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Molecular mechanicssMM d calculations together with coupling methods bridging MM and finite crystal
elasticity are employed to simulate the fracture of defected carbon nanotubessCNTsd and to compare with the
available experimental results. The modified second generation Brenner potentialsMTB-G2d is adopted in the
calculations. Our MM calculations show fair agreement with quantum mechanicalsQMd benchmarks, and
indicate that one- and two-atom vacancies reduce the fracture strength of CNTs by 20% –33%swhereas the
QM calculations predict 14% –27%d, but these fracture strengths are still much higher than the experimental
data. We then demonstrate that this experimental and theoretical discrepancy can be attributed to the presence
of large-scale defects, such as those that may arise from oxidative purification processes. Simulations on
multiwalled CNTs and tubes twisted prior to tensile loading show negligible effects on the fracture strength,
which indicates that these are not the causes of low experimental values. The effects of chirality and tube
diameter on fracture strengths are also investigated.
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I. INTRODUCTION

Predicting the strength of carbon nanotubessCNTsd is an
interesting challenge from both the scientific and engineering
viewpoints. From a scientific viewpoint, a CNT ostensibly
offers a clean model for the study of fracture, since the frac-
ture of a single molecule should involve only chemical bond
breaking at the atomistic scale without other complications
such as grain boundaries. From an engineering viewpoint, a
thorough understanding of CNT fracture is needed for the
design of CNT-reinforced composites. So far, comparisons of
experimental data and theoretical calculations have mani-
fested large discrepancies. According to the experimental
measurements of Yuet al.,1 the fracture strengths of 19 mul-
tiwalled CNTssMWCNTsd ranged from 11 to 63 GPa with a
mean value of 27.8 GPassee Fig. 1d. However, recent quan-
tum mechanicalsQMd calculations2–7 for pristine tubes agree
reasonably well with each other and indicate that the fracture
of nanotubes is brittle at room temperature with a fracture
stress in the range of 75–135 GPa depending on tube chiral-
ity. It is thus of interest to examine whether plausible defects
or other possible effects stemming from the differences be-
tween the experiments and the numerical models could ex-
plain these discrepancies.

The cause of defects and their effects on the physical
properties of CNTs have attracted considerable attention.
One of the most intensively studied defects is the 5-7-7-5
dislocation formed by a Stone-WalessSWd transformation.8

It has been shown by QM calculations that the SW transfor-
mation is energetically favored above a tensile strain of
about,5% –6% for armchair tubes9,10 and ,12% for zig-
zag tubes.10 Aggregation of SW defects has been hypoth-
esized to lead to crack initiation;11 however, QM analysis6

indicates that aggregations of SW defects do not markedly
reduce the fracture strength of CNTs—at least at moderate
temperatures where brittle failure mechanisms prevail. It was
also noted6 that empirical bond-order potentials12 incorrectly

predict such weakening, which suggests that these potentials
must be used with caution when treating defected CNTs.
Irradiation with energetic ions or electrons can knock carbon
atoms out of the hexagonal lattice, producing single-atom or
multiatom vacancies in CNTs.13–15Density functional theory
sDFTd calculations showed that vacancy defects can form
links between adjacent graphite layers,16 providing a mecha-
nism for improved intershell or intertube mechanical
coupling.17,18 In a recent study on the fracture of CNTs,7 it
was argued that large defects could be introduced in
MWCNTs by oxidative purification processes.19,20

Due to the small size of CNTs, fracture experiments are
extremely challenging, and measurements of the tensile fail-
ure strength of individual tubes are fairly limited.1,21 QM
calculations2–7 have therefore been used to elucidate the frac-
ture of CNTs; however, the computational cost limits QM
studies to CNTs with relatively small dimensions. Molecular

FIG. 1. Distribution of fracture stresses in the experiment of Yu
et al. sRef. 1d.
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dynamics sMDd and molecular mechanics sMM d
calculations7,22–26 using empirical potentials are computa-
tionally more affordable than QM calculations and have been
widely adopted for modeling the fracture of CNTs. However,
for MWCNTs or CNT bundles, even MM simulations are
often quite time consuming.

For increased computational affordability, continuum
models27–29 of CNTs have become attractive substitutes for
MM simulations. These models incorporate interaction po-
tentials into the continuum constitutive laws by homogeniza-
tion through the Cauchy-Born rule and can reproduce the
corresponding atomistic models with reasonable accuracy for
smooth deformations. Recently, a finite-element approach
was developed in which nanotubes are treated as shells and
the intershell van der Waals interactions are simulated by
construction of special elements.30 However, continuum
methods alone are not adequate for failure analysis of CNTs.

The limitations of quantum mechanical and atomistic
methods as well as continuum mechanicssCMd have stimu-
lated extensive research into multiscale methods that bridge
atomistic simulations and continuum descriptions.31–35 The
basic idea of multiscale methods is to use atomistic represen-
tations only in the localized region in which the positions of
each individual atom are important and to use coarse-grained
representations, such as finite-element methods, where the
deformation is homogeneous and smooth. To ensure dis-
placement compatibility between the two regions, most cou-
pling methods have a “handshake region” or “transition re-
gion.” Variations of the existing coupling methods stem from
the detailed treatments of the handshake region. These
aspects of multiscale methods are reviewed
in detail elsewhere.36–38 Multiscale methods have been
applied to fracture,34,39,40 grain-boundary interactions,41

nanoindentation,40,42 dislocation motion,33,40,42,43and local-
ized deformation of CNTs.44

In this paper, we use MM and coupled MM/CM models to
examine potential sources of discrepancies between the
experiments1 and available calculations, including the pres-
ence of single-atom and multi-atom vacancies, the presence
of inner tubes that might give rise to intershell repulsive
interactions, and twisting of the tubes prior to tensile loading.
MM calculations optimize the configurations at zero tem-
perature and thus do not include thermal effects; however, at
room temperature, we expect that the effect of thermal con-
tributions to the fracture strength of CNTs is negligibly
small.

