, ~2 l 2<x<0!. ~11!

The six unknowns in Eqs.~10! and ~11! can be determined
by two boundary conditions atx52 l 2 and by compatibility
conditions atx50. The compatibility conditions require that
the deflection and the first three derivatives match between
the solutions for the two segments

y1~0!5y2~0!, y18~0!5y28~0!,

y19~0!5y29~0!, y1-~0!5y2-~0!.

The boundary conditions atx52 l 2 must conform to the
experiments. In the experiments, the left end of the fiber is
embedded in the glue~it does not stick out of the glue clamp
nor is it perfectly flush with the end of the glue deposit—it is
in the interior of the glue deposit!. Since the glue is compli-
ant, the end (x52 l 2) of the fiber is neither perfectly
clamped nor completely free, but constrained with a condi-
tion between these two limiting cases. By considering these
two extreme conditions, the upper and lower limits of the
frequency can be obtained. These two extreme conditions are

FIG. 3. The frequency ratio of the first overtone to the fundamental reso-
nance vs the variation of the cross-sectional diameter. The solid line is the
theoretical value and the dots are plotted based on the experimental data.

FIG. 4. Schematic drawing of the model of a beam-embedded-in-an-elastic
foundation.
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y2~2 l 2!50, y28~2 l 2!50, for a fixed end

and

y29~2 l 2!50, y2-~2 l 2!50, for a free end.

The only undetermined variable in the above equations
is the stiffness of the elastic foundation~the glue clamp! K,
which is related to the Young’s modulusE8 and the geometry
of the glue. To establish this relationship, only the embedded
segment of the beam is considered in the following analysis.

Assume that the embedded segment of the beam under-
goes a uniform downward displacementd. The resultant
force per unit length on the segment can be written as

F5F top1Fbottom5
2E8bd

h
, ~12!

whereb is the width of the glue layers, andh is the thickness
of the glue layers, as seen in Fig. 1. On the other hand, if we
regard the glue layer as a series of linear springs, one has

F5F top1Fbottom5~K top1Kbottom!d5Kd, ~13!

where the subscripts ‘‘top’’ and ‘‘bottom’’ denote the contri-
butions from the top and bottom glue layers, respectively.
Combining Eqs.~12! and~13!, the stiffness of the glue foun-
dation is

K5
2E8b

h
. ~14!

The fundamental angular frequency of the beam embedded
in the glue at one end can thus be written as

v05j~K,l 2 / l 1!v0
PC~ l 1! ~15!

where j is the correction factor that is a function of the
stiffness of the glue foundation and the length of the section
that is embedded into the glue, andv0

PC( l 1) is the fundamen-
tal angular frequency of the beam in the case of perfect
clamping at x50. In the limiting case of K→`,
j(K,l 2 / l 1)→1, andv0 approachesv0

PC( l 1). If, on the other
hand,K→0, and the point atx52 l 2 is perfectly clamped,
j(K,l 2 / l 1)→ l 1

2( l 11 l 2)2, and v0 approaches tov0
PC( l 1

1 l 2). We used the geometry of one of the measured microfi-
bers to estimate the correction factor, which is a function of
the Young’s modulus of the glue. The length and the diam-
eter of the computed fiber are 8.93 mm and 23.30mm, re-
spectively. Based on our observation with both scanning
electron and optical microscopy, the thickness of the glue
layer is approximately 75mm, l 2 is 1 mm, and the width of
the glue layer is assumed to be the same as the fiber diam-
eter. The plot was made based on the boundary condition of
the fixed end case and is shown as Fig. 5. The correction
factor approaches unity as the Young’s modulus of the glue is
increased. The solid line was plotted for the case where the
fiber was attached by glue on each side~top and bottom! to
solid foundations; the dashed line represents the case where
the fiber is only attached by glue to a substrate beneath the
microfiber. In the actual experiment, while the bottom glue
layer is attached to a solid foundation, the glue on top of the
microfiber, being only attached to the bottom glue layer, is
more compliant and does not contribute significantly to the

reinforcement of the clamp. Thus the experimental condi-
tions are intermediate between the two plotted limiting cases
in Fig. 5. For the glue with Young’s modulus of 0.6 GPa, the
difference between the two limiting cases is just 0.3%. To
simplify the treatment, we chose the first case to calculate the
correction factors for our microfibers.

In many resonance experiments, the nanowires that are
driven into resonance were simply attached onto a substrate
on one end without any intentional clamp. In such cases, the
relatively weak van der Waals force and any adhesive force
that may be present, are the only force acting between the
nanowire and the substrate. The above derivation is appli-
cable for this case except that the stiffness of the foundation
needs to be computed.~This case will be discussed in a sepa-
rate article.!

