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Carbon nanotubes �CNTs� can undergo collapse from their customary cylindrical configurations to ribbons.
The energy minima corresponding to these two states are identified using either atomistic molecular mechanics
or the theory of finite crystal elasticity with reduced dimensionality. The minimum energy path between these
two minima is found using the nudged elastic band reaction-pathway sampling scheme. The energetics of CNT
collapse is explored for both single- and multi-walled CNTs as well as small bundles. The process has a strong
diameter dependence, with collapse being more favorable for the larger diameter tubes, but is nearly indepen-
dent of chirality. The saddle point always lies close to the collapsed state, and the absolute barrier energies—
even for fairly short tube lengths—are sufficiently high, even when the reaction is highly exothermic, that
thermal activation cannot initiate collapse via this pathway. The hydrostatic pressure required to buckle and
collapse CNTs of various diameters is discussed.
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I. INTRODUCTION

Both single-walled �SW� and multi-walled �MW� carbon
nanotubes �CNTs� may undergo collapse to ribbon structures
due to a variety of circumstances including the presence of
impurities in the synthesis,1 electron bombardment,2,3

compression,4 crushing in diamond anvils,5 mechanical
strain,6 and hydrostatic pressure.7–15 Collapsed MWCNTs
have been observed by transmission electron micro-
scopy6,16–19 and by atomic force microscopy.20–22 Conversion
to ribbons significantly alters the mechanical, thermal, and
electronic properties of CNTs and can thus affect their use-
fulness for applications. The collapse of CNTs has been ex-
tensively studied by continuum mechanics based methods
and atomistic simulations.11,17,20,23–34 In particular, Goddard
and co-workers24,25 considered the relative energetics of the
cylindrical and collapsed structures of SWCNTs and outlined
three stability regimes characterized by two threshold values
of the tube diameter, d1 and d2. For SWCNTs with diameter
d�d1, only the cylindrical configuration is stable; for
d1�d�d2, the cylindrical configuration is energetically fa-
vorable, while the collapsed configuration is metastable; for
d�d2, the collapsed configuration is energetically favorable,
while the cylindrical configuration is only mestastable. In the
work presented here we extend such analyses to MWCNTs
and bundles. We also determine the saddle points and mini-
mum energy paths connecting the cylindrical and collapsed
configurations. This information is used to estimate the mag-
nitude of the hydrostatic pressure that is sufficient to initiate
buckling and collapse.

II. METHODOLOGY

For the present set of calculations, we adopt the second-
generation Tersoff-Brenner potential35 and a Lennard-Jones

�LJ� potential with the parameters of Girifalco et al.36 to
describe the short-ranged covalent interactions and the long-
ranged nonbonded interactions in CNTs, respectively. Regis-
try effects17,37,38 are not well modeled by such simple inter-
action potentials. It has been suggested that such effects can
stabilize locally twisted free-standing MWCNT ribbons;17,38

to accurately incorporate registry effects, a simulation model
that utilizes a registry-dependent potential37 may be required.
In calculating the nonbonded interaction energy, interatomic
distances below a radius of 3.0 Å are excluded so that the
accuracy of the covalent interactions is not affected. We also
neglect nonbonded interactions for interatomic distances
greater than 9.6275 Å and shift the LJ potential upward by a
linear function determined by the requirement that the energy
and force vanish at the cutoff distance. All calculations em-
ployed periodic boundary conditions in the axial direction.

Most of the results were obtained via direct atomistic mo-
lecular mechanics calculations. For a few of the largest cal-
culations, in order to reduce the number of degrees of free-
dom, the atomistic models were coarse-grained by finite
elements based on a theory of finite elasticity for crystalline
monolayers.39 This theory overcomes the drawbacks of the
standard Cauchy-Born rule in treating atomic monolayers,
and establishes the strain energy density function for
graphene structures using exponential maps. This method
significantly reduces computational cost, while remaining
faithful to the corresponding atomistic model for defect-free,
homogeneously deformed CNTs.40 For the present study we
also assume uniform deformation along the tube axis �i.e., a
plane-strain condition�; this assumption further reduces the
number of degrees of freedom of the system. Following the
exponential Cauchy-Born rule, the strain-energy density
function W can be cast in terms of the interaction
potentials.39,40 Given a deformation map � the total energy
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in the system is then the sum of the elastic strain energy �cv
and the nonbonded potential �nb

���� = �cv + �nb = �
�0

W�C���;k����d�0

+
2

S0
2�

�0

�
�0

Vnb����X� − ��Y���d�0Yd�0X,

�1�

where � is the deformation map, S0 is the area of the unit
cell, W is the strain energy density, which is a function of the
Cauchy-Green deformation tensor C and the normal curva-
ture in the circumferential direction k, and X and Y are
material coordinates in the initial configurations.