The paper is organized as follows: Section II gives an
overview of the interaction potential, Sec. III details the MM
scheme and the coupling method, Sec. IV presents the nu-
merical results for the fracture strength of CNTs, and conclu-
sions are given in Sec. V.

II. INTERACTION POTENTIAL

Empirical potentials are generally used in MM and MD
simulations to describe the interatomic interactions and have
been incorporated into continuum constitutive laws through
the Cauchy-Born rule. For nearly all empirical potentials,
adjustable parameters are fitted based on various equilibrium

or near-equilibrium structures and configurations. Their ap-
plication to tensile failure of defected CNTs, in which large
distortions of chemical bonds occur, should thus be treated
with caution. Belytschkoet al.23 adopted a modified Morse
potential with an angle-bending term to simulate the fracture
of CNTs with SW defects. The simplicity of this potential
reduces the computational effort, but it is not able to accu-
rately represent many-body interactions. A widely used
bond-order potential for hydrocarbon systems is the Tersoff-
Brenner form,45–47 which has recently been revised with an
extended database.12 The revised second-generation Tersoff-
Brenner potentialsTB-G2d takes the form

E = o
i
o
j.i

fcsrdfVRsr ijd − bijsr dVAsr ijdg, s1d

wherer ij is the distance between atomsi and j , VR andVA

are the pairwise repulsive and attractive interactions, respec-
tively, bij is a bond-order function that has a complicated
dependence on the bond angles and bond lengths involving
atomsi and j , and fcsrd is a cutoff function which reduces to
zero interactions beyond 2.0 Å.

In some MM calculations using TB-G2, the predicted
fracture stresses22,24are several times larger than those of the
QM results. This is due to the functional form of the cutoff
function in the potential, which artificially raises the bond
force for distances between 1.7 Å and 2.0 Å.6,23,48To avoid
nonphysical failure mechanisms, we follow a recommenda-
tion of Shenderovaet al.48 and remove this cutoff function,
but include C-C interactions only for those atom pairs that
are less than 2.0 Å apart in the initial, undeformed
configurations.6,23,48 We denote this modified potential as
MTB-G2. With this modification, MTB-G2 is no longer ca-
pable of handling bond forming, but should give reasonable
results for the fracture of CNTs.

III. METHODOLOGY

In our numerical simulations, both MM and a coupled
MM/CM method are employed to study the fracture of
CNTs. The formulations and implementations of these two
methods are described below.

A. MM calculations

In the MM simulations, CNTs are uniaxially strained to
fracture. At a given strain, the configuration is optimized
using a conjugate-gradientsCGd method,49 which yields a
minimal potential energy configuration. The stress of the
tube is obtained using finite differencing via

s =
Esl + Dd − Esld

pDtD
, s2d

where Esld is the energy at lengthl, D is a finite stretch
increment,D is the diameter of the tube, andt=3.4 Å is a
nominal value for the thickness of CNTsstaken to be the
interlayer spacing in graphited.

For convenience, both periodic and prescribed-
displacement boundary conditions are considered in the MM
calculations. CNTs are stretched by increasing the periodic
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length in the axial directionswhen periodic boundary condi-
tions are imposedd or by moving planes of edge atoms in
opposite axial directionsswhen prescribed-displacement
boundary conditions are imposed for finite-size CNTsd. For
pristine finite-size tubes, the edges are terminated with hy-
drogen atoms. In order to avoid edge fracture, periodic
boundary conditions are applied in calculations of fracture of
zigzag and armchair CNTs. For chiral CNTs, prescribed-
displacement boundary conditions are imposed on hydrogen-
capped finite-size tubes. We found that the fracture stresses
of defected CNTs calculated with these two different bound-
ary conditions are indistinguishable provided that the CNTs
are sufficiently long. Therefore, in the following, boundary
conditions are not distinguished.

B. Coupling method

In the experiments of Yuet al.,1 the diameters of the outer
tubes range from 13 to 40 nm with an average of 25.4 nm.
Modeling the fracture of these CNTs using MM calculations
is computationally demanding. Here, the bridge-domain
method recently developed by Belytschko and Xiao,34 and
used for simulating the fracture of graphene sheets, is ex-
tended to the three-dimensional case and employed to simu-
late the fracture of large-diameter single-walled CNTs
sSWCNTsd and MWCNTs. This extension involves incorpo-
rating MTB-G2 into the continuum constitutive laws through
the exponential Cauchy-Born rule,27 as will be described
later. A significant feature of this method is that in the “hand-
shake” region the potential energy is a linear combination of
the continuum and atomistic energies. This ensures a smooth
bridging between continuum and atomistic deformation
fields. The total energy of the coupled system is written as a
weighted sum of the energies for the continuum and molecu-
lar regions, which allows minimizing the continuum and mo-
lecular configurations concurrently. This coupling scheme is
advantageous since the finite-element meshes need not be
graded down to the lattice spacing at the continuum-
molecular interface, as is normally required by other
methods.31,33,39

Figure 2 illustrates the domain decomposition for this
method. The entire computational domain is decomposed
into three regions: a molecular regionV0

M, local to the de-
fect; a continuum regionV0

C=V0
CLøV0

CR, where the lattice
undergoes homogeneous deformation; and the overlapping
region V0

O=V0
M ùV0

C, where the molecular and continuum
models overlap. The size of the molecular region should be
large enough so that the deformation in the region adjacent to

its boundary can be adequately represented by a continuum
description. In the present set of calculations, the molecular
region is at least 25 Å in length. In the following, we specify
the potential energies for each region, which leads to the
governing equations for the coupled system.