It should be mentioned that the analysis presented above
is valid for beams with a uniform cross-section. The solution
to the deflection function is very tedious if a linearly varying
cross-section is considered. Decoupling these two effects is
possible here since the cross-section diameter varied slowly
with the length of the microfibers.

D. Fit Young’s modulus

Fourteen microfibers have been mechanically excited
and Table I shows the geometry of these fibers and their
resonance frequency. The shifts of the resonance frequency
caused by cross-sectional linear variation were estimated
based on Eq.~6!. The correction factors caused by the com-
pliant clamp were estimated according to Eq.~15!. The fixed
end boundary condition was used for this computation.~The
correction factors based on the two limiting boundary condi-
tions discussed above are very close, because of the long
embedded section.! The values of the Young’s modulus have
been fit according to Eq.~1!. The density of the quartz fibers
is assumed to be 2.2 g/cm3, which is based on data for the 2
mm fused quartz rod from which they were fabricated by
pulling. E0 is the Young’s modulus calculated from the fun-
damental resonance frequency. The mean value for the
Young’s modulus of 14 quartz microfibers determined from

FIG. 5. The correction factor as a function of the Young’s modulus of the
clamp. The solid line was plotted for the case where the fiber was attached
by glue on each side~top and bottom! to solid foundations; the dashed line
represents the case where the fiber is only attached by glue to a substrate
beneath the microfiber.
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the fundamental resonance is 70 GPa, reasonably close to the
Young’s modulus 72 GPa of the precursor 2-mm diameter
bulk fused quartz.10 The result suggests that resonance vibra-
tion may be a reasonable method to use to obtain the me-
chanical properties of microfibers if sufficient care is taken
in the treatments of the boundary condition~s! and a large
number of specimens are measured. It also suggests that a
relatively large number of samples need to be measured to
achieve a mean value that one might trust as being mean-
ingful.

E. Comparison of vibration in air and vacuum

Vibration amplitude and frequency at the fundamental
mode for a quartz microfiber mounted at different orienta-
tions with respect to the bender plate was also studied. The
quartz fiber orientation was varied from parallel to perpen-
dicular. The vibration amplitude is a maximum when the
fiber is parallel to the bender actuator and decreases mono-
tonically reaching a minimum value when it is perpendicular
to the bender actuator. The change of the vibration amplitude
is attributed to the variation of the perpendicular driving
force component on the fiber. The perpendicular driving
force component is a maximum when the fiber is parallel to
the bender and a minimum when it is perpendicular to the
bender. It is known that tensile or compressive force on a
beam can affect its resonance frequency,8 so that if there is
some force component along the fiber length, its resonance
frequency may shift from its true resonance. We note that the
frequency shift was negligible for measurement of the same
microfiber oriented parallel, and also 30, 60, and 90° off
parallel. However, the amplitude varied fromA0 ~for paral-
lel! to 0.87, 0.78, and 0.603A0 for 30, 60, and 90° off par-
allel, respectively.

We also compared the mechanical resonance of the same
microfiber in a scanning electron microscopy vacuum cham-
ber and in air, shown in Fig. 6. The results indicate that the
resonance frequency of the principal peak is essentially the
same, but the quality factor of the resonance is significantly

different. The quality factorQ of the fundamental resonance
in vacuum was;2000; in air there was a large damping and
Q was only 25.

A second mechanical resonance for the natural reso-
nance was detected in vacuum. This is an out-of-plane vibra-
tion. The small difference in values for the natural frequency
is probably caused by a slight geometric asymmetry of the
cross section of the quartz fiber at the free end. In Fig. 6, the
triangles indicate increasing driving frequency and the
circles indicate decreasing driving frequency. For the funda-
mental resonance, the two curves match closely. For over-
tones, they evidently match well in air because of the huge
damping effect; however in vacuum, a nonlinear effect was
observed and the curves show hysteresis. As the driving fre-
quency is increased from below, the response amplitude

FIG. 6. ~a! The fundamental and~b! first overtone vibration amplitude vs
the driving frequency in air of a quartz microfiber;~c! and ~d! show the
vibration amplitude vs the driving frequency curve of the first two modes in
high vacuum~triangle: frequency increasing; circle: frequency decreasing!.

TABLE I. Young’s modulus of quartz fiber measured with resonance method.a

Number
L (mm)
~60.01!

D0 (mm)
~60.01!