We first obtain the cylindrical minimum configuration by
using a limited memory BFGS geometry optimization
algorithm.41 To determine the collapsed configuration, the
cylindrical configuration is deformed by prescribing dis-
placements to selected nodes. At each step, the configuration
of the tube is optimized for the given displacement con-
straints. As the interwall distance reaches �3.4 Å �the inter-
layer separation distance in graphite�, all the nodes are re-
leased, followed by a full relaxation. This procedure is also
effective in finding the collapsed configurations for
MWCNTs and CNT bundles. For SWCNTs, a good initial
guess for the collapsed configuration is obtained by mapping
the cylindrical configuration to a deformed configuration by

x = X�1 + ��cos 	��; y = Y�1 − ��sin 	�� , �2�

where the wall separation depends on the parameter � ,X and
Y are the Cartesian coordinates orthogonal to the tube axis in
the cylindrical configuration, x and y are the Cartesian coor-
dinates orthogonal to the tube axis in the collapsed configu-
ration, and 	 is the polar angle of the point �X ,Y�. This
deformation map transforms the cylindrical configuration to
a dumbell-shaped configuration that is then fully relaxed,
leading to the optimized collapsed configuration. The final
collapsed configuration is independent of the deformation
path from the cylindrical configuration. For small-diameter
tubes, this deformed configuration bounces back to the origi-
nal cylindrical configuration, indicating that a second local
energy minimum, which corresponds to a collapsed configu-
ration, does not exist.

After identifying the cylindrical and collapsed configura-
tions, the nudged elastic band �NEB� algorithm42 is em-
ployed to determine the MEP between these two local energy
minima. The elastic band is discretized with 20 replicas that
connect the two end states and the spring constants at each
replica are carefully chosen to eliminate the sliding-down
problem. We thus obtain the activation energy as well as a
detailed view of the collapse process.

III. RESULTS AND DISCUSSION

Figures 1�a� and 1�b� show the cylindrical and collapsed
configurations of a �40,0� nanotube. Figure 2�a� shows the
relative energy difference Ecylindrical−Ecollapsed per unit area,
between the cylindrical and collapsed configurations for a

series of zigzag, �n ,0�, SWCNTs where n ranges from 10 to
200, and a series of armchair �m ,m� SWCNTs where m
ranges from 5 to 120. It is useful to remember that the diam-
eter of an �n ,m� SWCNT is given approximately by

d 	 0.783
n2 + nm + m2 Å. �3�

For SWCNTs with small diameters, the collapsed configura-
tion is not stable, so 
E is not defined. Three stability re-
gimes can be identified in terms of the tube diameter d. In
region I �d�d1	24.2 Å�, only the cylindrical configuration
is stable; in region II �d1�d�d2	62.4 Å� where 
E�0,
the cylindrical configuration is energetically more stable, and
the collapsed configuration is metastable; in region III �d
�d2� where 
E�0, the collapsed configuration is energeti-
cally more stable, while the cylindrical configuration is at
most metastable. �Note that the quoted d1 and d2 values refer
to the diameters of the largest and smallest CNTs, respec-
tively, that are not included in region II, from among the
chiralities studied.� The second region contains zigzag tubes
in the range n=32 to 79, and armchair tubes in the range
m=18 to 45. We note that these d1 and d2 values are in
reasonable agreement with the values �d1	22 Å and d2
	60 Å� obtained by the atomistic study of Gao et al.24

whereas the values �d1=13.98 Å and d2=19.52 Å� of Tang et
al.,32 obtained using an analytical continuum analysis, are
significantly lower. The energy difference between the cylin-
drical and collapsed configurations for zigzag tubes is almost
identical to that of armchair tubes of similar diameter, indi-
cating that the relative energetics are nearly independent of
tube chirality. Figure 2�b� shows the relative energy differ-
ence Ecylindrical−Ecollapsed per unit area as a function of the
inner tube diameter for a series of double walled CNTs,
where the tubes are of the form �n ,n� / �n+5,n+5� and start
with n=20. For these double-walled CNTs the threshold tube
diameter values d1 and d2 are larger than those for SWCNTs
with d1	27.1 Å and d2	80.0 Å. Figure 1�c� and 1�d� show
the cylindrical and collapsed configurations of a
�30,30� / �35,35� double-walled CNT, respectively.

