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ABSTRACT 
Using a generalized quasi-continuum method, we characterize the post-buckling morphologies and energetics 
of thick multi-walled carbon nanotubes (MWCNTs) under uniaxial compression. Our simulations identify for 
the first time evolving post-buckling morphologies, ranging from asymmetric periodic rippling to a helical 
diamond pattern. We attribute the evolving morphologies to the coordinated buckling of the constituent shells. 
The post-buckling morphologies result in significantly reduced effective moduli that are strongly dependent on 
the aspect ratio. Our simulation results provide fundamental principles to guide the future design of  
high-performance, MWCNT-based nanodevices. 
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Introduction 

Multi-walled carbon nanotubes (MWCNTs) have 
found a wide range of applications as basic building 
blocks in micro(nano)-electromechanical systems 
(MEMS/NEMS) [1–5], owing to their unique com- 
bination of mechanical, electronic, and biochemical 
properties. Since carbon nanotubes (CNTs) are 
slender, thin-walled structures that are susceptible to 
buckling under compressive loading, failure induced 
by mechanical instability has been a major concern in 
the performance of such CNT-based nanodevices [5]. 
The behavior of single-walled CNTs (SWCNTs) 
under different loading conditions (bending, twisting, 
and compression) has been well characterized by 
various methods, ranging from all-atom molecular 

dynamics (MD) simulations [6–10] to continuum 
beam [8, 11] and shell theory-based modeling [8, 12]. 
These studies predicted that the buckling morphologies 
feature a single local kink in SWCNTs beyond a 
critical bending strain. This phenomenon highlights 
the very large energetic cost of stretching a CNT com- 
pared to bending it. In bent and twisted MWCNTs, 
the single sharp kink is replaced by periodic undulations 
[5, 12–22]. Specifically, the Yoshimura (diamond 
shaped) pattern appears in the compressive section 
of bent MWCNTs [5, 13–15, 17, 18, 21, 23], whilst 
periodic wave-like ripples develop in both the length 
and circumferential directions in twisted MWCNTs 
[13, 14, 16, 22, 23]. These deformation morphologies 
result in a substantially reduced effective modulus 
[13, 14, 22–26]. The mechanical responses of MWCNTs 

Nano Res (2010) 3: 32–42 
DOI 10.1007/s12274-010-1005-5 
Research Article  

Address correspondence to suz10@psu.edu 



Nano Res (2010) 3: 32–42 

 

33

are generally reversible upon unloading, indicating  
their nonlinear, purely elastic nature.  

An MWCNT is composed of a number of concentric 
thin shells. The aspect ratios (tube length divided by 
tube diameter) of the innermost and outermost shells 
of a given MWCNT may differ by two orders of 
magnitude. Under uniaxial compression, isolated 
shells with the innermost shell aspect ratio may exhibit 
beam (columnar) buckling, while those with the 
outermost shell aspect ratio exhibit shell buckling. In 
reality, the inter-shell van der Waals (vdW) interactions 
play a critical role, constraining the buckling of these 
constituent shells. It is thus interesting to examine 
which buckling mode an MWCNT will adopt under  
the influence of inter-shell vdW interactions.  

Experimental evidence of the instability of uniaxially 
compressed MWCNTs has recently emerged [27–29]. 
Waters et al. [27, 28] conducted nanoindentation 
measurements of vertically aligned short, thick 
MWCNT forests (with aspect ratio ranging from 1 to 
2). Hysteresis was observed in their load–displacement 
curve, which indicates the occurrence of plastic 
deformation with two possible sources: defect 
nucleation (Stone–Wales defects) and propagation 
[30–35], or adhesions between neighboring MWCNTs 
under the compressive loading. Using scanning 
electron microscopy (SEM), they found that under 
compression the buckled MWCNTs exhibited strongly 
distorted cross-sections and wrinkled sidewalls. Due 
to the large size of the nanoindentation tips used in 
their experiments, several MWCNTs were simul- 
taneously compressed. At a certain stage of the 
indentation, neighboring MWCNTs may come to 
contact with each other, which poses difficulties in 
the post-buckling analysis for a single MWCNT. They 
also found that the measured buckling strain is 
neither consistent with the prediction by continuum 
theory using the elasticity parameters of Yakobson et 
al. [8], nor with the theoretical model developed by 
Ru [36]. Using atomic force microscopy (AFM), Yap 
et al. [26] characterized the instability of individual 
MWCNTs with different aspect ratios under cyclic 
compression. While their experiments unambiguously 
demonstrated that instability of MWCNTs with large 
aspect ratios is governed by Euler buckling, the 
post-buckling deformation morphology of MWCNTs 

