
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2007; 70:913–933
Published online 2 November 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1895

A bridging domain and strain computation method for coupled
atomistic–continuum modelling of solids

Sulin Zhang1,2, Roopam Khare1, Qiang Lu1 and Ted Belytschko1,∗,†

1Department of Mechanical Engineering, 2145 N. Sheridan Rd., Northwestern University, Evanston,
IL 60208-3111, U.S.A.

2Department of Mechanical Engineering, 204 Mechanical Engineering Building, University of Arkansas,
Fayetteville, AR 72701, U.S.A.

SUMMARY

We present a multiscale method that couples atomistic models with continuum mechanics. The method
is based on an overlapping domain-decomposition scheme. Constraints are imposed by a Lagrange
multiplier method to enforce displacement compatibility in the overlapping subdomain in which atomistic
and continuum representations overlap. An efficient version of the method is developed for cases where
the continuum can be modelled as a linear elastic material. An iterative scheme is utilized to optimize
the coupled configuration. Conditions for the regularity of the constrained matrices are determined. A
method for computing strain in atomistic models and handshake domains is formulated based on a moving
least-square approximation which includes both extensional and angle-bending terms. It is shown that
this method exactly computes the linear strain field. Applications to the fracture of defected single-layer
atomic sheets and nanotubes are given. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modelling of material failure often involves phenomena simultaneously occurring at multiple length
scales. On the one hand, such behaviour cannot be described by continuum mechanics without
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resorting to phenomenological descriptions since fracture is intrinsically a bond breaking phe-
nomenon. On the other hand, computational costs limit atomistic simulations to small subdomains
relative to realistic specimens, even for specimens such as nanotubes and nanorods. It is thus
desirable to develop multiscale material modelling approaches coupling continuum and atomistic
models.

Extensive work has been done in the development of multiscale modelling approaches for linking
atomistic with macroscopic models. Among them are the coupled length scale method [1, 2], the
bridging method [3, 4], the bridging domain method [5, 6], the method coupling atomistic and
discrete dislocation plasticity [7], and the homogenization [8]. Despite different treatments in the
coupling strategy, these methods share basic principles, and typically have three components: a
finite element representation for continuum subdomains where the deformation field is smooth and
homogeneous; a molecular mechanics/dynamics description for atomistic subdomains in which
bond breaking is expected; a strategy to couple these two representations. Differences in the
available coupling methods are the specifics of the coupling strategies, which have been extensively
reviewed elsewhere [9–11].

We here present extensions of the bridging domain method of Belytschko and Xiao [5]
and an analysis of some of its properties. Dhia and Rateau [12] originated this method for
the purpose of joining finite-element meshes and called it the Arlequin method. These meth-
ods are essentially overlapping domain decomposition methods; they are called ‘handshake’
methods in [2], although no constraints were specified in the handshake domain. So it is un-
clear how continuity was enforced between subdomains. For many nanoscale fracture prob-
lems, a large portion of the computational domain undergoes homogeneous deformation, and
bond forming/breaking takes place only within a small subdomain. The primary function of
the continuum domain is to provide the appropriate boundary conditions for the atomistic sub-
domain and to suppress the surface effects. The aim of the proposed multiscale method is to
solve coupled molecular mechanics/continuum mechanics efficiently. This method offers atom-
istic resolution of deformation in subdomains encompassing defects such as vacancies, interstitials,
dislocations, and crack tips, and treats the remainder of the domain with crystal elasticity. Dis-
placement compatibility conditions are imposed in the overlapping subdomain by the Lagrange
multiplier method. The resulting governing equations are coupled through the internal forces
corresponding to Lagrange multipliers. The governing equations can further be simplified pro-
vided that the continuum subdomain is linear elastic. This method matches the corresponding
results of a fully atomistic model with reasonable accuracy, and greatly reduces the computational
costs.

An attractive feature of the method is that it does not require the finite element mesh to match
the lattice spacing of the atomic model. Thus, it is easy to link various atomistic models, even
models of amorphous solids, with finite element models. Furthermore, the approach allows finite
element models to be replaced by atomistic models wherever it is needed by zeroing the material
properties of the target subdomain of finite element mesh and overlaying the atomistic model on
the desired subdomain.

In addition, a method is presented for obtaining continuous strain fields for atomistic models.
The so-called ‘atomistic strains’ have previously been developed by Mott et al. [13], but they
were based on Voronoi tessellations and were only defined at atomic positions. Here, we employ
a moving least-square (MLS) approximation to compute the atomistic strains. It is shown that for
an atomistic displacement corresponding to a linear field, the exact strain field is computed by this
method.
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2. METHOD

The coupled method consists of three components: the atomistic model; the continuum model;
and the coupling strategy. Both the atomistic and continuum framework we adopt here are taken
from the literature. Therefore, we will focus on the coupling of the two models, which is described
in the following subsections. For clarity, we use Greek indices (�, �, �) to denote atoms, capital
indices (I, J, K ) to denote the finite element nodes, and lower-case indices (i, j, k) to denote the
components of vectors and tensors.

