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Under torsion and beyond the buckling point, multi-walled carbon nanotubes �MWCNTs� develop
a periodic wave-like rippling morphology. Here, we show that torsional rippling deformations can
be accurately described by a simple sinusoidal shape function. Combining this observation with the
geometry optimization, we develop an effective coarse-grained model that reproduces the complex
nonlinear mechanical responses of thick MWCNTs under torsion predicted by large-scale atomistic
simulations. Furthermore, the model allows us to simulate super-thick tubes, inaccessible by other
coarse-grained methods. With this effective coarse-grained model, we show from an energetic
analysis that the rippling deformation is a result of in-plane strain energy relaxation, penalized by
the increase in the interlayer van der Waals interaction energy. Our simulations reveal that the
torsional response of MWCNTs with up to 100 layers approximately follows a simple bilinear law,
and the ratio of the torsional rigidities in the pre- and post-buckling regimes is nearly a constant,
independent of the tube radius. In contrast, the bifurcation torsional strain powerly scales with the
tube radius. We also find that the wave number in the circumferential direction linearly increases
with tube radius, while the wavelength monotonically increases with tube radius, and approaches a
constant in the limit of bulk graphite. The bilinear constitutive relation, together with the scaling law
of the bifurcation torsional strain, furnishes a simple nonlinear beam theory, which facilitates the
analysis of MWCNT bundles and networks. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3074285�

I. INTRODUCTION

Owing to their remarkable physical and chemical prop-
erties, carbon nanotubes �CNTs� continue to stimulate
experimental1 and theoretical studies.2 To date, material
properties of single-walled CNTs �SWCNTs�, ranging from
the elastic constants, the brittle and ductile failure mecha-
nisms, to the nucleation mechanisms and the weakening ef-
fects of various defects, have been well characterized both
theoretically3–17 and experimentally.18,19 Numerical methods
adopted in these analyses span all the length scales including
quantum mechanical calculations,3 atomistic simulations
with empirical hydrocarbon potentials,4 and simple thin shell
and beam theories.5 While short SWCNTs are accessible to
atomistic simulations with empirical hydrocarbon potentials
or even quantum mechanical calculations, numerical studies
on multi-walled CNTs �MWCNTs� with atomic resolutions
remain challenging, largely due to the prohibitive computa-
tional cost in computing the interlayer van der Waals
interactions.14–17 Typical atomistic simulations are limited to
a system consisting of only a few layers with a tube length
on the order of 10 nm, and thus incapable of probing long-
range elastic deformation morphologies of MWCNTs. Linear
elastic beam theories have been invoked to extract the me-
chanical properties from the experimental data and to ana-

lyze CNT-based devices. However, treating CNTs by linear
elastic beams often leads to very poor predictions due to
their intrinsically nonlinear characteristics. The apparent
limitations of atomistic simulations and linear elasticity theo-
ries have stimulated continual search for efficient yet accu-
rate methods for the analysis of MWCNTs.

Experimental studies found that MWCNTs are very rigid
in their axial direction but very flexible in the transverse
direction. These systems can sustain large deformations be-
fore bond breaking occurs.18,19 These nonlinear elastic defor-
mations suggest that finite crystal elasticity �FCE� theories
may be well suited to simulate the deformation of MWCNTs.
Indeed, within the framework of FCE, a recently developed
method coarse-grains the fully atomistic model by finite-
element discretization of CNTs, where the constitutive rela-
tion on the continuum level is seamlessly cast from the in-
teratomic interaction potentials.12–16 Different from several
other continuum methods,11,20 this method overcomes the
drawbacks of the standard Cauchy–Born rule in treating
curved atomic monolayers and analytically casts the inter-
atomic potentials into the strain energy density function
through an exponential mapping. This method �hereafter re-
ferred to as FCE� typically reduces the number of degrees of
freedom by one to two orders of magnitude, while remaining
faithful to the corresponding atomistic model for defect-free
CNTs, as demonstrated by a number of examples.12–16 Figure
1 demonstrates the accuracy of the FCE calculations by com-
paring with the fully atomistic simulations of the deforma-
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tion morphologies of a twisted �30,30� SWCNT at two twist-
ing angles of 50° and 75°. However, the method is still
computationally very intensive when simulating very thick
MWCNTs.21