1. Energy formulations

The energy of the coupled system is expressed as the sum
of a covalent binding energy term and a nonbonded energy
term. While the short-ranged covalent binding energy is spa-
tially decoupled, the nonbonded energies arising from the
long-ranged intershell interactions are coupled between the
continuum and molecular regions. The formulations of these
energy functions are described below.

a. Covalent binding energy. The covalent binding energy
for the molecular region is a discrete sum of the interatomic
potential energy terms as shown in Eq.s1d, although the
potential is not purely of a pairwise form due to the multidi-
mensional character of the bond-order term. For the con-
tinuum region, the covalent binding energy is formulated
within the framework of finite crystal elasticity. Generally,
for space-filling crystalline materials, the standard Cauchy-
Born rule establishes a link between the atomistic and the
continuum descriptions, as

a = FA , s3d

where F is the deformation gradient, andA and a are the
lattice vectors in the undeformed and deformed configura-
tions, respectively. However, when mapping a single-atom-
thick crystalline film deforming in a three-dimensional
space, the standard Cauchy-Born rule breaks down due to the
fact that the lattice vectors in a curved surface are chords and
are not tangent to the surface, while the deformation gradient
F operates on vectors tangent to the surface. To overcome
this conceptual drawback, an exponential Cauchy-Born rule
was proposed,27 as

a = FXsAd, s4d

whereFX transforms the undeformed lattice vectors into a
deformed one. Through a local approximation of the expo-
nential map,27 the deformed lattice vectors and the angles
between two lattice vectors can be analytically represented in
terms of the continuum deformation measures of the surface.
Consider a representative unit cell of areaS0 containing two
inequivalent nuclei and three inequivalent bonds in the ref-
erence, undeformed configuration. The hyperelastic strain-
energy densityW can be formulated in terms of the MTB-G2
potential,

W= WfC,K ,hg =
1

S0
Ecell =

1

S0
o
i=1

3

fVRsaid

+ bsai,aj,ak,u j,ukdVAsaidg, s5d

whereC andK are the stretchsthe Green deformation ten-
sord and curvature tensors, respectively,ai, aj, andak are the
three inequivalent bonds,u j and uk are the angles between
these three bonds,Ecell is the strain energy of the unit cell,
andS0=s3Î3/2diAi2 is the area of the unit cell. Note that the

FIG. 2. sColor onlined An illustration of the domain decompo-
sition in the coupling methodsV0

C=V0
CLøV0

CR andV0
O=V0

CùV0
Md.
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hexagonal lattice is a Bravais multi-lattice, so an additional
kinematic variableh must be introduced to describe the rela-
tive shift between the two basic lattices.27–29This inner vari-
able is eliminated by minimizing the strain-energy density
function, giving rise to a stable local lattice arrangement
within the unit cell. After this inner relaxation, the strain-
energy density can be written as a function of onlyC andK :

Ŵ= WfC,K ,ĥfC,K gg. s6d

Thus, the covalent binding energy for the continuum region
that is subject to the deformation mapf that maps from
undeformed to deformed configurations is

Ecv
C =E

V0
C

ŴfĈ„fsXd…,K̂ „fsXd…gdV0X, s7d

whereX is a material point in the undeformed configuration.
b. Nonbonded energy. A Lennard-JonessLJd potential

with parameters suggested by Girifalcoet al.50 is used to
describe the intershell nonbonded interactions. The potential
takes the form

Vnbsrd =
e

r0
6F1

2
k6S r0

r
D12

− S r0

r
D6G , s8d

wherer is an interatomic distance,k=2.7 is a dimensionless
constant,r0=1.42 Å is the equilibrium bond length, ande
=15.2 eV Å6. A cutoff length of 6 Å for the LJ interaction is
chosen for all simulations.

Homogenization of the discrete nonbonded energy be-
tween two unit cells gives rise to the van der Waals energy
density

Vnb
C-Csrccd = S 2

S0
D2

Vnbsrccd, s9d

wherercc is the separation between two material points. Note
that the factor of two on the right-hand side of Eq.s9d comes
from the fact that each unit cell contains two nuclei. The
nonbonded energyEnb

C-C over the continuum region is

Enb
C-C =

1

2
E

V0
C
E

V0
C

Vnb
C−CfifsXd − fsYdigdV0YdV0X,

s10d

whereY is another material point in the continuum region.
The integration in Eq.s10d is evaluated in the entire con-
tinuum domainV0

C. Thus, in addition to the intershell non-
bonded interactions, the intrashell nonbonded interactions
are automatically included; however, in this work, the in-
trashell nonbonded interactions are neglected.

Similarly, the nonbonded energy density between a con-
tinuum point and an atom is obtained by homogenization of
the nonbonded energy between an atom and a unit cell, as

Vnb
C-Asrmcd =

2

S0
Vnbsrmcd, s11d

wherermc is the distance between the material point and the
atom. The nonbonded energy between a set of atoms inV0

M

and the continuum region is

Enb
C-A = o

iPV0
M
E

V0
C

Vnb
C-AfifsXd − xi

migdV0X, s12d

wherexi
m is the position of atomi in the deformed configu-

ration.