2.1. Coupling

Consider a solid body subjected to prescribed traction t̄0 on the undeformed surface �t
0, and pre-

scribed displacement ū on �u
0. The entire domain is decomposed into three subdomains: an atom-

istic subdomain �A
0 ; a continuum subdomain, �C

0 , and the overlapping subdomain, �H
0 = �A

0 ∩ �C
0 ,

where the atomistic and continuum models overlap, i.e. the handshake domain. The superscripts
‘C’ (continuum) and ‘A’ (atomistic) identify the associated variables. We assume that �t

0 is re-
stricted to the boundary of the continuum subdomain and the atomistic subdomain is traction free.
Under external loading, each material point X∈ �C

0 in the initial, undeformed configuration moves
to its current position x according to a deformation map: x=/(X, t). The initial position of atom
� is denoted by X�, and its current position is denoted by x�. The total free energy (Etotal) is sum
of the strain energy of the continuum subdomain (ECM), and the potential energy of atomistic
subdomain (EMM), minus the external work (Eext) on both subdomains:

Etotal = EMM + ECM − Eext (1)

where

EMM = ∑
�∈�A

0

[ ∑
�>�

wA
(
1

2
(X� + X�)

)
V��

]
(2)

ECM =
∫

�C
0

wC(X)W (F(/(X))) d�0 (3)

and

Eext =
∫

��C
t

wC(X)t̄0 · u d�0 (4)

In the above expressions, V�� is the atomistic interaction potential between atoms � and �, W
is the strain-energy density function, ��C

t is the portion of the boundary of �C
0 where the traction

t̄0 is applied, u=/− X is the displacement vector, and F is the deformation tensor given by

F= �/
�X

= I + �u
�X

(5)

and I is the identity tensor. It should be noted that, in order to avoid double counting of the
atomistic and the continuum energies in the handshake domain, these energy terms are weighted
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based on the positions at which these values are evaluated. The weight functions, wC and wA,
vary linearly across the handshake domain

wC(X)= 1 − wA(X)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 X∈ �C

0 \�H
0

‖X − XB‖/L X∈ �H
0

0 X∈ �A
0 \�H

0

(6)

We assume that the atomistic domain is convex and sufficiently regular so that the parameter wC

can be uniquely determined by the nearest point projection of X onto the boundary of �C
0 , denoted

by XB. The variable L is the distance between the inner and outer boundaries of the handshake
domain along the vector X−XB. The boundary ��C

t that is overlapped by the atomistic model is
a traction-free boundary (t̄= 0).

Coupling of the atomistic and continuum models is achieved by approximately enforcing dis-
placement compatibility in the handshake domain:

/(X�) = x� for all atoms � ∈ �H
0 (7)

The compatibility conditions are imposed by Lagrange multipliers so the total energy
functional is

�= Etotal + ∑
�∈�H

0

∫
�0

k(X) · [/(X) − x�]�(X − Xa) d�0 (8)

where k is the vector of Lagrange multipliers that enforce the constraints and �(X−Xa) is Dirac
delta function. We leave the above in an integral form because the Lagrange multipliers will be
approximated by fields.

Equation (8) can be written by the following expression, which is generally adopted in the
so-called ‘handshake’ method [2, 9],

E = Etotal + EMM/CM (9)

where EMM/CM is a coupling energy that corresponds to the second term in Equation (8). Note that
by the well-known property of constrained minimization problems, the Lagrange multiplier term
vanishes at the minimum, so the coupling energy vanishes provided the constraints are enforced
exactly. In the method described here, the constraints are usually not satisfied exactly because as
will be seen, we use an approximate Lagrange multiplier field rather than discrete multipliers. This
gives rise to a residual interaction energy in the overlapping domain. The equilibrium configuration
of the coupled model is obtained by determining the stationary point of the total energy functional
� in terms of /, x�, and k, as will be detailed in the next section.

2.2. Numerical implementation

The continuum domain is discretized by approximating the continuum deformation field and
the Lagrange multiplier field by finite element interpolants with nel elements. Each element is
mapped from the undeformed configuration to the current configuration through /e. The deformed
configuration for element e is expressed by

/e(X)= ∑
I
NI (X)/I (10)
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where NI (X) is the nodal shape function of node I , and /I denotes the current nodal position.
Similarly, the Lagrange multiplier field in the handshake domain is approximated by mel elements,
with

ke =∑
J
N�
J (X)kJ (11)

where N�
J (X) is the shape function of the Lagrange multiplier field, and kJ is the nodal value.