Recent numerical studies14–16,22 using the FCE method
have found that under torsion or bending MWCNTs exhibit
well defined rippling deformation patterns beyond the buck-
ling point. These distributed patterns are associated with a
nonlinear elastic �recoverable� behavior and distinctly differ-
ent from the localized kinks for twisted or bent SWCNTs.12

The periodicity and regularity of the rippling pattern along
both the tube length and circumferential directions invite
even coarser description of MWCNTs with little compromise
of simulation accuracy. In this paper, we characterize the
rippling morphology of MWCNTs under torsion using a
simple sinusoidal shape function with only several yet-to-
determine parameters that measure the rippling amplitudes of
each layer and the wave numbers along the axial and circum-
ferential directions. An energy minimization scheme23 is then
utilized to determine these parameters from which the ener-
getics and the evolution of the deformation can be extracted.
We show that this coarse-grained model is computationally
very effective and able to reproduce the rippling deformation
morphology and the mechanical properties of twisted
MWCNTs predicted by FCE simulations. Our analysis with
this effective coarse-grained method shows that the circum-
ferential wave number increases nearly linearly with respect
to the tube radius while the bifurcation torsional strain pow-
erly scales with tube radius. Although each layer deforms
highly nonlinearly, the collective mechanical response of
MWCNTs during the entire torsional process approximately
follows a simple bilinear law. We find that the ratio of the
torsional rigidities between the pre- and post-bulking re-
gimes is nearly a constant, independent of the tube size. The
bilinear constitutive relation, together with the scaling law of
the bifurcation torsional strain, constitutes a simple nonlinear
beam theory, which facilitates large-scale simulations of
MWCNT bundles and networks.24–26

The rest of the paper is organized as follows. We first
show that the rippling morphology of a twisted MWCNT can
be well characterized by a sinusoidal shape function in the

post-buckling regime. Based on the sinusoidal shape func-
tion and the energy minimization scheme, the coarse-grained
model is furnished and validated by comparing with the FCE
method. The deformation morphologies and mechanical re-
sponses of MWCNTs with up to 100 layers are then system-
atically documented. Finally, we conclude our findings and
comment on the coarse-grained method.

II. METHODOLOGY

Since the accuracy of the energy minimization scheme
depends on that of the shape function in approximating the
deformation morphology, we begin with examining the rip-
pling morphology of a ten-walled MWCNT under torsion
using the FCE method.22 From hereafter, an n-walled
MWCNT is indexed by �5,5�@ �10,10�@ .. . @ �5n ,5n�,
with n being the number of layers; the interlayer spacing is
roughly 0.34 nm. It should be noted that with a reasonably
fine mesh size, the FCE method can faithfully reproduce the
deformation energetics and morphology of MWCNTs of the
fully atomistic simulations in the entire deformation
regime.12 The FCE model consists of about 18�103 finite
element nodes; the corresponding atomic counterpart has
more than 150�103 atoms. When the torsional deformation
exceeds the bifurcation point, the initially circular cross sec-
tion of the MWCNT buckles into a hexagonal shape with
rounded corners, and the rippling amplitude increases from

FIG. 2. �Color online� Rippling morphologies of a ten-walled MWCNT
under torsion obtained by FCE simulations �Ref. 22� can be approximated
by a simple sinusoidal function. �a� Longitudinal-section view of the defor-
mation morphology. �b� Radial coordinates r of the sample points �red sym-
bols� in the outermost layer �50,50� as a function of axial coordinates x fitted
by a sinusoidal function �black curve�. �c� Cross-sectional view. �d� Radial
coordinates r of the sample points �red symbols� as a function of the polar
angle � fitted by a sinusoidal function �black curve�.