with relatively small aspect ratios remains unknown, 
largely due to the experimental difficulties in in situ 
imaging of the deformed MWCNTs with nanoscale 
resolutions. Yap et al. hypothesized that the instability 
of short, thick MWCNTs can be attributed to  
symmetric shell buckling. 

All-atom simulations with empirical interatomic 
potentials have been widely used to study the 
deformation of CNTs. However, for the study of thick 
MWCNTs, fully atomistic simulations are com- 
putationally prohibitive because of the large number 
of degrees of freedom involved. This explains why 
most previous atomistic studies have been limited to 
SWCNTs or MWCNTs with only a few layers. In this 
article, we systematically characterize the deformation 
morphologies and energetics of thick MWCNTs  
(≥10 layers) with relatively small aspect ratio under 
uniaxial compression through a large-scale, effective 
quasi-continuum method, and rationalize the buckling 
mechanisms. Our simulations identify evolving post- 
buckling morphologies, ranging from asymmetric 
periodic rippling to helical diamond patterns. We 
attribute the evolving morphologies to the coordinated 
buckling of the constituent shells. We further note that 
the post-buckling morphologies result in significantly 
reduced effective moduli that are strongly dependent 
on the aspect ratio. Our simulation results may provide 
fundamental principles to guide the design of future  
high-performance, MWCNT-based nanodevices. 

1. Methodology 

We adopt the modified second-generation Brenner 
potential [37], denoted by MTB-G2, to describe the 
short-range covalent interactions in MWCNTs; this 
takes the form: 

>

⎡ ⎤= −⎣ ⎦∑∑ R A
TB ( ) ( ) ( )ij ij ij

i j i
V V r B V rr        (1) 

where ijr  is the distance between atoms i and j, RV  
and AV  are the pairwise repulsive and attractive 
interactions, respectively, and ijB  is the bond-order 
function that has a complicated dependence on the 
bond angles and bond lengths involving atoms i and 
j. The long-range nonbonding interaction is described 
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by a Lennard–Jones (LJ) potential with the parameters 
given by Girifalco et al. [38], as 

∈ κ
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
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2

r rV r
r r r

        (2) 

where r is an interatomic distance, κ = 2.7  is a 
dimensionless constant, =0 1.42r Å is the equilibrium 
bond length, and ∈ = 15.2 eV·Å6.  

To improve the computational affordability without 
sacrificing accuracy, the fully atomistic models 
employed are here coarse-grained by a quasi- 
continuum method based on the finite crystal elasticity 
theory for curved crystalline monolayers [39–41]. 
Within this theoretical framework, the exponential 
Cauchy–Born rule was proposed as a way of linking  
the kinematics at the atomic and continuum scales: 

= ( )a Aζ                 (3) 

where ζ  is an exponential map that transforms the 
undeformed lattice vector A into a deformed one a. 
Through a local approximation of the exponential 
map, the deformed lattice vectors and the angles 
between two lattice vectors can be analytically 
represented in terms of the continuum deformation 
measures of the surface. Consider a representative 
unit cell of area 0S  containing two inequivalent nuclei 
and three inequivalent bonds in the reference, 
undeformed configuration: the hyperelastic strain 
energy density W can be formulated in terms of the  
MTB-G2 potential, 

θ θ
=

=
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where C and K are the stretch and curvature tensors, 
respectively; , ,i j ka a a  are the three inequivalent bonds, 
θ θ,j k  are the angles between these three bonds, 
and = 2

0 (3 3 2)S A  is the area of the unit cell. Note 
that the hexagonal lattice is a Bravais multi-lattice, so 
an additional kinematic variable η  must be introduced 
to describe the relative shift between the two basic 
lattices. This inner variable is eliminated by minimizing 
the strain-energy density function, giving rise to a 
stable local lattice arrangement within the unit cell. 