2. Governing equations for the coupled system

The coupled problem is formulated by constructing the
total potential energy. To avoid double counting the potential
energy for the overlapping domain, the total energy of the
coupled system,Etot, is written as a weighted summation of
the potentials of the three regions

Etotff,wg = Ecv + Enb, s13d

wherew=hxi
mj,

Ecv = o
iPV0

M
FbMS1

2
sX i

m + X j
mdDo

j.i

VijG
+E

V0
C

bCsXdŴfĈ„fsXd…,K̂ „fsXd…gdV0X s14d

and

Enb = o
iPV0

M
o

jPV0
M,j.i

bMsX i
mdbMsX j

mdVnb
M-Msixi

m − x j
mid

+
1

2
E

V0
C
E

V0
C

bCsXdbCsYdVnb
C-CfifsXd

− fsYdigdV0YdV0X + o
iPV0

M
E

V0
C

bMsX i
mdbCsXd

3 Vnb
C-AfifsXd − xi

migdV0X, s15d

whereX i
m is the position of atomi in the undeformed con-

figuration, andEcv and Enb are the covalent binding energy
and the nonbonded energy, respectively. The weight func-
tions take the forms

bCsXd = 1 −bMsXd = 51 : X P V0
C \ V0

O,

a : X P V0
O,

0 : X P V0
M \ V0

O,

s16d

where the symbol “\” denotes the set-minus operation, and
the parametera varies linearly from 0 to 1 across the over-
lapping region, as seen in Fig. 3. The formulation in Eq.s15d

FIG. 3. The weight functionsbM andbC in the three regions of
the computational domain.
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ensures that the system energy is reproduced from the corre-
sponding atomistic model as long as the compatibility con-
dition in the overlapping region is satisfied:

fsX i
md = xi

m, for all i P V0
O, s17d

where fsX i
md can be regarded as the interpolation of the

continuum deformation field at the atomic positionX i
m. The

constraints are realized by an augmented Lagrange multiplier
method:

Gff,w,lg = Etotff,wg + lT ·g +
1

2
pgT ·g, s18d

wherel is a vector of Lagrangian multipliers,g is a vector
whose component isgi =ifsX i

md−xi
mi2 for all atomsi PV0

O,
and p=0.12 eV Å−3 is the penalty. Minimization of the
functionalG with respect tof andw gives rise to the equi-
librium configurations for the continuum and atomistic re-
gions,F andC, respectively.

The finite-element approximation ofF was described
elsewhere.51 In simulating CNT fracture using the coupling
method, the CNT is initially relaxed to the minimal-energy
configuration that corresponds to its zero-strain state.
Stretching or twisting is realized by displacing the finite-
element nodes at the tube edges. At each prescribed displace-
ment, the potential energy of the tubes is minimized, again
by the CG method. The stress is computed by summing the
forces over the nodes with the prescribed displacement. As
will be shown later, this coupling method can reproduce the
corresponding atomistic models reasonably well, but greatly
reduces the number of unknowns in the nonlinear system of
equations.

IV. RESULTS AND DISCUSSION

In the experiments of Yuet al.,1 arc-grown MWCNTs
were used for the fracture tests. The MWCNTs were attached
to two cantilevered atomic force microscopysAFMd tips us-
ing carbonaceous material. It was experimentally observed
that only the outermost shell was attached to the AFM tips,
and only the outermost shell failed upon loading. Hence, we
begin our numerical studies with the fracture of SWCNTs
that represent the outer shells, followed by an assessment of
the effect of the presence of inner shells in MWCNTs. Im-
portant aspects to be investigated include the energetics of
defects, the dependence of fracture strength on defect size
and configuration, on twisting of the tubes prior to uniaxial
loading, and the effects of intershell mechanical coupling.

In our numerical examples, small-diameter SWCNTs are
simulated by MM schemes, while MWCNTs and large-
diameter SWCNTs are simulated using the coupling method.
In stretching CNTs to fracture, the step size of the applied
strain is 0.001 for both the MM and the coupled calculations.
When the applied strain approaches the fracture strain, the
step size is reduced to 0.00025. With this treatment, the cal-
culated fracture strength is estimated to be accurate to within
±0.3 GPa.

A. Pristine CNTs

A pristine CNT does not present any preferred location for
fracture nucleation. As a result, in a calculation, fracture of-
ten initiates simultaneously at several locations along the
tube. Upon further stretching, the tube is segmented into sev-
eral pieces, and the tube length chosen for the simulation
appears to affect the number of segments. In the fracture
process, the elastic strain energy is released, part of which
becomes the surface energysthe energy associated with the
newly created surfaces due to fractured. In practice, fracture
occurs at only one place since the ideal symmetry of the
numerical model does not occur at nonzero temperatures. To
break the symmetry in the numerical model, one bond is
slightly weakened. Specifically, the interaction force of this
particular bond is taken to be 99.9% of the actual value cal-
culated by MTB-G2. After introducing the weak bond, frac-
ture initiates from that bond exclusively. This artifice, how-
ever, negligibly affects the fracture strength. Figure 4ssolid
lined shows the energetics of af10, 0g pristine tube under
uniaxial stretching. The potential energy is a smooth pa-
rabola in the vicinity of the state of vanishing strain. At large
strains, the potential energy curve deviates from parabolic,
but remains smooth and indicates a nonlinear elastic stress-
strain relationship since the curve is completely reversible
without hysteresis. At a certain applied strain, the potential
energy drops abruptly, corresponding to the occurrence of
brittle fracture.