Substituting the above equations to Equation (8) yields the discretized energy

� = ∑
�∈�A

0

[ ∑
�>�

wA
(
1

2
(X� + X�)

)
V��

]
+

∫
�C
0

wC(X)W (F(/)) d�0

−
∫

��C
t

wC(X)t̄ · u d�0 + ∑
�∈�H

0

∑
J
N�
J (X�)kJ ·

[∑
I
NI (X�)/I − x�

]
(12)

Taking derivatives of the function with respect to x�, kJ , and /I yields the stationary condition
for �, which corresponds to the equilibrium equations and the constraint:

��

�/I
= 0, I = 1 · · · nC (13)

��

�kJ
= 0, J = 1 · · · n� (14)

��

�x�
= 0, � = 1 · · · nA (15)

where nC is the number of finite element nodes, n� is the number of Lagrange multiplier nodes,
and nA is the number of the atoms in the coupled system. The resulting equations are

f intI +
n�∑
J=1

GJ IkJ = f extI , I = 1 · · · nC (16)

nC∑
J=1

GI JuJ = f�I (17)

∑
�∈�A

0

[ ∑
�>�

wA
(
1

2
(X� + X�)

)
�V��

�x�

]
− ∑

�∈�H
0

∑
J
N�
J (X�)kJ = 0 (18)

where

f intI =
∫

�C
0

wC(X)
�W
�F

�F
�/I

d�C
0 (19)

GI J = ∑
�∈�H

0

N�
I (X�)NJ (X�) (20)
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f extI =
∫

��C
t

wC(X)NI (X)t̄ d�0 (21)

f�I = ∑
�∈�H

0

N�
I (X�)u� (22)

where u� denotes the atomic displacement. The continuum forces can be expressed in terms of
the first Piola–Kirchhoff stress P by noting that

P= �W
�F

(23)

and that

�F
�/I

= �NI

�X
(24)

which enables us to write Equation (19) as

f intI =
∫

�C
0

wC(X)P
�NI

�X
d�C

0 (25)

If the corresponding continuum model remains linear, the solution of Equations (16)–(18) can
be simplified. We consider the case where N�

I (X) = NI (X) in �H. Let dC be the continuum
displacements in the subdomain exclusive of the handshake domain, dH the continuum nodal
displacements in the handshake domain, dA the atomic displacements, i.e.

dC = {u1, . . . ,uI , . . . ,unC}T, I ∈ �C
0 \ �H

0 (26)

dH = {u1, . . . ,uI , . . . ,unH}T, I ∈ �H
0 (27)

kT = [k1, . . . , knH] (28)

dA = {x1 − X1, . . . , x� − X�, . . . , xnA − XnA}T (29)

For a linear continuum model, we can write

f int =
{
fC

fH

}
=

[
KC KCH

KT
CH KH

] {
dC

dH

}
(30)

where KC, KCH and KH are submatrices of the stiffness matrix K partitioned according to the par-
titioning of d (nodal displacement vector) into dC and dH. Note that f ext is partitioned into f extC and
f extH . We assume that there is no external force applied in handshake region. In a similar wayGC and
GH are obtained from G, where GC = 0. Thus, the system of Equations (16)–(18) can be written as⎡

⎢⎢⎢⎢⎢⎣

KC KCH 0 0

KT
CH KH 0 GT

H

0 0 0 GT
A

0 GH GA 0

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dC

dH

dA

k

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f extC

0

−f intA

0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(31)
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where GAJ� = − N�
J (X�) and

f intA = ∑
�∈�A

0

[ ∑
�>�

wA
(
1

2
(X� + X�)

)
�V��

�x�

]
(32)

The nodal displacements dH can be found from the Schur complement of KH, denoted by K̄H.
The result is obtained by a simple rearrangement of the first two rows of the above

dH = K̄−1
H (KT

CHK
−1
C f extC + GT

Hk) (33)

K̄H =KT
CHK

−1
C KCH − KH (34)

Nodal displacements dC can be found in terms of dH, using the first row of Equation (31) gives

dC =K−1
C (f extC − KCHdH) (35)

Substituting Equation (33) into the last row of Equation (31) gives

Ak= fk (36)

where

A=GHK̄
−1
H GT

H (37)

f� = −(GHK̄
−1
H KT

CHK
−1
C f extC + GAdA) (38)

For any given atomic configuration, {dA}, f� can be calculated using Equation (38). The Lagrange
multipliers k, and hence the continuum displacement field u can be determined by Equations (36)
and (35), respectively.

For the coupled system under consideration, due to the constraints of the Lagrange multipliers,
the system is not positive definite anymore and the solution is a saddle point. This makes many
iterative methods inappropriate. Here, we use a quasi-Newton method BFGS [14] to determine
the stationary point. Since the atomistic domain is free of any displacement constraint, a floating-
domain problem is encountered when the calculated internal forces k are not self-balanced i.e.
in equilibrium, see Farhat and Roux [15] and Farhat et al. [16]. To overcome this difficulty, the
following iteration procedure is used.