After this inner relaxation, the strain energy density 
can be written as a function of only C and K: 

=ˆ ˆ [ ; ; ( ; )]W W C K η C K            (5) 

Thus, the continuum representation of the covalent 
binding energy for the shells in an MWCNT subject 
to the deformation map φ  that maps from the  
undeformed to deformed configurations is  

[ ]
Ω

φ φ Ω
=

= ∑ ∫
1
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where X is a material point in the undeformed 
configuration, and Ω i  is the surface area of the i-th  
shell in an n-walled MWCNT.  

Homogenization of the discrete nonbonded energy 
density between two unit cells gives rise to the vdW 
energy density, as 

⎛ ⎞
= ⎜ ⎟
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2
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          (7) 

The factor of two on the right-hand side of Eq. (7) 
comes from the fact that each unit cell contains   
two nuclei. The nonbonded energy between two  
neighboring shells is then 

Ω Ω
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where Xi and Xi+1 are the two material points that are 
on the i-th and (i+1)-th shells, respectively, in the 
MWCNT; Ω0

i and Ω +1
0
i  are the surfaces of the i-th 

and (i+1)-th shells, respectively. 
Based on the coarse-grained constitutive relations 

for both the bonding and nonbonding interactions, 
the constituent shells of the MWCNTs are discretized 
by finite elements. In our simulations, an n-walled 
MWCNT is indexed by (5,5)/(10,10)/.../(5n,5n), where 
the inter-shell spacing is roughly 0.34 nm. As the first 
step, the MWCNTs are fully relaxed free of any 
constraints using a limited-memory Broyden– 
Fletcher–Goldfarb–Shanno (BFGS) algorithm [42]. A 
ring of finite-element nodes at each end of the 
MWCNTs are then held fixed and the MWCNTs are 
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uniaxially compressed by stepwise movement of the 
fixed nodes to the center in the axial direction. At 
each step, the MWCNTs are relaxed under the 
prescribed compressive strain; the reaction forces at 
the ends and the deformation morphology can be  
extracted from the equilibrated configurations.  

The coarse-grained model reduces the number of 
degrees of freedom by two orders of magnitude as 
compared to its atomistic counterpart, yet remains 
faithful to the nonlinearity of the interatomic 
interactions and the basic characteristics of hexagonal 
lattices. For instance, the coarse-grained model 
inherits the chirality of the atomistic counterpart, and 
gives rise to the correct stacking energy between the 
neighboring shells. Thus, the coarse-grained model 
reproduces the deformation morphologies and 
energetics of the corresponding atomistic models for  
defect-free, homogeneously deformed CNTs.  

2. Results and discussion 

2.1 Evolving post-buckling morphologies 

We choose a 20-walled CNT as a representative 
example to illustrate the deformation morphologies 
and energetics of thick MWCNTs under uniaxial 
compression. The aspect ratio of the MWCNT is 
ρ = =/ 5L d , where L is the length, and d is the 
diameter of the outermost wall of the MWCNT (also 
regarded as the diameter of the MWCNT). Figure 1 
shows the deformation morphologies at different 
compressive strains. The deformation morphologies 
of four constituent shells—the innermost, the 5th, the 
10th, and the outermost shells—are shown from left 
to right in each of Figs. 1(a)–1(c). We observed that, 
upon constraint-free geometry optimization as the 
first step (Fig. 1(a)), the shells in the MWCNT undergo 
rigid rotation with respect to their central axis. From 
innermost to outermost layers, the neighboring shells 
rotate in alternating directions (clockwise and counter 
clockwise). We attribute this alternating rotation to 
the registry-dependent inter-shell interactions [43]. In 
particular, the arrangement of the neighboring shells 
in the initial configuration (the initial guess) is close to 
A–A stacking, which is energetically disfavored [44]. 
The rotations of the neighboring shells in alternating 

directions rearrange the neighboring shells from A–A 
to A–B stacking, which lowers the inter-shell vdW 
interactions without affecting the in-plane deformation 
energetics. This rearrangement shows the capability 
of the coarse-grained model to inherit the chirality of 
its atomistic counterpart.  

