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Dynamic shape transformations of fluid vesicles
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We incorporate a volume-control algorithm into a recently developed one-particle-thick mesoscopic

fluid membrane model to study vesicle shape transformation under osmotic conditions. Each coarse-

grained particle in the model represents a cluster of lipid molecules and the inter-particle interaction

potential effectively captures the dual character of fluid membranes as elastic shells with out-of-plane

bending rigidity and 2D viscous fluids with in-plane viscosity. The osmotic pressure across the

membrane is accounted for by an external potential, where the instantaneous volume of the vesicles is

calculated via a local triangulation algorithm. Through coarse-grained molecular dynamics

simulations, we mapped out a phase diagram of the equilibrium vesicle shapes in the space of

spontaneous curvature and reduced vesicle volume. The produced equilibrium vesicle shapes agree

strikingly well with previous experimental data. We further found that the vesicle shape transformation

pathways depend on the volume change rate of the vesicle, which manifests the role of dynamic

relaxation of internal stresses in vesicle shape transformations. Besides providing an efficient numerical

tool for the study of membrane deformations, our simulations shed light on eliciting desired cellular

functions via experimental control of membrane configurations.
Introduction

Biological membranes are two-dimensional fluids hosting

a variety of lipid molecules and proteins that undergo fast lateral

diffusion in physiologically relevant conditions.1–3 They stand as

truly multiscale materials: despite being only a few nanometres

thick, a membrane may span up to 100 mm in the lateral

dimension. In performing their biological functions, cell

membranes are able to actively regulate their conformations in

striking ways, exhibiting complex conformational and topolog-

ical transformations. These conformational behaviors, while

often contributing to the normal functions of the cell, can also

initiate pathophysiological responses leading to disease.4

Numerous phenomena indicate the intimate relationship

between membrane conformations and cell functions, such as

conformational changes of red blood cells infected by malaria5

and membrane engulfment in viral budding. Understanding

membrane shape transformations is thus not only fundamentally

interesting, but also biologically insightful to disease

diagnostics.6,7 To separate the complex roles of membrane

proteins in cell functions, artificial vesicles with different lipid

compositions offer a simple model system that has been the

subject of extensive studies,8–12 of recent, particular interest is raft

formation and evolution.13–15 Amphiphilic block copolymers can

also self-assemble into polymersomes of various shapes, which

are proven to be much tougher and more flexible than natural

membranes.2,16 Such synthetic vesicles may find a wide range of

applications such as drug delivery and encapsulation.

The high flexibility of bilayer membranes is intimately related

to their small bending rigidity and their in-plane fluidity. In

essence, fluid membranes carry a dual character of both a solid

shell with out-of-plane bending rigidity and a 2D viscous fluid
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with in-plane viscosity. While such a dual character has long been

recognized, how the interplay of out-of-plane curvature elasticity

and in-plane viscosity determines membrane dynamics has

received only limited attention.17–20 The purpose of the present

paper is to extend a recently developed mesoscopic fluid

membrane model that faithfully incorporates the dual character

of fluid membranes to investigate dynamic shape trans-

formations of vesicles under prescribed osmotic conditions.

On length scales much larger than membrane thickness,

bilayer membranes can be regarded as a 2D surface embedded in

3D space with its deformation behavior dictated by only a few

effective mechanical properties such as bending rigidity, area

compression modulus, and viscosity. Treating bilayer

membranes as 2D elastic shells with zero shear resistance, elastic

membrane models have been exploited in mapping out the phase

diagrams of vesicle equilibrium shapes considering membrane

curvature energy and the volume and area constraints.8 The

produced equilibrium membrane shapes appear to agree well

with experimental observations. In these studies, the dynamics of

membrane relaxation are entirely neglected. As the numerical

counterpart of elastic membrane models, triangulated membrane

models19,21 successfully incorporate membrane curvature energy

and account for membrane viscosity by tuning the bond-flip rate

of the dynamically triangulated surface. Triangulated membrane

models have been successfully applied to elucidate the critical

role of membrane viscosity in suspended vesicles in simple shear

flow.18–20 A recent fluid continuum model17 treats membranes as

a 2D viscous fluid moving on a curved surface with prescribed

bending rigidity and line tension, where the importance of the

viscosity on the dynamic relaxation of the membranes was

demonstrated.