(1) Guess dnA, for n = 1.
(2) Solve Equation (36) for kn .
(3) Update the finite element nodal positions using Equation (35).
(4) Search along the minimum direction of � and update dA and �.
(5) Check the convergence criterion ‖�n+1−�n‖<�� and ‖��/�dA‖2<�d . If both are satisfied,

an adequate equilibrium configuration has been obtained, otherwise, repeat from step (2).

We determine next the sufficient conditions for the regularity of A when N �
I (X) = NI (X). Note

that the rank of matrix product is given by

rank(A)�rank(GH)rank(K̄H) (39)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:913–933
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We assume that the stiffness matrix K̄H is regular, since this is a standard property of finite
elements. The matrix GH is assembled from element matrices Ge

H given by Equation (20), so

Ge
H =

ne�∑
�=1

NT(X�)N(X�) (40)

where ne� is the number of atoms in element e and N=[NI ]. From the above, it follows that

(Ze)
TGe

HZe ≡
ne�∑

�=1
Ze
INI (X�)NJ (X�)Ze

J =
ne�∑

�=1
Z2(X�) (41)

The above can vanish for Ze �= 0 only if there exists a Ze such that

neN∑
I=1

NI (X�)Ze
I = 0, � = 1 to ne� (42)

where neN is the number of nodes in element e. If ne��neN, this can occur only if the locations of
the points are degenerate, e.g. for a set of collinear points in a triangular element. Therefore, it
follows that

(Ze)
TGe

HZe>0 ∀Ze �= 0 (43)

Therefore, all eigenvalues of Ge
H must be positive and by the element eigenvalue inequality

[17], the eigenvalues of GH are positive. Thus, the rank must equal its dimension, and A must be
regular.

Note that when the number of atoms in an element is less than the number of nodes or the
positions of atoms are degenerate, the regularity of A is not ensured.

3. STRESS AND STRAIN IN THE COUPLED SYSTEM

In coupled continuum-molecular models based on overlapping decomposition methods, the stress
and strain at the interface require careful definitions for consistency of the energy and smoothness.
Here, we present a method for computing strain that provides a smooth strain field at the interface.
We include both extensional and angle-bending terms. A method based on homogenization was
recently presented by Chen and Fish [8].

The method is based onMLS approximation [18] of the displacement. In theMLS approximation,
the displacement u(X) at any point X is approximated in the domain by

u(X) =
m∑
i=1

pi (X)ai (X) (44)

wherem is the number of terms in the basis pi (X) and ai (X) are vector coefficients to be determined
as described subsequently. The basis used here are polynomial so

[pi (X)] = [1, X, Y ] for a linear basis (45)

[pi (X)] = [1, X, Y, X2, XY, Y 2] for a quadratic basis (46)

ai = [a1i , a2i ] = [axi , ayi ] (47)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:913–933
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The coefficients a at any point X are found by minimizing the weighted L2 norm q(X)

given by

q(X)= ∑
�∈SX

(pi (X�)ai (X) − u�)
Twmls(X� − X)(p j (X�)a j (X) − u�) (48)

where a sum is implied over the repeated indices i and j , wmls(X� − X) is a weight function of
compact support and SX is the set of nodes within the support of wmls(X� − X). Various choices
can be made for the weight functions (see [19]). We have chosen a cubic spline

wmls(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3 − 4r2 + 4r3 for r� 1

2

4
3 − 4r + 4r2 − 4

3r
3 for 1

2<r�1

0 for r>1

(49)

where r =‖X − X�‖/R0 and R0 is the radius of the support circle centred at point X. The radius
of support depends on lattice constant; we have used R0 = 4l0, where l0 is the equilibrium bond
length (lattice constant).

The coefficients ai (X) are found by minimizing q(X) in Equation (48), which can be accom-
plished by finding the stationary point of q(X). To develop these equations, we first adopt the
more compact notation pi� ≡ pi (X�), w� ≡ wmls(X − X�), so Equation (48) becomes

q(X)= ∑
�∈SX

(pi�ai − u�)
Tw�(X� − X)(p j�a j − u�) (50)

The stationary point of the above is then given by

0= �q
�ak

= ∑
�∈SX

pk� p j�w�a j − ∑
�∈SX

pk�w�u� = 0 (51)

which is a set of linear equations for a j . We note that the coefficient matrix of the left-hand side
is the Gram matrix [20] Mkj (also called the moment matrix) given by

Mkj = ∑
�∈SX

pk� p j�w� (52)

If we define

bk = ∑
�∈SX

pk�w�u� (53)

then Equation (51) can be written as

Mkja j =bk (54)

For a two-dimensional problem with a linear polynomial basis, the above is two systems of
three equations in three unknowns.