 
Figure 1 Evolution of the deformation morphologies of a 
uniaxially compressed 20-walled MWCNT. Each subfigure 
consists of four constituent shells of the 20-walled MWCNT. 
From left to right in each subfigure, the shells are the innermost, 
the 5th, the 10th, and the outermost shells. (a) Fully relaxed, 
undeformed configuration. (b) At a compressive strain of 

38.23 10 ,ε −= ×  wave-like ripples appear along the 10th and the 
outermost shells, while ripples are not observable in the other 
two inner shells. (c) At a compressive strain of 21.18 10 ,ε −= ×  a 
helical diamond pattern runs from one end to the other for the 
outer three shells. The innermost shell is further bent and twisted 
throughout its length 

As the compressive strain increases, all shells of 
the MWCNT undergo uniform shortening. At a 
critical compressive strain of ε −= × 38.23 10 , wave-like 
periodic ripples appear (Fig. 1(b)) along the tube. The 
rippling pattern, however, is graphically undetectable 
in the two innermost shells. Such a rippling mor- 
phology in the inner shells would cause a large 
deformation energy penalty since inner shells are 
much more rigid. The rippling amplitude progressively 
increases from inner to outer shells, and increases with 
increasing compressive strain. The rippling in all 
shells has the same rippling periodicity, manifesting 
the coordinated nature of the deformation of the 
constituent shells. It is interesting to note that the 
rippling pattern is not exactly perpendicular to the 
axial direction (the loading direction) of the MWCNT, 
but has a small tilt. With a slightly increased com- 
pressive strain, the rippling pattern evolves into a 
diamond buckling pattern (Fig. 1(c)). Figure 1(c) shows 
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that at ε −= × 21.18 10  a helical diamond pattern 
appears in the three outer shells. In contrast, the 
innermost shell deviates from its linear configuration, 
but without a graphically visible diamond pattern. 
The helical diamond patterns predicted by our 
simulations have not been observed in either other  
numerical simulations or previous experiments. 

The constrained deformation of the innermost tube 
merits detailed study. Figure 2 displays the deformation 
mode of the innermost tube in the 20-walled MWCNT 
at different applied strains. To aid visualization of the 
deformed configurations (in green), a reference tube 
(in blue) is also plotted. The reference tube represents 
the uniformly shortened configuration without any 
radial displacement under the applied strain. The 
radial displacements of the deformed tubes due to 
uniaxial compression are rescaled by a factor of 20 to 
further aid visualization. At a compressive strain of 
ε −= × 38.23 10  at which wave-like ripples appear 
(Fig. 1(b)), the innermost tube remains straight 
(Fig. 2(a)) so that the deformed and the reference 
tubes overlap. At the critical strain of ε −= × 21.18 10 , 
the innermost tube is deformed into a spiral con- 
figuration around the reference tube (Fig. 2(b)). At 
the same critical strain, the helical diamond pattern on 
the outer shells also appears, indicating a coordinated 
buckling mechanism of the inner and outer shells. A 
further increase in the applied compressive strain 
results in an increase in the spiral amplitude (Figs. 2(c) 
and 2(d)). The innermost tube is simultaneously bent 
and twisted, as seen from the twist marks in the 
spiral configurations and confirmed by the calculated  
reaction forces at the ends of the tube.  