Coarse-grained membrane simulation models, including

explicit-solvent22–24 and solvent-free models,25–30 have been

popularized in the last decade for their improved length and time

scales as compared to all-atom molecular dynamics (MD)
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simulations and their ability to capture the dual character of fluid

membranes. Coarse-grained models are attractive in simulating

phase separation dynamics in multi-component membranes31–33

and protein–membrane interactions.34 However, treating each

lipid molecule as a chain of beads, existing coarse-grained models

are computationally still expensive, particularly for those with

explicit solvent schemes. For this reason, studies of large-scale

membrane shape transformations have still largely relied upon

continuum mechanics models or the numerical methods35–41

based on the continuum energy description.

Inspired by the pioneering work of Drouffe et al.,42 many

efforts have been recently devoted to develop particle-based

models with high-level coarse-graining, where a bilayer

membrane is represented by a monolayer or bilayer particle self-

assembly.43–46 In a recent model46 of this type, the Drouffe model

was extended to a pair potential and the bending rigidity was

controlled by a time-dependent variable. Also along this line, we

recently developed a one-particle-thick fluid membrane model,47

where each particle represents a cluster of lipids in the lateral

dimension. The effective membrane properties (e.g., bending

rigidity and area compression modulus) and the hydrophobic

effect that drives the self-assembly of bilayer membranes are

faithfully incorporated into an orientation-dependent pair-wise

inter-particle interaction potential. The three model parameters

independently and effectively control diffusion constant, bending

rigidity, and spontaneous curvature, respectively. In this work,

a volume-control algorithm is introduced into the fluid

membrane model to study vesicle shape transformation under

relevant osmotic conditions. In the present study, we neglect the

hydrodynamic effect of the surrounding bulk fluid by assuming

that the membrane is much more viscous than the water.

The rest of the article is organized as follows. In the following

section, we briefly introduce the mesoscopic fluid membrane

model. We particularly highlight the particle orientation depen-

dence of the pair-wise inter-particle potential. Next, we propose

an effective volume-control algorithm for dynamically evolving

vesicles, necessary for the simulations of vesicle shape trans-

formation due to osmotic pressure across bilayer membranes.

Then, we present the shape transformation pathways of homo-

geneous vesicles and discuss mechanics of shape transformations.

In the final section we present our conclusions.
Fig. 1 Schematics of inter-particle interactions. Kinetically, each

particle is axisymmetric with a particle-fixed unit vector n representing

the axis of symmetry and a mass of m. The inter-particle interaction is

both distance- and orientation-dependent. The angle q0 is a model

parameter characterizing the spontaneous curvature. The configuration

at qi ¼ qj ¼ q0 corresponds to the energetically most favorable relative

orientation between two particles. The two halves of each particle are

shaded distinctly to indicate the orientation of the particle.
Mesoscopic fluid membrane model

Prior to presenting our mesoscopic membrane model, it would be

instructive to briefly review the energetics considerations of the

elastic membrane models for comparison purposes. Treating

a curved membrane as a 2D surface U, the bending energy can be

described by the classical Helfrich–Canham curvature–elastic

energy48,49

Eb ¼ ½
Ð

UB(c1 + c2 � c0)2dA (1)

where B is the bending rigidity, c1 and c2 are the two principal

curvatures of the membrane surface, and c0 is the spontaneous

curvature. The stretching energy can be simply described by

a quadratic form

Es ¼ ½
Ð

UKA32
AdA (2)
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where KA is the area compression modulus, 3A is the contour area

strain. Because KA sets a much higher energy scale than the

curvature energy, bilayer membranes are generally considered as

inextensible in theoretical modeling.

In our mesoscopic membrane model, an orientation-

dependent inter-particle potential accounts for the two internal

energies of membranes, i.e., the bending energy and the area

stretching energy. The potential also stabilizes the particle

membrane in a fluid phase such that molecular diffusion and zero

shear resistance can be naturally simulated.
Inter-particle potential

Below we briefly introduce the one-particle-thick membrane

model. A detailed description of the model can be found else-

where.47 The mesoscopic model is solvent-free, which requires

devising an effective inter-particle potential to reinstate the

hydrophobic interactions between the water and lipid molecules.