FIG. 1. �Color online� Twisted 37.67 nm long �30,30� nanotube: comparison
between the atomistic model and the FCE model for two twisting angles.
The atomistic system has 54 000 degrees of freedom while the continuum
model has only 5070. The computational time with the continuum approach
is seven times smaller than the full atomistic simulations, while the strain
energy predicted by FCE calculations is only �2% different from full ato-
mistic simulations at 75° twisting and can be lower with a refined mesh. �a�
Superimposed deformation configurations for atomistic �black spheres� and
FCE �gray surface� calculations and �b� map of the strain energy density on
the finite element computational mesh �red is high, blue is low�.
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the innermost layer �nearly zero� to the outermost layer, as
shown in Figs. 2�a� and 2�c�. We sample representative
points from the rippled outermost layer and plot the radial
coordinate r of these sample points as a function of the axial
coordinate x and polar angle �, respectively. We find that the
spatial arrangement of these sample points can be well fitted
by a single sinusoidal shape function in both the axial and
circumferential directions with a circumferential wave num-
ber equal to 6 and an axial wave number of about 7.5 �Figs.
2�b� and 2�d��.

Motivated by the observation and noting that the rippling
morphology is helical in nature and nearly uniformly distrib-
uted along the MWCNTs, we approximate the rippling mor-
phology of an n-walled CNT by the following shape func-
tion, as

x = X ,

r = R�i� + B0�i� + B1�i�sin�Nx
2�x

L
− Ny�� ,

� = � + x� , �1�

where i=1, . . . ,n is the layer index �from innermost to out-
ermost�, L is the tube length, and � is the torsional angle per
unit length; X, R�i�, and �, respectively, are the reference
coordinates along the axial, radial, and polar directions in the
undeformed configuration, while x, r, and � are the corre-
sponding coordinates in the deformed configuration. One no-
tices from Figs. 2�a� and 2�c� that all the layers deform com-
patibly, which suggests that all the layers share the same
wave numbers in both axial and circumferential directions.
Accordingly, Nx and Ny are two global parameters denoting
the wave numbers along axial and circumferential directions,
respectively, for all the layers; B0�i� and B1�i� are local pa-
rameters representing uniform radius change �expansion or
shrinkage� and the rippling amplitude, respectively, for the
ith layer. The radial expansion �or shrinkage� B0�i� is neces-
sary to break the energetic symmetry of the ridges and fur-
rows in the deformation morphology.22 The wave number Ny

is enforced to be an integer in order to maintain the continu-
ity condition of the deformation morphology along the cir-
cumferential direction when the polar angle approaches 2�.
For an n-walled CNT, regardless of its length, only 2�n+1�
independent variables �unknowns� are needed to characterize
its deformation morphology, which is much fewer than the
number of degrees of freedom in both the FCE and fully
atomistic models.

The deformation shape function defined in Eq. �1� facili-
tates the calculation of the total system energy of the twisted
MWCNTs at specified torsional deformation �. With trial
values of the parameters in the deformation shape function,
the atomic positions in the deformed configuration are
uniquely determined, which yield directly the bond lengths
and bond angles in the deformed configuration. In the energy
calculation, we adopt the second-generation Brenner
potential27 to describe the in-plane covalent bonding energy
and the classical Lennard-Jones potential28 to the interlayer
nonbonding van der Waals interaction energy. The constitu-
tive level relaxation of inner displacement12 is not imple-

mented here. In the simulations, the MWCNT is rotated in-
crementally by spatially repositioning the tube surfaces
uniformly in terms of the rotation angle �. The equilibrium
configuration under specific torsional deformation is ob-
tained by minimizing the total potential energy with respect
to Nx, Ny, B0�i�, and B1�i� �i=1, . . . ,n� through the limited-
memory Broyden-Fletcher-Goldfarb-Shanno �BFGS�
algorithm.29 To begin with, the MWCNT is relaxed at �=0
with small random nonzero values of B1�i�. To ensure fast
convergence, the parameters determined from the previous
step are used as initial values for the next minimization step.
The torsion of bifurcation corresponds to the critical point at
which the rippling amplitude B1 increases abruptly. The
wave number Ny is determined by a two-step minimization
process. The total system energy is first minimized without
constraining Ny to an integer. The wave number is then cho-
sen to be the integer close to the value obtained, and the
system is again relaxed at the fixed wave number Ny, which
identifies the true energy equilibrium configuration and the
values of other parameters. If the value of Ny obtained from
the first minimization step is equally close to two integers,
then the value of Ny is chosen to be the one that gives rise to
a lower system energy.