2.2 Deformation energetics 

To further reveal the physical mechanisms governing 
the evolution of the deformation morphologies, we 
plot in Fig. 3(a) the total system energy (in units of aJ) 
and the inter-shell nonbonding energy (vdW interaction 
energy) as a function of the applied compressive 
strain. The fully relaxed, undeformed configuration is 
taken to be the reference energy state. For comparison, 
the energy of the MWCNT undergoing an idealized 
deformation is also plotted, where the deformation of 
the MWCNT is perfectly cylindrical without rippling 

or diamond pattern formation throughout the entire 
loading process. The two sets of curves are graphically 
indistinguishable up to the bifurcation point and 
thereafter deviate gradually from each other. This 
bifurcation point corresponds to the onset of ripple 
formation in the MWCNT. In the pre-bifurcation 
regime, the total system energy increases quadratically 
with respect to the compressive strain, while the 
inter-shell nonbonding energy decreases linearly due 
to the uniform shortening of the MWCNT upon 
compression. In the post-bifurcation regime, the 
inter-shell nonbonding energy stored in the buckled 
morphology is much higher than in the idealized case, 
while the total system potential energy is still lower. 
This clearly suggests that the release of in-plane 
strain energy acts as the driving force for the rippling 
and diamond pattern formation, and is opposed by 
the increase in the inter-shell nonbonding energy. Since 
the in-plane stiffness in MWCNTs is much higher 
than the transverse stiffness, the rippling deformation 
and diamond pattern effectively release the in-plane 
strain energy, leading to an energetically favorable  
state at sufficiently high compressive load.  

 
Figure 2 The deformation configurations of the innermost tube 
in the 20-walled MWCNT. The tube in blue represents the uniformly 
shortened configuration without any radial displacement under 
the applied compressive strains, while the tube in green represents 
the deformed configuration. To aid visualization, the radial 
displacements of the deformed tubes due to uniaxial compression 
are rescaled by a factor of 20. At zero compressive strain, the 
configurations of these two tubes overlap. At finite applied strain, 
the deformed tube adopts a spiral configuration. The amplitude  
of the spiral configuration increases with increasing compressive 
strain. (a) 38.23 10 ;ε −= ×  (b) 21.18 10 ;ε −= ×  (c) 21.29 10 ;ε −= ×  
(d) 21.47 10ε −= ×  
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Figure 3(b) shows the stress–strain response of the 
MWCNT. For the idealized case, the compressive 
stress increases linearly with compressive strain 
throughout the entire loading process (solid black 
line). For the minimum energy path (red open circles) 
where the rippling and diamond pattern morphologies 
develop, the compressive stress first increases linearly 
with respect to the strain until a sudden drop appears, 
indicating the onset of local buckling. Beyond the 
buckling point, the compressive stress continues to 
increase with the applied strain, but with a significantly 
reduced stiffness as compared with that of the pre- 
buckling regime. If the inter-shell vdW interaction 
energy is neglected, an MWCNT in the pre-buckling 
regime can be treated as a series of linear springs,  
with the effective modulus computed by 

ε
=

=
π ∑ 1

( )n
ii

FY
t d

              (9) 

where F is calculated reaction force at the applied 
compressive strain ε . The term in parenthesis in 
Eq. (9) is the effective cross-sectional area of the 
MWCNT, where id  is the radius of the i-th shell, and 
t is the thickness of the shells. For the MTB-G2 
potential, the Young’s modulus of the shells is 
∼ 243/t  J/m2 based on the exponential Cauchy–Born 

rule [40] and = 0.066t nm [8]. With these geometrical 
parameters, the calculated modulus is 251/t J/m2, 
which is fairly close to the analytical result (the  
difference is ∼3%). 

2.3 Buckling mechanisms and onset buckling strain 

The buckling energetics and morphologies of a 
20-walled MWCNT provide insights into the buckling 
mechanisms and the post-buckling responses of 
MWCNTs. To relate the buckling mechanisms of an 
MWCNT to that of its constituent shells, we note that 
the buckling mode of each constituent shell in the 
MWCNT depends on its aspect ratio. Buckling of an 
SWCNT with large aspect ratio follows the Euler  
beam theory, where the buckling strain is given by  

( )ε ρ= π
2beam

cr
1
2

             (10) 

In contrast, SWCNTs with a small aspect ratio undergo 
shell buckling under compression with a buckling 
strain given by 