The deformation gradient is then given by using its definition in conjunction with Equations
(44) and (45). For a linear basis

F= Fi j =
[
1 + ax2 ax3

ay2 1 + ay3

]
(55)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:913–933
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The Green strain can be computed by the standard formula

E= 1
2 (F

TF − I) (56)

A noteworthy attribute of the MLS strain is that for a linear displacement of the atoms, the
MLS strain gives the correct constant strain state. This may be seen as follows. Suppose that the
displacements of the atoms are given by

u� =u(X�) = pi (X�)āi (57)

Then substituting the above expression into the right-hand side of Equation (54) and using
Equation (53) gives

Mkja j =bk = ∑
�∈SX

pk�w� pi�āi (58)

The right-hand side can be seen to be Mki āi by Equation (52), so it follows that ai = āi . It
follows from Equations (55) and (56) that E also has the correct value. This is often called a
reproducing condition: the MLS strain reproduces the strain associated with any displacements of
the atoms derived from a linear field. Similarly, the MLS strain will reproduce the correct strain
for any atomic displacements corresponding to a quadratic field.

In the handshake domain, the strains are obtained by weighing the atomistic strains and the
continuum strains according to the weights in the energetics, Thus,

E(X)= wC(X)EC(X) + wA(X)EA(X) (59)

The atomic stress is obtained in terms of doublets and triplets for the extensional and angle-
bending potentials; the nomenclature is shown in Figure 1 (we depart temporarily from convention
of Greek letters for atoms). The total potential W of the atomistic model is given by

W = ∑
i, j
i> j

W i j
E + ∑

i, j,k
i> j>k

W i jk
B (60)

where Wi j
E is the extensional bond energy of the bond connecting atoms i and j and Wi jk

B is the
bending energy of the triplet of atoms i , j and k.

i

j

k

ijk

rij

rik

�

Figure 1. A triplet of atoms showing the bonds and bond angle.
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For a hexagonal lattice, a representative unit cell consists of three inequivalent bonds and two
inequivalent nuclei. The strain-energy density of a representative unit cell with atom i as nucleus
atom can be written as

W = 1

2�n
0

⎡
⎢⎣ ∑

j∈Sn
W i j

E (r i j ) + 1

2

∑
j,k∈Sn
j �=k

W i jk
B (�i jk)

⎤
⎥⎦ (61)

where Sn is a set of nearest neighbours of atom i in the unit cell. In the above r i j is the length of
bond between atoms i and j and � i jk is the angle subtended between bonds i j and ik. In a hexagonal
planar lattice, �n

0 = 3
√
3r20 t/4 is the volume occupied by each atom in the unit cell, where r0 is the

bond length (lattice constant) in the unstressed configuration and t = 3.4Å is the nominal thickness
of a graphene sheet. Note that the factor half on the right-hand side of the above equation appears
due to the fact that the total energy is divided into two inequivalent nuclei. The other factor of half
on the second term of right-hand side appears due to the double counting on the indices j and k.

To determine the atomic stresses, we use the relations between the continuum strain energy
density WC, after invoking the requirement that the continuum energy equals the discrete atomistic
energy and the first Piola–Kirchhoff stress denoted by P, and the Cauchy Born rule. The former
gives that the first Piola–Kirchhoff stress is related to the potential by

P= �WC

�F
=W ,F (62)

The Cauchy stress r will then be obtained by a standard transformation

r= 1

det(F)
PFT (63)

The Cauchy–Born rule [21] gives the following relation for any lattice vector r in terms of its
value in the unstressed configuration r0:

r=Fr0 (64)

Using (61), (62) and (64), we now develop expressions for P in terms of the extensional
and bending potentials. For this purpose, we use a simplified notation a= ri j and b= rik . The
extensional potential gives

f i jE =Wi j
E ,a =Wi j

E ,a aa = f i j
a
a

(65)

where f i j =Wi j
E ,a ; a is the length of the vector a and a/a is the unit vector that is collinear with

that bond.
The angle-bending forces are given by

f i jB =Wi jk
B ,a = Wi jk

B ,C C,a (66)

f ikB =Wi jk
B ,b = Wi jk

B ,C C,b (67)
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where C = cos � and we have assumed the usual dependence of the angle-bending potential on the
cosine of the angle � between the bonds. From the formula for the scalar product ab cos � = a · b
it follows that

C,a = 1

ab

(
b − a · b

a2
a
)

(68)

C,b = 1

ab

(
a − a · b

b2
b
)

(69)

From (61), (62) and the chain rule we obtain

P= 1

2�n
0

⎡
⎢⎣ ∑

j∈Sn
W i j

E ,a a,F +1

2

∑
j,k∈Sn
j �=k

(Wi jk
B ,a a,F +Wi jk

B ,b b,F )

⎤
⎥⎦ (70)

From (64) it follows that

a,F = I ⊗ a0, b,F = I ⊗ b0 (71)

Using (65)–(67), we can rewrite (70) as

P= 1

2�n
0

⎡
⎢⎣ ∑

j∈Sn
f i jE ⊗ a0 + 1

2

∑
j,k∈Sn
j �=k

(
1

ab
Wi jk

B ,C

(
b − a · b

b2
a
)