III. SIMULATION RESULTS

A. Model validation: A representative study

We next validate the coarse-grain model by a direct com-
parison with the FCE simulations through a representative
study of a ten-walled MWCNT. We emphasize that the FCE
method provides accurate solution to the deformation mor-
phology and energetics comparable to the fully atomistic
simulations. We found that at a relative small twisting angle,
the rippling amplitudes B1�i� are nearly zero for all the lay-
ers. Thus, the MWCNT does not ripple at this loading regime
and the cross sections of all the layers remain circular �see
insets in Fig. 3�. Upon reaching the bifurcation point, the
rippling amplitude increases sharply and the cross sections of

FIG. 3. �Color online� Evolution of rippling amplitude B1�i� for the ith layer
�i=1 for the innermost and i=10 for the outermost� in a ten-walled
MWCNT as a function of torsional deformation. The innermost two layers
always have vanishing B1 acting as the hard core in the entire torsional
process due to the strong confinement by the outer layers. The insets depict
the evolution of the cross sections from the initial circular shape to an oval
and eventually to a hexagon with rounded corners.
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the outer layers deform from the circular shape first into an
oval shape and then into a hexagonal shape with rounded
corners. Our coarse-grained simulations predict that the tor-
sional deformation bifurcates at �CR=0.0122 nm−1 with the
circumferential wave number Ny =6. The corresponding evo-
lution of rippling amplitude B1�i� of the ith layer as a func-
tion of torsional angle per unit length � is shown in Fig. 3.
Both the predicted deformation morphology and the wave
number agree very well with the FCE model shown in Figs.
2�a� and 2�c�. However, the torsion of bifurcation predicted
by our model is larger than that of the FCE model
�0.0087 nm−1�. This is due to the over-constrained shape
function adopted by the present coarse-grained model, as
compared to the shape functions in finite element based FCE
simulations, therefore making the MWCNT artificially more
rigid.

Our simulations reveal that the rippling amplitude B1

increases monotonically from the inner to the outer layers.
Both B1�1� and B1�2� �rippling amplitudes for the innermost
two layers� remain nearly zero during the entire loading pro-
cess. Therefore, the innermost two layers never buckle �al-
ways remained as the cylindrical shape� and act as a hard
core since developing ripping morphology in these two lay-
ers would involve significant strain energy penalty. Such de-
formation characteristics of the inner two layers have also
been found in the FCE simulations.22 If the innermost two
layers are removed, MWCNTs under torsion develop a local
kink rather than a global uniform rippling morphology,30,31 a
feature commonly seen in twisted SWCNTs.

The simple shape function in Eq. �1� results in a perfect
periodic and helical morphology �Figs. 4�a� and 4�b�� at
equilibrium state, as shown in Fig. 4, which closely re-
sembles the rippling morphology obtained from the FCE
simulations14,22 �Figs. 2�a� and 2�c��. The ridges �outward
rippling colored by green in Fig. 4�c�� are identified with
positive Gaussian curvatures �red in Fig. 4�d�� and higher
strain energy states �red in Fig. 4�e��, while the furrows �in-
ward rippling colored by blue in Fig. 4�c�� are identified with
negative Gaussian curvatures �blue in Fig. 4�d�� and lower
energy states �blue in Fig. 4�e��. All these characteristics
closely replicate the results of the FCE calculations. Despite

the nearly zero rippling amplitude, the innermost layer �5,5�
stores a very high strain energy. Owing to the strong confine-
ment, the strain energy in this layer cannot be released via
rippling, which may lead to bond breaking and subsequent
brittle facture when the torsional deformation continues to
increase.17,22