It is well known that graphene is isotropic in the regime
of infinitesimal deformation, but anisotropic in finite defor-
mations. CNTs, which are finitely deformed graphene sheets,
should exhibit similar anisotropy. The elastic constants of
CNTs show systematic variations with respect to tube chiral-
ity and diameter. Similarly, one expects anisotropy for the
strength of CNTs. To confirm this strength anisotropy, a se-
ries of CNTs whose chiral anglessud are approximately
equally spaced between 0°szigzagd and 30° sarmchaird,
while having approximately the same diameter, are consid-
ered. Table I lists the CNTs, their diameters, and their chiral
angles. Our simulations show a clear dependence of fracture

FIG. 4. sColor onlined Stretching energy of af10, 0g tube.
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strength on the chirality. The fracture strength monotonically
increases with increasingu, with armchair tubes being
,19% stronger than zigzag tubes. This is substantially larger
than what was noted7 in our prior DFT s,5%d and PM3s
,9%d calculations, and even exceeds the factor of 15.5%
that one would predict based on the higher density of axial
bonds in armchair tubes as compared to zigzag tubes. The
estimatescrsud=scrsu=0d /cosu gives a good fit for small to
intermediate values ofu, but is too low by as much as,3%
for largeu.

B. Small vacancy defects

The removal of carbon atoms from the hexagonal network
of the CNT creates a number of carbon atoms with unsatur-
ated valence orbitals. The excess energy arising from the
unsaturated valence orbitals promotes reconstructions local
to the vacancy, forming energetically more stable configura-
tions. We found that for the one- and two-atom vacancies,
each has two possible reconstructed configurations, symmet-
ric or asymmetric with respect to the axial direction of the
CNT, as shown in Fig. 5. These reconstructions lead to di-
mensional changes local to the defects. Figure 6 shows the
equilibrium configurations for two defective CNTs. For a
two-atom vacancyssymmetricd in a f10, 0g tube, a dent ap-
pears near the defect. This defect affects the dimensions of
the CNT only locally. For a two-atom vacancyssymmetricd
in a f5, 5g tube, in addition to a local radius reduction, the
tube is bent globally. These changes vanish upon stretching,
so they have negligible effects on the fracture strength.

To understand the relative stability of these vacancy de-
fects, the formation energies of the defects are calculated and
listed in Table II. For a nanotube consisting ofn carbon
atoms, the formation of vacancy defects involves taking car-
bon atoms out from the hexagonal lattice and possibly satu-
rating dangling bonds with hydrogens, which can be ex-
pressed by

m

2
H2 + Cn = Cn−kHm + kCss,graphited. s19d

where the last term indicates that the removed carbon atoms
are in their standard state, i.e., solid graphite. For the
MTB-G2 potential, the covalent binding energy per atom of
a graphene sheet and solid graphite is identical. Our

MTB-G2 calculations show that the formation energies for
single and double vacancies in a graphene sheet are 7.14 eV
and 8.18 eV, respectively, which are fairly close to DFT
results52 s7.4 eV and 8.7 eV for single and double vacancies,
respectivelyd. For thef10, 0g tube, the symmetric defect con-
figuration is energetically more favorable than the asymmet-
ric configuration, in contrast with the results for thef5, 5g
tube. This indicates that vacancy reconstruction favors bond
formation that is nearly transverse to the axial direction.

Figure 7 shows a set of stress-strain curves forf5, 5g
CNTs under uniaxial tension obtained by MM and QM cal-
culations; results are displayed for pristine tubes as well as
for tubes containing a single vacancy defect. The semiempir-
ical QM calculations using the PM3 method53 are described
elsewhere7 and generally have higher accuracy than the MM

TABLE I. Chirality effects on the strength of CNTssthe defected CNTs contain a hole formed by
removing a hexagonal unit and saturating dangling bonds with hydrogensd as predicted by MTB-G2.

CNT DiametersÅd Chirality su°d scr spristine, GPad scr sdefective, GPad

f50, 0g 39.16 0.0 88.3 57.2

f47, 5g 38.90 5.0 88.7 57.5

f44, 10g 38.96 10.0 89.4 57.6

f40, 16g 39.12 16.1 92.1 59.3

f36, 21g 39.10 21.4 95.7 62.6

f33, 24g 38.82 24.3 98.8 66.6

f29, 29g 39.32 30.0 105.3 77.5

FIG. 5. sColor onlined One- and two-atom vacancy defectsscar-
bon large red dot; hydrogen, small green dotd. sad One-atom va-
cancy, symmetricfthe axial directions for armchair and zigzag tubes
are indicated, and are the same forsbd, scd, andsddg. sbd One-atom
vacancy, asymmetric.scd Two-atom vacancy, symmetric.sdd Two-
atom vacancy, asymmetric. The single vacancy cases include a hy-
drogen to saturate the system.
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calculations. For comparison, the experimental data mea-
sured by Yuet al.1 are also plotted. For pristine tubes the QM
results are complicated by the existence of multiple fracture
pathways; this is discussed in further detail in Ref. 7.
MTB-G2 is observed to systematically underestimate both
the Young’s moduli and the fracture stresses. The discrepan-
cies between the QM and MM calculations are even larger
for the vacancy-defected CNTs than those for the pristine
CNTs.

The fracture stresses and strains of af5, 5g and af10, 0g
nanotube with one- and two-vacancy defects are summarized
in Table II. The fracture stresses obtained by PM3 calcula-
tions are also included. For pristine tubes, the fracture
stresses predicted by the MM calculations with the MTB-G2
potential are about 22% and 29% lower than those predicted
by the QM calculations for the armchair and zigzag tubes,
respectively. For the defected tubes, the difference in the
fracture stresses predicted by these two calculations is up to
,40%. Fortunately, the agreement between the two methods
is better for the fractional stress reductionssi.e., 1
−sdefected/spristined, with MTB-G2 predicting weakening of
between 20% and 33%sdepending on the tube and defect
typed, whereas PM3 predicts weakening between 14% and
27%. Thus, although MTB-G2 greatly underestimates the ab-
solute failure stresses, it only moderately overestimates the

fractional stress reductions. The PM3 calculations predict
that the fracture strength has a strong dependence on the
defect orientation, with defects that reconstruct to form ad-
ditional bonds that are more nearly axially aligned yielding
stronger tubes. The MTB-G2 results do not accurately pre-
dict such variations.