⊗ a0

+ 1

ab
Wi jk

B ,C

(
a − a · b

a2
b
)

⊗ b0

)⎤
⎥⎦ (72)

Using Equations (63), (66)–(69), and the transformation �n = �n
0 det(F), where �n is the volume

occupied by atom in the representative unit cell in current configuration and replacing a by
ri j , b by r ik

r= 1

2�n

⎡
⎢⎢⎣ ∑

j∈Sn
f i jE ⊗ r i j + 1

2

∑
j,k∈Sn
j �=k

(f i jB ⊗ r i j + fikB ⊗ r ik)

⎤
⎥⎥⎦ (73)

The two terms in the second summation on the right-hand side of the above equation can be
combined into one, as

r= 1

2�n

[ ∑
j∈Sn

f i jE ⊗ ri j + ∑
j∈Sn

f i jB ⊗ ri j
]

(74)

which is the standard virial stress form. As in the computation for the strain, a continuous stress
field in the atomistic subdomain can be constructed using the MLS interpolation. The stress is
computed by same weighting as the energetics in the handshake domain

r(X)= wA(X)rA(X) + wC(X)rC(X) (75)
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4. NUMERICAL EXAMPLES

In this section, several numerical examples are presented. Although the applicability of this method
is not restricted to specific materials, we here choose graphene-like atomic sheets and carbon
nanotubes (CNTs) as examples, because of their importance in engineering applications, as well
as the simplicity of their atomic structures. To assess the performance of the coupled model, a full
atomistic model corresponding to each example is solved independently, and compared with the
coupled model.

4.1. Atomic sheet

Figure 2 shows a coupled model of an atomic sheet containing a double-vacancy defect in the centre.
We use a quadratic interatomic potential that consists of a pair-body term and an angle-bending
term:

E = Estretch + Eangle (76)

The pair-body term is piecewise quadratic, with

Estretch(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ka(r − r0)

2 − �, r<rc

1
2kd(r − rf)

2, rc<r<rf

0, r>rf

(77)

where r0 is the equilibrium distance, rc and rf are the bond lengths at which the interatomic
force peaks and vanishes, respectively. The parameters ka and kd characterize the ascending and
descending slopes of the force–separation curve, and � is the potential energy when stretching the
bond to infinite length. The parameters in the potential are chosen to ensure that the potential is
piecewise continuous and differentiable. The interatomic force for this potential is then bilinear.
The angle-bending term is of the following form:

Eangle = 1
2k�(� − �0)

2[1 + ksextile(� − �0)
4] (78)

Young’s modulus and the Poisson’s ratio can be then obtained through the Cauchy–Born rule
[21]. Plane stress is assumed for the one-atom-thick sheet. The full atomistic model is set up such

Figure 2. A coupled model of a graphene sheet containing a double-vacancy defect;
a coarse model is shown for clarity.
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that each atom in the atomistic subdomain of the coupled model coincides with an atom in the
full atomistic model. We will use two error criteria

(1) �G, the global error which measures the difference between the complete atomistic model
and the coupled model in the entire domain �, and

(2) �L, the local error which measures the error in the atomistic subdomain �A
0 that is modelled

by molecular mechanics.

Let dA be the atomic displacements as computed by the full atomistic model and dC the
displacements at the atomic positions as computed by the coupled model. Then the global error is
defined by

�G = ‖dC − dA‖2
‖dA‖2 (79)

where

‖d‖2 =
(∑

i
d2i

)1/2

(80)

The local error is computed by taking the restrictions of dA and dC to the subdomain �A
0 , which

are denoted by dAL and dCL, respectively, and given by

�L = ‖dCL − dAL‖2
‖dAL‖2 (81)

To ensure that the edge atoms in the overlapping subdomain at the continuum–atomistic interface
are properly co-ordinated, several additional rows of atoms are introduced. These additional atoms
are often called virtual atoms or pad atoms [22]. Because of the angle-bending term in the potential,
the pad thickness must be slightly larger than the cutoff radius of the atomistic covalent interaction.
During the simulation, the positions of the pad atoms are determined by the continuum deformation
field through interpolation by the finite element nodal displacements.

As a measure of the effectiveness of the coupling, we use the patch test, we apply a linear
displacement field to the outside boundaries of a coupled model. In particular we let

uX I = ax1 + ax2XI + ax3YI (82)

uY I = ay1 + ay2XI + ay3YI (83)

where axi and ayi are arbitrary constants. According to Equation (55), the deformation gradient
should then be constant. The Green strain is computed by Equation (56). This test is applicable to
arbitrary materials as long as the continuum material properties are consistent with the atomistic
bond potential by the Cauchy–Born rule.

In our studies of the patch test, we avoided some of the difficulties in matching nonlinear
atomistics with continua by using a harmonic potential and a Kirchhoff material with small
prescribed displacements. We used ax =[0.5 0.02 0.02] and ay =[0.5 0.02 0.02]. We used the
error norm (79), with dA equal to the exact displacements by (82) and (83), to evaluate the
performance of the method in the patch test.