ε
ν

=
−

shell
cr 2

2
3(1 )

t
d

            (11) 

where ν  is Poisson’s ratio, and ν = 0.397  for the 

 
Figure 3 Energetics and mechanical responses of a 20-walled MWCNT under uniaxial compression. For comparison, an idealized
case is also depicted, where the deformation of the MWCNT is constrained to a perfect cylindrical shape without buckling throughout
the entire loading process. (a) As compared with the idealized deformation mode, the rippling deformation and diamond pattern
formation beyond the buckling point releases the in-plane strain energy, penalized by the increase of the interlayer van der Waals (vdW)
energy. The undeformed configuration is taken as the reference energy state. In the idealized case, the interlayer vdW energy decreases
linearly due to the uniform shortening of the MWCNT upon compression. (b) Stress–strain relations. The post-buckling morphologies
result in a substantially reduced effective modulus as compared to the pre-buckling regime 
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MTB-G2 potential [40]. Note that the buckling strain 
for shell buckling is independent of shell length. 

For the n-walled MWCNT with an aspect ratio of 
ρ ,  the aspect ratio of the outermost shell is ρ ,  while 
that of the innermost shell is ρn  under the condition 
that the innermost tube is (5, 5). Thus, for sufficiently 
large n, the innermost shell is prone to beam 
buckling, while the outermost shell undergoes shell 
buckling. The inter-shell nonbonding interaction has  
a constraining effect on both buckling modes, which 
delays the buckling as compared with isolated shells. 
For MWCNTs with relatively small aspect ratios 
(which are the focus of this study), it is conceivable 
that for the most general case there exist three critical 
buckling strains: the onset buckling strain for 
periodic rippling of the outermost shell ε outer

rippling ; the 
onset buckling strain of the symmetric diamond 
pattern ε outer

sym , and the onset buckling strain of the 
spiral configuration of the innermost shell ε inner

spiral . 
Analytical evaluations of these critical strains require 
consideration of the inter-shell interactions, which is 
straightforward but lengthy. Depending on the 
aspect ratio and the thickness of the MWCNT, the 
range of the strain for symmetric buckling may be 
too narrow to be detectable. For example, in our 
simulations of 20-walled MWCNTs, the symmetric 
diamond pattern was not observed during the 
compression, indicating that ε outer

sym  is fairly close to 
ε inner

spiral . In contrast, for the 25-walled MWCNTs, as will 
be discussed later, there is a detectable strain range 
within which the symmetric diamond pattern 
appears. Since the focus of the present study is on the 
thick, short MWCNTs, the outermost shell tends to 
ripple first as the compressive strain reaches ε outer

rippling . 
Due to the inter-shell vdW interactions, the rippling 
morphology propagates from the outermost shell all 
the way to the innermost shells. As the applied 
compressive strain increases, the rippling amplitude 
also increases. As the compressive strain reaches 
ε outer

sym , rippling may no longer be the energetically 
favorable deformation mode, and may be replaced by 
the symmetric diamond pattern. Since the innermost 
shell is significantly more rigid in the transverse 
direction than the outermost shell, neither the ripple 
nor the diamond pattern is the energetically 

favorable deformation mode for the innermost shell. 
Accommodating the deformation mode propagated 
from the outermost shell thus results in significant 
strain energy in the innermost shell. To release this 
excessive strain energy, the innermost shell abandons 
the deformation mode propagated from the outermost 
shell, and itself bends. Due to the constraining effects 
of the outer shells, the deformation mode of the 
innermost shell adopts a spiral configuration. Such a 
spiral configuration of the innermost shell in turn 
propagates all the way to the outermost shell. In 
accommodating this deformation mode, the symmetric 
diamond pattern is disrupted, and replaced by the 
helical diamond pattern. The helical diamond pattern 
represents a hybrid buckling mode of the MWCNT 
when beam buckling of the innermost shell and shell 
buckling of the outermost shell are both activated. 
The buckling response of the MWCNT appears to  
be a result of the coordinated deformation of the  
innermost and outermost shells. 