The strain energy increases with the number of shells for
MWCNTs undergoing collapse since all of the walls deform;
however, the change in surface energy during collapse re-
mains relatively constant with increasing number of walls
since the wall spacing changes significantly only for the
inner-most shell. In Fig. 3, we examine the energy difference
between the cylindrical and the collapsed configurations for
a series of MWCNTs, with the number of walls ranging from
1 to 9. The indices of the shells are �40+5n ,40+5n��n
=0,1 ,2 ,¼ ,8�, which ensures that the intershell spacing is
roughly 3.4 Å. For all of these tubes, the collapsed configu-
rations are metastable. As expected, 
E monotonically de-
creases with increasing number of shells.

A CNT can be considered to result from the rolling of a
graphene sheet with a particular rolling direction and circum-
ference. Some strain energy is stored in CNTs due to the
curvature introduced by this rolling; this energy is inversely
proportional to the tube radius. During the transition from
the cylindrical to the collapsed configuration, parts of the
tube walls are flattened, which reduces the strain energy in
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these regions, and two semicircular edges, which have an
almost constant radius �around 11 Å� independent of the ini-
tial radius of the tube, develop. The strain energy increase
due to the formation of the ribbon edges is roughly indepen-
dent of the tube diameter and exceeds the strain energy re-
leased by the flattening sections; thus, the total energy rises
at the start of collapse. The attractive nonbonded interactions
increase in magnitude as the walls of a CNT are brought
closer together, and reach a maximum magnitude when the
interwall spacing approaches �3.4 Å. The optimal change in
the nonbonded interactions increases approximately linearly
with the tube radius, and thus for large tubes this term easily

exceeds the strain energy. However, the CNT must be con-
siderably distorted from the cylindrical configuration before
the interwall spacing drops enough for a significant increase
in the van der Waals interactions, so even for large tubes a
substantial barrier can be expected.

For CNT bundles, the intertube van der Waals forces re-
sult in a flattening of the regions where the tubes are in
contact. As a result, the initial relaxed configuration is not of
cylindrical shape, as shown in Fig. 1�e� for a two �20,20�
nanotube bundle and in Fig. 1�g� for a two �30,30� tube
bundle. The intertube adhesion in bundles makes collapsed
configurations substantially more stable than for the corre-

FIG. 1. �Color online� Fully relaxed cylindrical and collapsed configurations of CNTs. �a� �40,0� SWCNT, cylindrical configuration. �b�
�40,0� SWCNT, collapsed configuration. �c� �30,30� / �35,35� double-walled CNT, cylindrical configuration. �d� �30,30� / �35,35� double-
walled CNT, collapsed configuration. �e� Two �20,20� CNTs, original configuration. �f� Two �20,20� CNTs, collapsed configuration. �g� Two
�30,30� CNTs, original configuration. �h� Two �30,30� CNTs, collapsed configuration.
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sponding isolated SWCNTs. For example, in a �20,20�
SWCNT, the collapsed configuration is not stable, while a
collapsed equilibrium configuration for a two-tube �20,20�
bundle can be found �Fig. 1�f��. Thus, for two-tube bundles,
the threshold values, d1 and d2, are shifted to smaller values
as compared to isolated SWCNTs. Figure 2�c� displays the
relative energetics for two-bundles consisting of a pair of
identical armchair CNTs; our calculations show that d1

	20.3 Å and d2	50.2 Å. For a two-tube �20,20� bundle,
the nanotubes slide with respect to each other along their
contacting faces, forming a collapsed configuration that
minimizes the surface energy, as shown in Fig. 1�f�, while
for the two-tube �30,30� bundle, and larger diameter two-
tube bundles, the collapsed configuration remains approxi-
mately symmetric, as illustrated in Fig. 1�h�. We expect that
collapsed configurations will be further stabilized as the
number of tubes in the bundle increases. Molecular dynamics
calculations on SWCNTs in large bundles by Elliot et al.11

indicate that tubes with diameters somewhere within the
range of 42 to 69 Å are sufficiently large that they collapse
spontaneously under atmospheric pressure.

We next used the NEB algorithm to determine the activa-
tion barrier and the MEP for CNT collapse. Figure 4 displays
MEPs for the collapse of �60,0�, �70,0�, and �90,0� SWCNTs.
Figure 5 displays cross sections at several representative

FIG. 2. �Color online� �a� Energy difference 
E=Ecylindrical

−Ecollapsed per unit area between the cylindrical and the collapsed
configurations for SWCNTs vs tube diameter. �b� As in �a� except
for double-walled CNTs of the form �n ,n� / �n+5,n+5�; the diam-
eter refers to that of the inner tube. �c� As in �a� except for two-tube
bundles, where the tubes are the same size, and the diameter values
refer to that of a single tube.