It is worth noting that the characteristics of the helical
rippling morphology in twisted MWCNTs are different from
that in bent MWCNTs, i.e., the so-called Yoshimura or dia-
mond buckling pattern. Structurally, torsion induced rippling
is distributed more periodically and uniformly along the tube
while bending induced rippling is located only in the com-
pressive side.14,15 Energetically, in twisted MWCNTs the
ridges stay in a higher energy state than the furrows, while in

FIG. 5. �Color online� Energetics and mechanical responses of a ten-walled
MWCNT under torsion calculated by the present model. For comparisons,
an idealized case is also depicted, where the deformation of the MWCNT is
constrained to the perfect cylindrical shape without rippling �by fixing B1

=0 for all the layers� throughout the entire loading process. �a� As compared
with the idealized deformation mode, the rippling deformation �actual� be-
yond the bifurcation point releases the in-plane strain energy, penalized by
the increase in the interlayer van der Waals energy. The undeformed con-
figuration is taken as the reference energy state. In the idealized case, the
interlayer van der Waals energy is nearly constant throughout the entire
loading process, and thus the change in nonbonding energy �blue curve�
almost coincides with the horizontal axis. �b� Applied torque as a function of
the torsional deformation � �torsional angle per unit length�. The rippling
deformation regime corresponds to a lower �5.514�104 aJ nm� but nearly
constant torsional rigidity than the idealized deformation mode �8.178
�104 aJ nm�. The torsion of bifurcation predicted by the present model
�1.22�10−2 nm−1� is larger than that of the FCE model �0.87
�10−2 nm−1�. The post-buckling torsional rigidity predicted by the present
model is also slightly higher than that of the FCE calculation �4.891
�104 aJ nm�, owing to the over-constrained sinusoidal shape function.

FIG. 4. �Color online� Rippling deformation of a ten-walled CNT
�5,5�@ .. . @ �50,50� under torsion with 34 nm in length and 3.4 nm in
radius. �a� Longitudinal view. �b� Cross-sectional view. �c� Deformation map
�green for ridges and blue for furrows�. �d� Gaussian curvature map �white
for zero, blue for negative, and red for positive Gaussian curvature�. �e�
Energy density map �red for higher energy state and blue for lower�.
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bent MWCNTs the strain energy is nearly equally concen-
trated at the folds �both ridges and furrows�.14,15

To reveal the physical mechanisms governing the torsion
induced rippling deformation, we plot in Fig. 5�a� the evolu-
tion of the in-plane strain energy �black curve� and the inter-
layer nonbonding energy �red curve� as a function of the
torsion deformation �, where the undeformed configuration
��=0� is taken to be the reference energy state. For compari-
sons, an idealized case is also plotted �green and blue curves,
respectively�, where the deformation of the MWCNT is con-
strained to the perfect cylindrical shape without rippling �by
fixing B1=0 for all the layers� throughout the entire loading
process. The two sets of curves are graphically indistinguish-
able up to the bifurcation point and thereafter deviate gradu-
ally from each other. In the pre-buckling regime, the in-plane
strain energy increases quadratically with respect to � and
the interlayer nonbonding energy remains almost a constant.
Consequently, the mechanical response in this regime can be
well characterized within the framework of linear elasticity.5

In the post-buckling regime, the interlayer nonbonding en-
ergy stored in the rippled morphology is slightly higher com-
pared to the idealized case �the interlayer nonbonding energy
for the idealized case hardly changes�, while both in-plane
strain energy and the total system potential energy are lower.
This clearly shows that the in-plane strain energy release is
the driving force for rippling, penalized by the increase in
interlayer nonbonding energy. Since the in-plane stiffness in
MWCNTs is much higher than the out-of-plane stiffness, the
rippling deformation represents an effective configurational
transition to release the in-plane strain energy, which leads to
an energetically favorable state at sufficiently high torsion.