The initial slopessthe Young’s modulid of the experimen-
tal stress-strain curves in Fig. 7 are only about 1/3 of the
MM and QM results. As previously discussed,23 these ex-
tremely low Young’s moduli are likely due to slippage at the

FIG. 6. sColor onlined Equilibrium configurations of defective
CNTs. sad Two-atom vacancyssymmetricd in a f10, 0g CNT. sbd
Two-atom vacancyssymmetricd in a f5, 5g CNT.

TABLE II. Properties of vacancy defects, whereEf represents defect formation energy,scr is the fracture
stress, and«cr is the fracture strain. The fracture stresses obtained by the PM3 method are listed in the last
column, while numbers listed in the other columns are obtained using the MTB-G2 potential.

Defect EfseVd scr sMM,GPad «cr s%d scr sPM3,GPada

f10, 0g pristine - 87.9 18.1 124

f10, 0g sym., one-atom vac. +H 2.7 64.7 8.6 -

f10, 0g asym., one-atom vac. +H 3.2 68.2 9.5 -

f10, 0g sym., one-atom vac. 5.2 64.8 8.6 101

f10, 0g sym., two-atom vac. 5.5 64.4 9.6 107

f10, 0g asym., two-atom vac. 5.9 64.8 10.9 92

f5, 5g pristine - 105.5 29.7 135

f5, 5g sym., one-atom vac. +H 3.2 84.7 15.2 106

f5, 5g asym., one-atom vac. +H 2.7 70.9 11.5 99

f5, 5g asym., one-atom vac. 4.5 70.4 11.4 100

f5, 5g sym., two-atom vac. 5.5 71.3 11.7 105

f5, 5g asym., two-atom vac. 4.5 73.2 11.9 111

aReference 7.

FIG. 7. Comparison of stress-strain curves of pristine and single
vacancy defectedf5, 5g CNTs obtained from QM and MM calcula-
tions. QM results for pristine tubes are indicated by solid lines.
Circles indicate QM results for vacancy defected tubes. The long-
dashed and dotted lines denote MM results for pristine and defected
CNTs, respectively. The experimental results are indicated by dia-
monds connected by dashed lines. It should be noted that the ex-
perimentally measured strains are not reliable due to possible slip-
page at the cantilever-CNT attachments; however, this should not
affect the measurements of the forces so the experimental failure
stresses are still valid.
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cantilever-CNT attachments in the experiments and are thus
probably unreliable. However, slippage would not affect the
measurement of the fracture strength in the experiments, so
these should still be valid.

The stretching energetics of af10, 0g tube with a two-
atom vacancyssymmetricd is plotted in Fig. 4sdashed lined.
Similar trends as are seen for pristine tubes are observed
prior to fracture. For defected tubes, fracture initiates from
the defects at a certain tensile strain. The axially-aligned C
-C bonds in the ring of the tube that contains the defect then
break simultaneously, creating a clean fracture surface.

C. Large defects

The fracture strengths of CNTs with one- and two-atom
vacancy defects obtained by the calculations reported in the
preceding section are still much higher than the experimental
failure stresses. One explanation7 is that significantly larger
defects may have been introduced in the CNTs used in the
experiments. The MWCNTs used in the experiments of Yuet
al.1 were synthesized with a carbon arc apparatus.19 The high
temperatures involved leads to sintering of adjacent
tubes19,54,55; thus, most of the tubes are highly defective.
Oxidative etching using a stream of air at 650 °C for 30 min
was used to burn away the vast majority of the product and a
few seemingly well-formed tubes were then harvested. Oxi-
dation of the soot and highly defected structures is very
rapid, but even well-formed tubes might be expected to have
an occasional vacancy defect, and these sites are also suscep-
tible to damage. High-temperature oxidation of the basal
plane of graphite by O2 has been the subject of several
studies,54,56–60 and roughly circular pits in the surface
graphene sheet are observed to rapidly form at the sites of
vacancy defects. Solution phase purification treatments20 in-
volving strongly oxidizing acid baths together with sonica-
tion have also been suspected of etching holes in CNTs.
Therefore, we explored the fracture of CNTs containing large
defects of various configurations to see whether or not we
obtain fracture stress values in the range found in the experi-
ments.

Two types of defects are considered—holes and slits. The
holes are intended to model the effects of oxidative pitting,
and the slits are included due to their resemblance to cracks
salthough such structures are less likely to be experimentally
significantd. The slits are produced by removing a series of
C-C atom pairs in the circumferential directionsbonded pairs
alternating with nonbonded pairsd. The hole defects, on the
other hand, are created by removing hexagonal units. For
example, the zero-level hole defect is created by removing an
entire hexagonal unit; the first-level hole is created by re-
moving another six hexagonal units centered around this
hexagon. In each case, the dangling bonds of the edge car-
bons are saturated with hydrogen atoms. The higher-level
holes are created by repeating this process. To make the re-
sults for the two defectssholes and slitsd comparable, the
length of the hole defect in the circumferential direction cor-
responds to the length of the slit defect at the same level.
Note that the zero-level hole defect coincides with the zero-
level slit defect. Figure 8 shows the hole and slit defects for

the first two levels.
Three CNTsf50, 0g, f100, 0g, andf29, 29g are considered.