The periodic rippling is a characteristic shell buckling 
mode that has been widely observed in compressed 
thin-shell-like structures. Yet the tilting of the rippling 
demands further explanation. The tilted rippling 
pattern observed in the compressed MWCNTs 
resembles that observed in a twisted MWCNT 
[13, 14, 16, 22], which indicates that the MWCNT is 
internally twisted. The difference between these two 
rippling patterns is that the tilt angle of ripples in a 
twisted MWCNT is much larger. Examination of the 
reaction force at the tube ends reveals that the shells 
are indeed twisted, which explains the tilting of the 
rippling pattern. Since the applied strain is purely 
compressive, the torsion must be generated by 
internal relaxation of the shells. The torsion, and 
hence the tilting of the rippling pattern, may be 
attributed to the inter-shell lattice registry. The 
rippling pattern leads to an increase in surface area, 
which introduces an effective lattice mismatch of the 
neighboring shells. The lattice mismatch disrupts the 
originally established in-registry positions of the 
neighboring shells, raising the stacking energy 
between the shells. As a result, an inter-shell force 
(torsion in this case) is generated in order to return 
out-of-registry atoms to in-registry positions. The 
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internally generated torsion lowers the total system 
energy, generating and locking the twist. A similar 
inter-shell registry driven twist has been observed in 
all-atom molecular mechanics simulations of bent  
MWCNTs [45]. 

We have systematically computed the buckling 
strains of a series of 1-, 2-, 5-, 10-, 15-, 20-, and 
25-walled CNTs. The lengths of all these CNTs were 
the same, = 68L nm. Thus, their aspect ratios were 
different, ranging from 4 to 100. In Table 1 the 
numerically determined buckling strains are compared 
with the Euler beam theory (Eq. (10)) and the shell 
buckling theory (Eq. (11)). We found that these two 
theories describe well the extreme cases. The 
buckling strain of the SWCNT ((5, 5) tube) agrees 
with the prediction of the Euler beam theory, while 
those of the 15-, 20-, and 25-walled CNTs show 
negligible differences from the predictions of the 
shell buckling theory. Note that in applying the shell 
buckling theory, a delay factor is added to Eq. (11) to 
take into account the stiffening effect stemming from 
the inter-shell nonbonding interactions. Specifically, the 
predicted buckling strain is αε shell

cr ,  where α = 1.41 . 
For moderate aspect ratios, however, both theories  
fail to predict the correct buckling strain. 

Table 1 Comparisons of the computed buckling strains with the 
predictions by the Euler beam theory and the shell buckling 
theory. The lengths of all the CNTs considered here were the same, 

68L = nm. For the SWCNT (n = 1), the computed buckling strain 
agrees well with that predicted by the Euler beam theory. For the 
15-, 20-, and 25-walled MWCNTs, the computed buckling strains 
agree well with those predicted by the shell buckling theory. For 
moderate aspect ratios (n = 2–10), both theories fail to predict the 
buckling strains 

ε 
n t/d d/L crε  Shell buckling 

theory 
Euler beam 

theory 

1 0.0971 0.01 0.000 493 0.164 707 0.000 493
2 0.0485 0.02 0.002 353 0.082 353 0.001 972
5 0.0194 0.05 0.008 230 0.032 941 0.012 325
10 0.0097 0.10 0.013 800 0.016 471 0.049 298
15 0.0065 0.15 0.010 580 0.010 980 0.110 921
20 0.0049 0.20 0.008 230 0.008 235 0.197 192
25 0.0039 0.25 0.006 568 0.006 588 0.308 113

2.4 Dependence of the aspect ratio on the post- 
buckling modulus 

Previous studies showed that the post-buckling 
responses of bent and twisted thick MWCNTs follow 
unique scaling laws [13, 14, 16, 22]. To examine whether 
similar scaling laws exist for uniaxially compressed 
MWCNTs, we have systematically computed the 
stress–strain relations for a series of thick MWCNTs, 
including 10-, 15-, 20-, and 25-walled MWCNTs. 
Again, the length of these MWCNTs was fixed at 
68 nm, while the aspect ratios varied. The stress– 
strain relations for these MWCNTs are plotted in 
Fig. 4. In the pre-buckling regime, all the MWCNTs 
follow the same stress–strain relation, governed by 
the linear elasticity of the MWCNTs. Then, the 
compressive stress drops abruptly, indicating the 
onset of buckling. The buckling strain decreases with 
increasing thickness of the MWCNTs (and thus with 
decreasing aspect ratio). For all the MWCNTs, the 
post-buckling effective moduli are substantially 
smaller than that of the linear elastic regime. In 
addition, the post-buckling effective modulus increases 
monotonically with increasing thickness of the 
MWCNTs. For the 10-walled MWCNT, the effective 
post-buckling modulus is negative. Besides the helical  