Figure 5�b� shows the torque-torsion relation, where the
torque is numerically calculated by Torque=dE /d�. For the
idealized case, the torque linearly increases with torsion
throughout the entire loading process �black curve�. For the
actual case �red curve� where the rippling morphology devel-
ops, the torque increases linearly with respect to the torsional
deformation up to the buckling point with a torsional rigidity
of D1=8.178�104 aJ nm �1 aJ=10−18 J�. Despite the non-
uniform strain-energy distribution beyond the buckling point
�Fig. 4�e��, the overall torque-torsion relation remains almost
linear with a reduced torsional rigidity of D2=5.514

�104 aJ nm, which is slightly higher than the FCE results
�blue curve in Fig. 5�b�, D2=4.89�104 aJ nm�. In this fig-
ure, the critical twisting angle at which rippling morphology
initiates can be more easily identified from the torque-torsion
relation. It should be noted that according to the results in
Ref. 15, the torque-torsion relation is not strictly bilinear, as
it is argued that the strain energy-torsion relation for thick
MWCNTs follows

E/L = C� ��R�2 for 	�R	 � �cr

�cr
2−a	�R	a for 	�R	 � �cr


 , �2�

where C is a material constant, R is the outer radius, �
=R� is the torsional strain, �cr is a critical length scale which
is a constant around 0.1 nm, and a is an anharmonic expo-
nent close to 1.6. According to this law, in the pre-buckling
regime the torque-torsion relation is indeed linear, but after
bifurcation, the torque is proportional to �a−1. However, for
moderate �reasonable� torsional strains, given the parameter
values, the post-buckling response very closely follows a lin-
ear law. In bending,14,15 the anharmonic exponent is smaller,
and the post-buckling effective modulus depends more
strongly on deformation.

B. Size dependence and scaling law

The representative study on the ten-walled MWCNT
shows that both the deformation evolution and the energetics
predicted by the present model agree reasonably well with
the FCE results, thus validating the coarse-grained method.
This agreement is obtained with a drastically reduced com-
putational cost. Indeed, for the ten-walled MWCNT studied,
the fully atomistic model consists of more than 450
�103 degrees of freedom; a typical FCE model consists of
about 54�103 degrees of freedom, while the present model
has only 22 independent variables. To explore the size-
dependent mechanical response of twisted MWCNTs and to
further demonstrate the efficiency of the present coarse-
grained model, we now analyze the deformation energetics
and morphologies of a series of MWCNTs with up to 100
layers. Note that the thick MWCNTs considered here are
computationally very costly for the FCE model and unafford-

TABLE I. Structural and mechanical properties of MWCNTs with different number of layers. n is the number
of layers in a MWCNT. R is tube radius. �CR is the torsion of bifurcation. D1 and D2 are torsional rigidities in
the pre- and post-buckling regimes, respectively. Note that D2 /D1 is nearly constant.

n
R

�nm�
�CR

�nm−1�
D1

�aJ nm�
D2

�aJ nm� D2 /D1

10 3.40 1.22�10−2 8.178�104 5.514�104 0.674
20 6.80 3.83�10−3 1.171�106 8.017�105 0.684
30 10.20 1.92�10−3 5.725�106 3.959�106 0.691
40 13.60 1.04�10−3 1.769�107 1.253�107 0.708
50 17.00 8.72�10−4 4.265�107 2.888�107 0.677
60 20.40 5.23�10−4 8.802�107 5.779�107 0.657
70 23.80 4.19�10−4 1.619�108 1.098�108 0.678
80 27.20 3.49�10−4 2.755�108 1.867�108 0.678
90 30.60 2.79�10−4 4.391�108 3.034�108 0.691

100 34.00 2.44�10−4 6.675�108 4.467�108 0.669
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able for fully atomistic simulations. The structural and me-
chanical properties for these MWCNTs are summarized in
Table I.