FIG. 3. �Color online� Energy difference 
E=Ecylindrical

−Ecollapsed per unit area �of the inner shell� as a function of the
number of walls. The shells are �40+5n ,40+5n� for n=0,1 ,¼ ,8.

FIG. 4. �Color online� MEPs for the collapse of selected CNTs.
The zeros of energy are relative to the cylindrical configurations
and the energies are per unit length. The reaction coordinate is
calculated as the Euclidean distance between a given configuration
and the initial �cylindrical� configuration divided by the distance
between the final �collapsed� and initial configuration. The symbols
represent the images from the nudged elastic band calculation and
the curves are cubic spline fits.
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points along the MEP for the collapse of �50,0� and �80,0�
SWCNTs. Figure 6 shows the dependence of the barrier
height �per unit length� on the tube diameter for SWCNTs.
The transition state always occurs fairly late along the reac-
tion path and closely resembles the collapsed configuration,
even for highly exothermic reactions �which is in contrast

with typical behavior for exothermic reactions as predicted
by Hammond’s postulate�. This occurs because the sidewalls
must approach each other fairly closely before the attractive
van der Waals interactions change significantly. Since the
transition state occurs so late, much of the increased strain
energy resulting from the formation of the ribbon edges has
already been incurred; thus, the absolute barrier heights are
quite high over a wide range of initial diameter values and
are proportional to the length of the tube. This means that,
except for unphysically short tubes, CNT collapse cannot
proceed via this pathway by thermal activation. (For a 12.78
Å segment of a �60, 0� CNT the thermal rate constant for
collapse at a temperature of 300 K is O�10−80 s−1�.) There-
fore, the experimentally observed collapsed CNT configura-
tions are most likely due to mechanical processes. Since the
energy barriers per unit length decrease monotonically with
increasing tube diameter, the larger tubes will be easier to
collapse by such means.

One widely studied CNT collapse mechanism involves
the application of hydrostatic pressure.7–15,23,26,28–34 Two re-
gimes can be considered, the initial buckling as the system
departs from perfectly circular cross sections and then the
subsequent evolution of the system, which involves passage
over a barrier similar to the one present in the MEP. Con-
tinuum elasticity43 estimates of the buckling pressure, which
were originally applied to CNT collapse by Yakobson et
al.,23 can be obtained via

Pb =
2Y

�1 − �2�
�h

d
�3

, �4�

where Y is the Young’s modulus, h is the CNT shell-
thickness parameter, and � is Poisson’s ratio. The shell thick-
ness of a CNT is a nebulous quantity, and the use of the
conventional value for h of 3.4 Å �which is chosen so that
the Young’s modulus of a CNT approximately matches the 1
TPa value of graphite� in Eq. �4�, would lead to erroneously
high results. Yakobson et al.23 recommended parameter val-
ues of Y =5500 GPa, h=0.66 Å, and �=0.19, for use with
Eq. �4�, based on consistency with elasticity theory and a
first generation Tersoff-Brenner reactive bond-order
potential.44 Equation �4� can be rewritten as

Pb = 24D/d3, �5�

where the flexural rigidity D is given as

D =
Yh3

12�1 − �2�
. �6�

Within a continuum approximation, the flexural rigidity can
be related to the rolling energy per unit area ER of a graphene
sheet, via

ER =
D

2R2 , �7�

so D, and hence Pb, can be obtained without specification of
a shell thickness parameter. The parameters recommended by
Yakobson et al.23 correspond to D=0.853 eV; we obtain a
value of D=1.38 eV, appropriate for the newer potential
used here, by fitting to Eq. �7� the energies of the set of six

FIG. 5. �a� Cross sections for five configurations along the MEP
for the collapse of a �50,0� CNT; configurations include the initial
�cylindrical� configuration, the saddle point, the collapsed configu-
ration, a configuration midway between the initial configuration and
the saddle point, and a configuration midway between the saddle
point and the final configuration. �b� Same as �a� except for an
�80,0� CNT.