The model is shown in Figure 3; the ratio of the lattice constant rL to the largest dimension of
the elements in the overlapping subdomain, h, rL/h = 0.25. The error �L = 0.2%, which is higher
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Figure 3. A coupled model of a graphene sheet used in patch test.

Table I. Results for the coupled model and the full atomistic model for the fracture of defected graphene
sheets; �frac and εfrac are the fracture stress and strain, respectively, εG and εL are the global and local

errors as given in Equations (79) and (81), respectively.

Model # Atoms # Nodes εG εL �frac (GPa) εfrac

Coupled model I 360 528 0.026 0.189 59.5 17.8
Coupled model II 2174 477 0.030 0.062 56.8 16.7
Coupled model III 5544 366 0.028 0.033 57.8 16.7
Fully atomistic 10440 0 0.000 0.000 57.6 16.8

than expected. Most of the error comes from the handshake domain, where the strain differs as
much as 1% from the prescribed value. In the atomistic domain, the maximum error in the strain
is only 0.4%. This is adequate for most purposes, but indicates there is room for improvement in
the method.

In the next example the size of the atomistic domain is varied while the size of the entire
computational domain is fixed. Specifically, three sizes, small (39.3Å×22.7Å), medium (98.4Å×
56.8 Å), and large (157.4 Å × 90.9 Å) atomistic domains are considered. The global and critical-
subdomain errors are computed at around 75% of the fracture strain. For each model, the sheet
is stretched in the y-direction by prescribing displacements to the nodes (or the atoms for the
full atomistic model) on the edges (y = ± h). At each prescribed displacement, the system is
relaxed to its equilibrium configuration, and the corresponding applied tensile force is calculated.
In the simulations, ka = 23.1 nN/Å, kd = − 10.6 nN/Å, �= 2.22 eV, r0 = 1.42 Å, rc = 1.73 Å, and
rf = 2.41 Å. The resulting Young’s modulus and Poisson’s ratio for the continuum are 326.8 GPa
and 0.167, respectively.

Table I summarizes the results obtained by the coupled model and the full atomistic model.
In calculating the stress, the nominal thickness of 3.4 Å for graphene is used. Our simulations
show that with increasing size of atomistic domain, the local error progressively decreases, while
the global error remains of the same order of magnitude. Except for the coupled model with the
smallest atomistic domain, the other two coupled models yield fracture stresses and strains very
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close to those of the full atomistic model. Running time for five steps of 0.1% strain increment
varied from 33.7 to 65.2 s from coupled model I to coupled model III, whereas fully atomistic
model took 235.7 s.

We also studied the effects of finite element size on the accuracy of the computational results.
An atomic sheet with dimensions of 393.52 Å × 227.20 Å is used for this study. The size of
the atomistic subdomain is 196.76 Å × 113.06 Å. In the simulations, four different finite element
sizes are chosen, namely, 4, 5, 10, and 20 lattice spacings. The corresponding local errors are
8.63 × 10−3, 8.82 × 10−3, 1.08 × 10−2, 1.77 × 10−2.

To illustrate the stress and strain computed by Equations (59) and (75), we consider an atomic
sheet with a crack as an example. The dimensions of the sheet are 2262.75 Å × 1136.00 Å. The
atomistic subdomain is 196.76 Å × 112.18 Å in size. An initial crack of 100 lattice spacings is
introduced at the centre of the sheet with the crack surface perpendicular to the loading direction
(y-direction). Due to the symmetry, only half of the sheet (x�0) is modelled. The stress and the
strain are calculated at the prescribed strain εyy = 1%. Figure 4 shows the strain component εyy ,
and Figure 5 shows the equivalent stress (plane-stress is assumed for the continuum subdomain).

Figure 4. Contour of �yy around a crack tip for: (a) coupling model; and (b) linear elastic solution.

Figure 5. Contour of equivalent stress (in TPa) around a crack tip for: (a) coupling model;
and (b) linear elastic solution.
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Figure 6. Strain along the crack calculated using coupling method and elasticity solution for a K-field.

Both the strain component and the equivalent stress agree well with those of the crack-tip fields
based on continuum fracture mechanics. Strain calculated using coupling method for a K-field of
strength 3 MPa

√
m along the crack is also plotted in Figure 6 for a better comparison with the

linear elastic closed-form solution and it can be seen that the error in the strain is quite small.

4.2. Fracture of CNTs

Next, we apply the coupled method to study the mechanical response of defected CNTs and
multiwalled carbon nanotubes (MWCNTs) with different loading conditions (uniaxial tension and
twisting). The modified second-generation Brenner potential [23] is used to describe interatomic
interactions. Under applied load, the CNTs are deformed beyond the linear regime, so the continuum
domain in the coupling method is characterized by a nonlinear constitutive law established through
the exponential Cauchy–Born rule [24]. This nonlinear constitutive law has been used to study the
collapse of CNTs [25, 26].