If one models the n-walled MWCNTs as a set of con-
centrically arranged elastic thin shells by linear elasticity
without taking into account the interlayer coupling, the tor-
sional rigidity of the MWCNT is ought to scale with n2

� �n+1�2. In the light of this classical scaling law, we scale
the pre- and post-buckling torsional rigidities D1 and D2 for

all the tubes by n2� �n+1�2, denoted by D̄1 and D̄2, respec-
tively, and plot them as a function of n, as shown in Fig. 6�a�.
We find that both pre- and post-buckling torsional rigidities
of all the MWCNTs considered follow the simple scaling
law, i.e., the scaled values are almost constant. The post-
buckling rigidity is found to be slightly lower than the preb-

uckling rigidity. The ratio D2 /D1 �also D̄2 / D̄1� is nearly a
constant of 0.681	0.012, which is slightly higher than that
obtained from the FCE calculations �0.638	0.013 �Fig.
6�b���. Again, we attribute this discrepancy to the over-
constrained shape function adopted in our coarse-grained
method. The magnitude of the discrepancy is relatively
small, particularly considering the drastic reduction in com-
plexity of the model. While the linear elastic response in the
pre-buckling regime is expected and mainly governed by the
in-plane deformation energetics, we conjecture that the scal-
ing law in the post-buckling regime is a result of compatible
deformation of all the layers as a competition of in-plane and
interlayer interactions. Note that in the limit of super-thick
MWCNTs this scaling law can be approximated by n4, while
in the limit of thin MWCNTs �less than ten layers� the scal-
ing law no longer holds with more than �20% difference.

Going back to the law in Eq. �2� proposed in Ref. 15,
taking two derivatives with respect to the torsional strain �
=R� we compute the elastic modulus. According to this re-
lation, the post-buckling modulus D2 does depend on defor-
mation, but only slightly. Evaluating this modulus at the
critical strain, it follows from a simple calculation that
D2 /D1=a�a−1� /2, in agreement with the above observation
that this ratio is independent of the tube radius. Additionally,
this observation shows that the anharmonic exponent can be
computed from the ratio of the pre- and post-buckling stiff-
ness, which can in principle be measured experimentally.

Following the similar analysis based on the elastic thin
shell theory, the stability of an individual shell decreases
when its radius increases, and the outermost layer in a
MWCNT is least stable. Under torsion, the shear strain ap-
plied to each layer scales with R. Taken together, one reaches
that the buckling point �CR of a MWCNT may scale with
R−2.15 This suggests that a thicker MWCNT ripples at a
smaller torsion. Indeed, our model predicts that the torsion of
bifurcation of the 100-walled CNT is only 2.44
�10−4 nm−1, about two orders of magnitude smaller than
that of the ten-walled CNT. However, careful curving fitting
of our simulation data for all the MWCNTs studied reveals
that the torsion of bifurcation �CR scales with R−1.72, incon-
sistent with the classical elasticity theory. This scaling law is
compared to R−1.82 obtained from FCE simulations.31 Again,
the over-constrained shape function in the present model ac-

counts for the discrepancy of the scaling exponents between
the present model and the FCE model. Here, the effect of the
simple shape function used may be more drastic, since even
though the post-buckling regime of twisted MWCNTs is very
well characterized by the sinusoidal shape functions, the on-
set of buckling does, in general, mobilize different deforma-
tion modes.16 As a natural extrapolation of our simulation
results, super-thick MWCNTs would ripple at a vanishing
critical torsion. In this limit, the MWCNTs behave as bulk
beams, and the mechanical response of the MWCNTs can be
fully characterized by the post-buckling rigidity.