FIG. 6. �Color online� Activation energy barrier per unit length
as a function of the tube diameter for the collapse of SWCNTs.
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zigzag CNTs for which we have calculated MEPs.
If the hydrostatic pressure is increased at a rate that is

gradual enough for efficient energy redistribution to occur,
we can expect the evolution of the CNT collapse process to
closely resemble passage along the MEP; the exact path fol-
lowed will depend on the pressure, but for pressures of rea-
sonable magnitude we expect such differences to be small. If
we approximate the true collapse path by the MEP, then the
magnitude of the pressure required to collapse an isolated
SWCNT needs to be high enough that

PA

N

�n̂ · ŝ� � �E · ŝ �8�

at every point along the reaction path, where P is the pres-
sure �for hydrostatic pressure this acts normal to the CNT
surface�, E is the energy, ŝ is a unit vector that points along
the reaction path and toward collapse, n̂ is an outward point-
ing unit normal vector, N is the number of atoms, and A is
the area of the tube. We will associate the maximum pressure
required by Eq. �8� with the collapse pressure Pc and we will
also consider the onset pressure Po required to begin motion
along the MEP. These two pressures are compared to the
buckling pressure predicted by elasticity theory in Table I for
a series of zigzag CNTs. The continuum elasticity buckling
pressures agree extremely well with the MEP motion onset
pressures except for the smallest tube �where Po was about
10% lower than Pb�. The predicted collapse pressures are all
about 40% higher than the continuum buckling pressures.
These results are consistent with molecular dynamics simu-
lations of the collapse of a �10,10� SWCNT �using a first
generation Brenner potential� by Sun et al.,31 where the ob-
served buckling pressure was about 20% below the elasticity
buckling prediction and full collapse occurred at a pressure
that was about 50% about that of the elasticity buckling pre-
diction.

For the largest CNT for which we have calculated an
MEP, �90, 0�, a pressure of about 150 atm is required to
collapse the tube �note that 1 atm is �1.013�10−4 GPa�.
The elasticity expression of Eq. �5� estimates a minimum
diameter value for collapse at 1 atm of �370 Å. SWCNTs in
bundles will collapse at much lower values; Elliot et al.11

estimated a diameter between 42 and 69 Å for collapse at
atmospheric pressure in large bundles. Bending and other

stresses incurred during processing, purification, and han-
dling may be expected to initiate collapse of large-diameter
isolated SWCNTs by other mechanisms than those consid-
ered here. Thus, metastable cylindrical configurations of
large-diameter tubes that are stable against pressure-induced
collapse are still likely to be rare.

IV. CONCLUDING REMARKS

We have outlined three stability regimes for the relative
stability of cylindrical and collapsed configurations of CNTs.
For SWCNTs with diameters less than �24.2 Å, only cylin-
drical configurations are stable; for CNTs with diameters
greater than �24.2 Å but less than �62.4 Å, equilibrium
configurations have been found for both cylindrical and col-
lapsed configurations, but the cylindrical configuration is en-
ergetically favorable; for diameters greater than �62.4 Å,
the collapsed configuration is a lower energy configuration.
We found that these characteristics are approximately inde-
pendent of tube chirality. For MWCNTs these critical diam-
eters have higher values, whereas for SWCNT bundles lower
critical values are observed.

Using the nudged elastic band algorithm, we determined
the MEP between the cylindrical and collapsed states. It was
found that the transition state barrier heights decrease mono-
tonically with increasing tube diameter. Nevertheless, these
barriers, for all but the shortest of tube lengths, are suffi-
ciently high that rates for thermal activation of CNT collapse
via this pathway are always negligible. Lower barrier heights
do, however, indicate that mechanical mechanisms for flat-
tening CNTs will be more important for the larger radius
tubes. The data along the MEP were also used to estimate
hydrostatic pressure values that would initiate CNT buckling
and collapse; the buckling values obtained agreed well with
predictions of elasticity theory, and the predicted collapse
pressures are about 40% higher than the buckling pressures.
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TABLE I. Comparison of buckling pressures Pb predicted from the theory of elasticity, with buckling
onset pressures Po and collapse pressures Pc predicted from Eq. �8� and the MEP data. The pressures are in
units of GPa.

CNT Diameter �Å� Pb Po Pc

�40,0� 31.3 1.73�10−1 1.55�10−1 2.5�10−1

�50,0� 39.2 8.84�10−2 8.73�10−2 1.2�10−1

�60,0� 47.0 5.12�10−2 5.08�10−2 7.3�10−2

�70,0� 54.8 3.22�10−2 3.21�10−2 5.5�10−2

�80,0� 62.6 2.16�10−2 2.15�10−2 3.1�10−2

�90,0� 70.5 1.52�10−2 1.53�10−2 2.1�10−2
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