We found that an orientation-dependent inter-particle potential

of the following form captures the hydrophobic effects most

efficiently,

U
�
rij; ni; nj

�
¼

8<
:

uRðrÞ þ
�
1� f

�
r̂ij; ni; nj

��
3; r\rmin

uAðrÞf
�
r̂ij ; ni; nj

�
; rmin\r\rc

(3)

where rij¼ ri� rj, r¼ |rij|, r̂ij¼ rij/r, ri and rj are the center position

vectors of particles i and j, the unit vectors ni and nj represent the

axes of symmetry of particles i and j, respectively, as shown in

Fig. 1. In addition, rmin ¼
ffiffiffi
26
p

s sets the distance of the minimal

potential energy, where s and 3 are the length and energy units,

and rc is the cutoff radius. The distance-dependent functions are
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comprised of a soft repulsive branch uR(r) and an attractive

branch uA(r):

uRðrÞ ¼ 3

��rmin

r

	4

�2
�rmin

r

	2



uAðrÞ ¼ � 3cos2z

�
p

2

ðr� rminÞ
ðrc � rminÞ

� (4)

where the parameter z is the exponent of the cosine function. The

orientation-dependent function f(̂rij,ni,nj) characterizes the

relative orientation between a pair of particles i and j,

f ¼ 1 + m(a(̂rij,ni,nj) � 1) (5)

a ¼ (ni � r̂ij)$(nj � r̂ij) + sinq0(nj � ni)$r̂ij � sin2q0 (6)

One notes that the function f in eqn (5) linearly scales with the

function a, where m and q0 are two potential parameters. The

functional dependence of a on its three vector variables, i.e., r̂ij,

ni, nj, becomes clear when all the vectors are confined in a 2D

plane, as shown in Fig. 1. In this simplified case, function a is

reduced to

a ¼ cosqicosqj + sinq0(sinqi + sinqj) � sin2q0 (7)

where the definitions of qi, qj, and q0 can be found in Fig. 1.

Assuming qi ¼ qj in eqn (7), a can be further simplified to

a ¼ 1 � (sinqi � sinq0)2, which implies that a maximizes when

q ¼ q0. The spontaneous curvature c0 is related to q0 via

c0 � 2sinq0/d0, where d0 is the average inter-particle distance, as

illustrated in Fig. 1. To see the functional dependence of a on qi

and qj, we consider the specific case of q0 ¼ 0� at which

a ¼ cosqicosqj. It follows that a reaches its maximum of unity

when ni is parallel to nj(qi ¼ qj ¼ 0�) and perpendicular to vector

r̂ij. The functional dependence is plotted in Fig. 2(a). The

dependence of the potential U on the inter-particle distance at

specified relative particle orientations is depicted in Fig. 2(b). The

relative particle orientation sets the depth of the energy well of
Fig. 2 Orientation dependence of the inter-particle interactions. (a) The funct

and disfavored relative orientations of particles i and j. Both the 3D and 2D en

a lower interaction energy. (b) The dependence of the inter-particle potential
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the potential, but does not affect the inter-particle distance of the

minimum energy. On the other hand, the potential parameter z

effectively tunes the slope of the attractive branch of the

potential.

The simple mathematical form of the inter-particle pair

potential makes it convenient to establish the correlations of the

potential parameters and the membrane properties. Since z tunes

the slope of the attractive branch of the potential and hence the

restoring force dragging particles toward their equilibrium

distance, it modulates the diffusivity of the particles. The

parameter q0 specifies the spontaneous curvature, which may rise

from molecular asymmetry,49 area mismatch between two leaf-

lets50 of the bilayer, protein–lipid hydrophobic mismatch, or

protein-assisted curvatures.34,51 The parameter m weighs the

energy penalty when the particles are disoriented from q0, and is

thus related to the bending rigidity of the model membrane. The

area compression modulus is related to the slopes of both the

attractive and repulsive branches of the potential. The indepen-

dent functional dependence of the membrane properties on the

potential parameters renders the model highly tunable.