FIG. 6. �Color online� The scaling law of the twisted MWCNTs with up to
100 layers. Results from the FCE simulations are also presented for com-
parisons. �a� The scaled torsional rigidities in the pre- and post-buckling
regimes as a function of number of layers n in a MWCNT, respectively.
Both the scaled torsional rigidities are nearly constants. �b� The ratio be-
tween the torsional rigidities in the pre- and post-buckling regimes is nearly
a constant of 0.681	0.012. Results from the FCE model reveal that the
ratio is 0.638	0.013. �c� The torsion of bifurcation �CR scales with R−1.72.
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The examination of the cross-sectional morphology of
the MWCNTs shows that the initial circular shape turns into
a polygonal shape with rounded corners �Fig. 7�a��. We find
that the wave number Ny in the circumferential direction in-
creases nearly linearly with the number of layers n, as shown
in Fig. 7�b� �black curve�. By curve fitting, one finds that the
linear relationship can be described by Ny =Int�0.1n+4�,
where the symbol Int denotes taking the integer of the value
in the parenthesis. Since the circumference of an n-layered
MWCNT is about c=2.13n �considering all the layers as
armchair tubes�, the circumferential wavelength 
, defined as
the circumference divided by the circumferential wave num-
ber Ny, increases monotonically with n and R �blue curve in
Fig. 7�b��. In the limit of super-thick MWCNTs �R→��, one
finds the upper limit of the wavelength in the circumferential
direction of �21.3 nm.

IV. DISCUSSION AND CONCLUSIONS

In summary, the present study develops a coarse-grained
scheme to characterize the deformation energetics and mor-
phology of twisted MWCNTs. The method involves approxi-
mating the periodic wave-like rippling morphology by a
simple sinusoidal shape function with only a few parameters,

which are determined by the geometry optimization. The
method is carefully validated through a representative study
with comparisons to the FCE simulations. This method
shows clear advantages over MD and FCE simulations in
that it reduces the computational complexity by several or-
ders of magnitude while still captures the essential deforma-
tion characteristics and mechanical properties of twisted
MWCNTs. With appropriately chosen shape functions, the
method can be easily extended to the bent MWCNTs.

The high efficiency of the present coarse-grained method
enables systematic studies of the deformation energetics and
morphology of super-thick MWCNTs. Our coarse-grained
simulations reveal that the rippling morphology is a result of
in-plane strain energy release, penalized by the increase in
the interlayer van der Waals energy. Due to the resisting role
of the interlayer van der Waals interactions to the rippling
deformation, the simplified treatment of MWCNTs as nonin-
teracting elastic thin shells predicts a smaller buckling point
and overestimates the rippling amplitude.

Although the rippling deformation pattern is intrinsically
nonlinear, our simulation results show that the mechanical
response can be well characterized by a simple bilinear law
for practical deformation ranges. The ratio between the tor-
sional rigidities in the pre- and post-buckling regimes is
nearly a constant of about 0.681, independent of the tube
radius. We also find that the bifurcation torsional strain pow-
erly scales with the tube radius. The bilinear constitutive
relation and the scaling law of the bifurcation torsional strain
constitute a simple nonlinear beam theory, which may be
further incorporated into finite element analysis for large
scale simulations of CNT-based materials and devices.

Despite its great advantages in computational simplicity
and significantly enhanced computational affordability, the
use of the over-constrained shape function in the present
method makes the MWCNTs artificially more rigid, giving
rise to slightly higher bifurcation torsional strains and tor-
sional rigidities. Such an artifact can be minimized by adding
high frequency terms in the shape function; this, however,
increases the computational complexity. In addition, one
should note that the present method simulates a segment of
uniformly twisted MWCNT without imposing any additional
boundary conditions to the tube ends. This naturally elimi-
nates the boundary effects, which were proven to introduce
inaccuracies in simulations of short MWCNTs.15

It is worth pointing out that the scaling law developed in
this study only applies to MWCNTs with at least ten layers.
Large discrepancies appear for MWCNTs with less than ten
layers. In the limit of a SWCNT, local kinks develop as the
characteristic deformation morphology beyond the buckling
point, rather than the global rippling morphology in twisted
thick MWCNTs. On the other side, super-thick tubes can be
considered as a bulk beam, which are well characterized by
the classical beam theory. In this limiting case, the MWCNTs
buckle instantaneously upon a vanishing twist and only the
post-buckling regime is operative.
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