D1 (mm)
~60.01!

f 0 (Hz)
~61!

f 1 (Hz)
~61! f 1 / f 0 Factor 1 Factor 2 E0 (GPa)

1 8.93 23.30 18.20 249 1349 5.42 1.09 0.983 70.860.6
2 8.22 31.94 25.53 397 2158 5.44 1.08 0.977 71.060.5
3 7.18 32.28 33.50 461 2971 6.44 0.984 0.973 66.460.4
4 3.92 36.06 32.86 1733 10307 5.95 1.04 0.948 63.360.6
5 7.71 38.14 34.89 490 2964 6.05 1.04 0.972 64.760.4
6 6.79 36.24 35.28 571 3531 6.18 1.01 0.970 61.660.4
7 7.61 41.42 35.95 537 3039 5.66 1.06 0.970 60.460.4
8 5.53 45.88 51.74 997 6821 6.84 0.946 0.956 60.660.4
9 6.35 56.70 68.74 987 7042 7.13 0.911 0.955 73.160.4

10 9.58 62.46 70.50 504 3274 6.50 0.946 0.968 73.460.4
11 6.53 73.95 77.00 1274 8243 6.47 0.983 0.947 70.060.4
12 5.70 103.3 103.4 2451 ¯ ¯ 1.000 0.925 78.160.5
13 37.8 123 126 72 460 6.39 0.990 0.986 80.660.4
14 30.4 133 129 119 722 6.07 1.01 0.982 78.160.4

aL: length;D0 : diameter at the fixed end;D1 : free end diameter;f 0 : fundamental resonance frequency;f 1 : first overtone resonance frequency; Factor 1:
correction factor based on the treatment of linear variation of the cross-section of the fibers; Factor 2: correction factor based on the treatment of the model
of a beam-embedded-in-an-elastic foundation.
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reaches a maximum and then decreases; as the driving fre-
quency decreases from above, the response amplitude in-
creases until a higher point is reached. At that frequency, the
amplitude jumps to a lower value. This softening behavior
results from the effect of the beam momentum in the axial
direction. The axial force is developed by the transverse de-
flection of the fiber. The effect might be negligible for small
amplitude motion. However, it results in this nonlinear effect
when the amplitude is large. For the doubly clamped beam,
the axial force will bend the amplitude-frequency curve to
the right when the amplitude of the vibration is greater than
the critical point.11 This has been known as the ‘‘hard-spring
effect.’’ The axial force has a more significant effect on the
overtones than on the fundamental, since the ratio of axial to
transverse motion is larger for the overtones~see Ref. 12 for
a detailed mathematical treatment!.

IV. CONCLUSIONS

We have investigated the mechanical resonance of quartz
microfibers pulled from a quartz rod. A best-fit equation for a
circular beam with linearly varying cross-sectional diameter
was derived and used to calculate the resonance frequency
shift. An analytical model, in which the effects of nonrigid
clamping conditions on the natural resonance frequency are
taken into account, was developed. The Young’s modulus of
each of the quartz fibers has been determined by measuring
the natural resonance frequency; the mean value from mea-
surements on 14 different microfibers is 7066 GPa which
can be compared to that of bulk fused quartz, 72 GPa. The
Young’s modulus that is fit to the resonance data does not
vary significantly with geometry, and the behavior seems in
every way to be well described by engineering beam theory,
so one may be confident that the true Young’s modulus of the
material is being determined. The mechanical resonance of a
quartz fiber in air (Q525) is strongly damped compared to
vacuum (Q52000) and this damping masks nonlinear ef-
fects, including a hysteretic response present in the overtone
resonance excited in vacuum.
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APPENDIX

In the calculations of the unknown coefficients in Eqs.
~10! and~11!, careful treatment must be introduced to avoid
roundoff errors. Here, all the unknowns are represented by a
Taylor-series expansion

j5j01j1«1o~«2!, ~A1!

wherej stands for the unknowns, and«5e22l l 2 is a small
number based on the experimental setup;j0 , j1 are the ze-
roth and first-order terms ofj, respectively. In our simula-
tion, the second- and higher-order terms are ignored. Accord-
ingly, the numerical error is on the order ofo(«2). For the
calculation ofa andb, we used the following formula:

1

a01a1«
'

1

a0
S 12

a1

a0
« D , ~a0Þ0!. ~A2!

Once the unknowns are obtained, the integrations in Eq.~8!
were calculated in a similar way, i.e., by splitting each of the
integrations into two terms: the zeroth- and first-order terms,
which were then separately calculated.
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