Comparison of the first two CNTs allows for diameter-
dependence studies, while comparison between thef50, 0g
andf29, 29g CNTs enables chirality-dependence analysissthe
diameter of af29, 29g is very close to that of af50, 0g CNTd.
Figure 9 shows the variations of fracture stress with defect
size sradius for hole defects and half-length for slit defectsd.
As expected, the fracture stresses decrease monotonically
with increasing defect sizes. The results also depend on the

FIG. 8. sColor onlined Hole and slit defects in CNTsscarbon,
large red dot; hydrogen, small green dotd. sad The zero-level hole
defectsalso the zero-level slit defectd, 6 carbon atoms are missing,
dangling bonds are saturated by 6 hydrogen atoms.sbd The first-
level hole defect, 24 carbon atoms are missing, dangling bonds are
saturated by 12 hydrogen atoms.scd The first-level slit defect cre-
ated by removing the grey atoms insad and saturating dangling
bonds with hydrogens; 14 carbon atoms are missing, dangling
bonds are saturated by 10 hydrogens.
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defect size relative to the tube diameter—for the smaller de-
fect, the fracture stresses for thef50, 0g and f100, 0g tubes
exhibit negligible differences; but as the defect size in-
creases, these differences become progressively larger. This
trend can be understood in terms of curvature effects. When
the defect size is small relative to the diameter of the CNT,
the CNT can locally be regarded as a flat graphene sheet; as
the defect size increases and becomes comparable to the tube
diameter, the curvature effect is no longer negligible. These
trends are consistent with those observed in stress concentra-
tion factors for holes in thin-walled cylinders.61 Our calcula-
tions show that the fracture stress is insensitive to whether
the defect is a hole or a slit. For hole and slit defects of the
same size, the fracture stresses differ by only,1%.

The computed fracture strengths for CNTs with large de-
fects are in the range of the experimental observations.1 For
the largest defect simulated here, the calculated fracture
strengths are about 24 GPa, which is fairly close to the stress
value with the maximum occurrence in the experimental
data.1 It is interesting to note that the reductions in strength
obtained by the MM calculations agree reasonably well with
the results of a new analytic model.62

The effect of chirality on the strength of defective CNTs
was also studied. The zero-level hole defect was introduced
to a series of tubes having similar radius and varying chiral
angles. Curiously, as indicated in Table I, the presence of a
hole reduces the fracture strengths of the first seven tubes by
33% –36%, but only weakens the armchair tube by 26%.

D. Intershell mechanical coupling and twisting prior
to loading

The previous simulations are all based on SWCNTs and
thus neglect the effect of intershell van der Waals interac-
tions in MWCNTs. Furthermore, during the attachment to the
cantilevers, the CNTs may have been twisted or eccentrically
loaded. These factors are studied here, and their effects on
the fracture strength of CNTs are evaluated.

Under applied axial tension, nanotubes contract in the ra-
dial direction due to the Poisson effect. In a MWCNT, the
radial contraction reduces intershell spacing, leading to in-
creasing intershell interaction forces. MD calculations63 us-
ing one of the first-generation Brenner potentials47 reported
that the Poisson’s ratio of CNTs decreases monotonically
with the applied axial strain. However, as seen from our
calculations for a f10, 0g pristine CNT ssee Fig. 10d,
MTB-G2 sand the unmodified TB-G2 potentiald predicts that
the nanotube radius expands when the applied axial strain is
beyond 7.6%. This implies a negative tangential Poisson’s
ratio, which disagrees with the PM3 resultsssee Fig. 10d and
the work63 with earlier bond-order potentials.47 The radial
contraction of thef10, 0g tube just prior to fracture is
0.0088 Å, corresponding to a secant Poisson’s ratio of 0.012.
Thus, the intershell interaction forces are probably underes-
timated by MTB-G2. As a result, the effect of inner shells in
a MWCNT, as will be presented below, may also be under-
estimated.

We first considered af50, 0g SWCNT, af50, 0g/f24, 24g
double-walled CNTsDWCNTd, and af50, 0g/f24, 24g/f19,
19g triple-walled CNT sTWCNTd. The SWCNT and the
outer shells of the MWCNTs contain a two-atom vacancy
ssymmetricd fsee Fig. 5scdg, while all the inner shells are
defect free. The coupling method described earlier is em-
ployed to simulate the deformation of the CNTs. The
SWCNT and the outer shells of the MWCNTs are repre-
sented by a MM/CM coupled model, while all the inner
shells in the MWCNTs are treated by finite elements. In the
simulation, only the outer shell is loaded, as the experiments
clearly indicate that the outer shell is the only load-bearing
one. The inner tubes evolve as determined by the intershell
van der Waals interactions and are otherwise free of any
constraints. Two loading conditions are considered. One is
purely uniaxial tension. For the other, the tube is twisted to a
certain angle, and then uniaxially stretched to fracture.

Figure 11 shows the stress-strain curves of the SWCNT
and the DWCNTs subjected to uniaxial tension. For compari-
son, the stress-strain curve for the SWCNT computed by the

FIG. 9. sColor onlined Dependence of fracture strength on defect
size.

FIG. 10. sColor onlined Variations of the radius of af10, 0g
pristine tube with the applied axial strain.
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corresponding atomistic model is also included. It is shown
that these curves are almost indistinguishable up to a large
strain. The fracture strength obtained by the coupling method
for the SWCNT is less than 2% larger than that from the
atomistic model. This is likely due to the fact that the com-
patibility condition imposed in the overlapping region is not
exactly satisfied in the coupling method. Compared with the
fracture strength of the defected SWCNT, the fracture
strengths of the DWCNT and TWCNT increase by around
1.3% and 1.5%, respectively. The fracture strengths of these
CNTs are listed in Table III.