Figure 7 shows the coupled model of a single-walled [50, 0] CNT containing a double vacancy
defect in the centre. Fracture of small nanotubes containing such a defect has also been studied
quantum mechanically [27]. The atomistic domain contains 1898 atoms, while the continuum
domain consists of 1040 finite element nodes. The tube is 142 Å in length, the atomistic domain
is 39.15 Å long and the overlapping subdomain is 11.36 Å long. Thus, the overlapping boundary
is far enough away from the defect so that the displacement field can be accurately characterized
by the finite element model. The full atomistic model of the tube consists of 6698 atoms.

For the continuum domain in the coupled nanotube model, the subdivision finite elements based
on Loop’s scheme [28] are used. The deformation field within each triangular element depends not
only on the nodal coefficients of its three nodes, but also on those of its first neighbouring nodes.
Subdivision element difficulties arise for the triangular elements at the continuum/atomistic inter-
faces, for they lack neighbouring elements. Thus, in the coupled model, besides adding pad atoms,
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Figure 8. Energetics (a) and stress–strain curves (b) of stretched [50, 0] CNT.

virtual finite element nodes are needed to ensure that the edge nodes at the continuum/atomistic in-
terfaces are appropriately co-ordinated. Thus, an extra row of elements extends into the continuum
domain. The finite element nodal positions of these virtual elements are determined by minimizing
the difference between the atomistic displacement and the interpolated continuum displacement:

	 =∑
�

∥∥∥∥∑
I
NI (X�)/I − x�

∥∥∥∥
2

(84)

for all nodes I in the pad elements. Note that the energy associated with the pad atoms and pad
elements is not accounted for in the total free energy of the coupled system.

Figure 8 shows the results for the nanotube stretched to fracture. Figure 8(a) shows the energy
evolution of the tube as a function of applied tensile strain. At small strains, the internal energies
provided by these two models are almost indistinguishable. As the applied strain increases, the
total energy predicted by the coupled model deviates slightly from the atomistic model. Figure 8(b)
shows stress–strain curves obtained by these two methods, which are almost indistinguishable.

Figure 9 shows the energy evolution of the CNT twisted up to 20◦ by rotating its ends in opposite
directions with respect to the axis of the tube. As in uniaxial tension, the energetics predicted
by the two models is almost identical at small rotation angles, and deviates only slightly from
each other at large strains. Figure 10 compares the configurations predicted by these two models
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Figure 9. Energetics of twisted [50, 0] CNT.

Figure 10. Configuration of twisted [50, 0] CNT.

at 15◦ rotation. It can be seen that the coupled calculation captures all of the features of the full
atomistic model.

The next example serves to illustrate how the atomistic model can easily be moved around once
a model has been constructed. Figure 11 shows a three walled CNT in which the atomistic model
has been replaced in two locations, first in the centre of the tube, next near the support. In each
case, the finite element model is modified by setting the material properties of the domain to be
overlaid to zero. Note that the mesh of the finite element model is unchanged. Thus, once the finite
element model has been constructed, defects in various locations of the model can easily be studied.
Details of how the van der Waals forces between adjacent continuum and continuum/atomistic
models are treated are given in [29].
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Figure 11. A MWCNT with two defects.

5. CONCLUDING REMARKS

A coupling method for bridging molecular mechanics and finite element methods has been pre-
sented. The method is based on an overlapping domain-decomposition scheme. Displacement
compatibility conditions in the overlapping subdomain are enforced by Lagrange multipliers. A
faster formulation has been developed for the case where the continuum domain is linear elastic.
An important advantage of the method is that it does not require the finite element nodes to match
the atoms at the interface. Such matching is a requirement in many handshake methods, i.e. [2, 3],
and is quite awkward. In this method, a crystal lattice with an arbitrary lattice constant can be
linked to any finite element mesh, although of course, the disparity between the mesh and lattice
size should not be too large. This facilitates the placement of the atomistic model in any part of
the body: to replace the continuum model anywhere by an atomistic model, it is only necessary
to zero the material constants in a subdomain and superimpose the atomistic model.

A method has also been presented for computing strains based on a MLS fit. The method exactly
reproduces a strain state one order lower than the polynomial basis. Thus, for a linear basis, the
method gives the exact strain for atoms in a linear displacement field. In contrast to the Mott
et al. [13] atomistic strain, this method does not require a Voronoi tessellation, so it is much easier
to implement.

A patch test has been described for the coupling method. The performance of this proposed
coupling method in the patch test was adequate, but some irregularities were noted in the strain
in the overlapping domain. We are further investigating the source of these discrepancies.

Numerical examples studying the mechanical responses of defected atomic sheets and CNTs
are presented. Comparisons between the coupled models and the corresponding fully atomistic
models show very good agreement. This suggests that for most applications, the method is quite
satisfactory.
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