 
Figure 4 Stress–strain relations of thick MWCNTs under 
uniaxial compression. All the MWCNTs share the same modulus 
in the pre-buckling regime. The 10-walled MWCNT has a negative 
post-buckling modulus, which is distinctly different from other 
MWCNTs due to the difference in the buckling mechanisms. The 
post-buckling response of 20- and 25-walled MWCNTs can be 
approximated by a linear law 
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diamond pattern in the post-buckling regime, overall 
the 10-walled MWCNT is clearly bent, which is 
different from the other, thicker MWCNTs. This 
hybrid buckling mode explains why the buckling 
strain of the 10-walled CNT can neither be predicted 
by the Euler beam theory nor the shell buckling theory. 
In contrast, we did not observe global bending in the 
15-, 20-, and 25-walled MWCNTs in their post-buckling 
morphologies within the range of the applied   
strain. Thus, their post-buckling mechanisms can be 
considered to be similar, as manifested by that fact 
that their buckling strains can all be described by 
shell buckling theory. Though the post-buckling 
stress–strain relations are intrinsically nonlinear, we 
note that for MWCNTs with smaller aspect ratios (the 
20- and 25-walled MWCNTs), their post-buckling 
stress–strain relations are approximately linear over  
a wide range of the applied compressive strain, 
giving rise to nearly constant post-buckling moduli. 
This suggests that for thick MWCNTs with small 
aspect ratios, their stress–strain responses can be 
approximately described by a bilinear law, similar to  
that for twisted and bent thick MWCNTs [16, 22]. 

The aspect-ratio dependent instability of the 
MWCNTs explains well two sets of experiments by 
Yap et al. [26] and Waters et al. [27, 28]. Since the 
MWCNTs used in the experiments of Yap et al. were 
of a relatively large aspect ratio, negative moduli 
were observed, just as for the 10-walled MWCNT 
studied here. In contrast, the MWCNTs used in the 
experiments of Waters et al. had small aspect ratios, 
i.e., they were very short, thick MWCNTs. The 
post-buckling mechanical response was more like 
that of the 25-walled MWCNT studied here. Such 
short, thick MWCNTs do not possess a negative 
modulus. We also found that, as the compressive 
strain increases further, the MWCNT will eventually 
bend, and the deformation morphology resembles 
the description of Waters et al. (i.e., highly distorted 
cross-sections and wrinkled side-walls). Since our 
model cannot address the activities of defects, 
particularly the nucleation and motion of the 5/7 
dislocations in CNTs, it is incapable of reproducing 
the hysteresis observed in the experiments of Waters  
et al.  

3. Conclusions 

Our coarse-grained simulations predict, for the first 
time, unique evolving deformation morphologies in 
uniaxially compressed short, thick MWCNTs, including 
wave-like rippling, and symmetric and helical 
diamond patterns. The evolution of the post-buckling 
morphologies of MWCNTs depends on their aspect 
ratios, and is a result of coordinated deformations of 
the inner and outer shells. Our simulations show that 
onset buckling strain of MWCNTs with small aspect 
ratios under axial compression can be well predicted 
by the shell buckling theory, while that for SWCNTs 
with large aspect ratios can be predicted by Euler 
beam theory. Neither theory can describe the buckling 
of MWCNTs with moderate aspect ratios. Due to the 
stiffening effect of the inter-shell vdW interactions, 
the buckling strain of the outermost shells is delayed 
by a factor of α ≈ 1.41 . The post-buckling modulus is 
substantially reduced, and increases monotonically 
with increasing thickness. The mechanical responses 
for very short, thick MWCNTs under uniaxial 
compression can be approximated by a bilinear law 
for a large range of the applied compressive strain. 
Our simulation results agree with, and explain,  
previous experimental data.  
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