In evaluating the effects of twisting prior to tensile load-
ing, the SWCNT and the MWCNTs are twisted by 5° and
15°, followed by uniaxial stretching to fracture. Figure 12
shows the configurations of the initially deformed tubes and
those just prior to fracture. Upon twisting, the tubes are se-
verely buckled, as shown in Figs. 12sad and 12scd. For the
DWCNT and TWCNT, the buckling is almost completely
removed at strains just prior to fracture. In contrast, the
SWNCT remains significantly distorted at all strains. Ac-
cordingly, the fracture strength of the SWCNT drops notice-
ably, while the fracture strengths of the DWCNT and
TWCNT are only slightly reduced due to twisting, as shown

in Table III. The 15° twist results in a smaller fracture
strength than the 5° twist. We also considered situations
where the top and bottom of the nanotubes were not per-
fectly aligned,—i.e., an eccentricity in the load. The effect on
the fracture strength was again negligible.

The MWCNTs considered so far are significantly smaller
than those in the experiments. Due to the Poisson effect, the
absolute radial contraction upon stretching increases with in-
creasing tube diameter. For instance, for af50, 0g SWCNT at
its fracture strain, its radial contraction is,0.12 Å, while for
a f338, 0g SWCNT at its fracture strains9.6%d, its radial
contraction is,0.78 Å. Note that the relationship between
the radial contraction and tube diameter is nonlinear. For
sufficiently large-diameter tubes, the radial contraction can
be comparable to the intershell spacings3.4 Åd. As a result,
for MWCNTs, the inner tube exerts a large hydrostatic pres-
sure on the outer tube, which may affect the fracture
strength. To study this effect, we considered five DWCNTs
with increasing diameters. Table IV shows these fracture
strengths of the DWCNTs. To illustrate the intershell me-
chanical coupling, the radial contractions of the inner and
outer shells are listed, which are from the radius difference
of the shells at the zero-strain state and the state just prior to
fracture. It is shown that the radial contraction of outer tubes
monotonically increases with increasing tube diameter, but
not as much as that when the inner tubes are absent. The
radial contraction of the inner tubes also monotonically in-
creases and is only slightly smaller than the contraction of
the outer shells. Overall, the fracture strength shows only a
very small size effect, and the change of the magnitude is
less than 1.5 GPa. Note, however, that the MTB-G2 potential
underestimates the Poisson effect, and thus the effect of the
presence of inner shells is also underestimated.

FIG. 11. sColor onlined The stress-strain curves of af50, 0g
SWCNT and af50, 0g/f24, 24g DWCNT subjected to uniaxial
stretch. The outer shell contains a two-atom vacancyssymmetricd,
while the inner shell is defect free.

TABLE III. Effects on the fracture strength due to the presence
of inner shells and twisting. Fracture of a SWCNTsf50, 0gd and
MWCNTs sf50, 0g/f24, 24g andf50, 0g/f24, 24g/f19, 19gd are simu-
lated. The outer shells of the MWCNT and the SWCNT contain a
two-atom vacancyssymmetricd while all the inner shells are defect
free.

CNTs scr sGPa,uniaxiald scr sGPa,5°twistd scr sGPa,15°twistd

SWCNT 67.8 67.1 64.8

DWCNT 68.7 68.6 68.1

TWCNT 68.8 68.7 68.2

FIG. 12. sColor onlined Effect of twistings15°d on the configu-
rations for af50, 0g SWCNT and af50, 0g/f24, 24g DWCNT. For
the DWCNT, only the outer shell is shown here.sad SWCNT, un-
stretched.sbd SWCNT just prior to fracture.scd Outer shell of the
DWCNT, unstretched.sdd Outer shell of the DWCNT just prior to
fracture.
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V. CONCLUDING REMARKS

Motivated by discrepancies between theoretical and ex-
perimental fracture strengths of CNTs, we studied the effects
of vacancy defects, holes, and slits on fracture strength using
MM and coupled MM/CM techniques. Where possible, these
results are compared to available quantum mechanical calcu-
lations and fair agreement is observed. The MM calculations
show that one- and two-atom vacancy defects weaken CNTs
by 20% –33%, whereas QM calculations have shown
14% –27% reductions in strengths of these defects. The
computed fracture strengths are slightly greater than the
highest experimental values of Yuet al. and substantially
greater than the average measured fracture strength. Holes
swhich may readily be introduced by oxidative purification
processesd and slitsswhich are less likely to be experimen-
tally relevant, but which have formal interest due to their

resemblance to cracksd lower the fracture strength more sig-
nificantly, falling in the upper range of the experimental ob-
servations. Slits and holes with a comparable cross section
were observed to weaken tubes to a similar degree. The ef-
fect of tube chirality on fracture was explored; fracture
strength increased monotonically with increasing chiral
angle and armchair tubes were most resistant to the weaken-
ing effects of holes.

In addition to the MM calculations, calculations using a
coupling method that bridges MM and finite crystal elasticity
were presented. This coupling method enables the study of
large-diameter SWCNTs and MWCNTs. Our simulations
show that the presence of inner tubes only slightly increases
the fracture strength of the CNTs considered, indicating
small intershell mechanical coupling. Simulations of
DWCNTs with two-atom vacancy defects in the outer shell
show that the fracture strength is size dependent, but the
variation is only a few GPa for the range of tube diameters
considered. Twisting the tube prior to loading and other load
imperfections were observed to negligibly affect the fracture
strength of MWCNTs, but reduced the fracture strength of
SWCNTs by as much as,4% at a twisting angle of 15°.
Therefore, imperfections in the loading are not a likely
source of the low experimental fracture strengths.
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