Our coarse-grained molecular dynamics (CGMD) simulations

showed that for m in the range of 2.4 to 6.0 the bending rigidity

ranges from �12kBT to �40kBT (kBT is the thermal energy),

which falls well within the range of experimental data.47 With

appropriately chosen z and temperature T, the particle

membrane can be effectively stabilized in a fluid phase with

a particle diffusion constant of�0.1s2/s, where s ¼ s
ffiffiffiffiffiffiffiffiffi
m=3

p
is the

time unit. A length and time scale mapping shows that each

particle represents a few lipid molecules in the lateral dimension

and s is on the order of�0.1 ms.47 Both the length and time scales

of the present model are at least one order of magnitude larger

than the previous solvent-free coarse-grained membrane

models.28,33 For the simulations presented in this article, the

model parameters are chosen as: m ¼ 3.0, z ¼ 4, kBT ¼ 0.23 3,

which yield the membrane properties as: B � 20kBT, KA �
18kBT/s2, and the particle diffusion constant of about 0.08s2/s.47

By performing a non-equilibrium molecular dynamics simula-

tion of the Couette flow in a planar membrane, the viscosity of
ional dependence of a on qi and qj at q0¼ 0 shows the energetically favored

ergy contours are plotted in the figure. Note that a larger a corresponds to

on the relative orientations of a particle pair.
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Fig. 3 Schematics of the local triangulation algorithm.
the fluid membrane was found to be on the order of 1.03s/s2 (for

2D fluid membranes, viscosity is defined as the force per unit

length divided by the velocity gradient).

Equations of motion

Corresponding to the two sets of degrees of freedom, particle

center positions and orientations, there are two sets of the

equations of motion for the coarse-grained model. The first set

governs the time evolution of the particle center positions,

mi€ri ¼ �
vUi

vri

(8)

where mi is the mass of particle i, Ui ¼
P

jU(rij,ni,nj) and j runs

over all the neighbors of i. The second set of equations governs

the time evolution of the particle orientation, which can be

derived from Euler’s rigid body dynamics equations. However,

since each particle carries only five degrees of freedom because of

the geometric constraint ni$ni ¼ 1, the equations of motion

governing particle orientations can be derived in a more efficient

manner. We treat ni of particle i as three generalized coordinates

with the geometric constraint. Thus the governing equations for

ni can be derived using the Lagrange equations with constraint

forces:

Ii €ni ¼ �
vUi

vni

þ lini (9)

where Ii is the moment of inertia (Iiis fixed to 1$mis
2 in this work),

li is the Lagrange multiplier and has the following relation with ni

and n_ i

li ¼
vUi

vni

,ni � Ii _ni, _ni (10)

Our CGMD simulations presented below for vesicles are

performed in the NVT ensemble. We adopt the Nos�e–Hoover

thermostat52,53 to maintain the system at desired temperatures.

The rigid-body translational and rotational motions of the

system are removed at each time step in our simulations, which

may otherwise cause significant errors.

Vesicle volume-control algorithm

In biological processes, cells regulate their enclosed volumes by

controlling the number of water molecules in the cytoplasm

through the osmotic pressure difference across the membrane.

We assume V0 is the osmotically desired vesicle volume at which

the osmotic pressure difference across the membrane vanishes.

We denote V̂ the volume in the absence of osmotically active

molecules in solution and inside the vesicle. Therefore, V̂ is solely

determined by the membrane elasticity. The actual equilibrium

volume V is a competition between osmotic potential and the

membrane elastic energy. For a small deviation of the volume V

from the osmotically desired volume V0, an energy penalty arises.

For simplicity, we assume that the energy penalty takes

a quadratic form:

EV ¼
1

2
KV

�
V

V0

� 1

�2

(11)

where KV is a constant related to the temperature, V0, and the

concentration of the osmotically active molecules.8 In numerical
4574 | Soft Matter, 2010, 6, 4571–4579
simulations, KV generally sets a higher energy scale than the

bending rigidity, and thus can be regarded as a rather stiff

volume spring. The hydrostatic pressure difference across the

membrane, which is the negative of the osmotic pressure, is

p ¼ KV

V0

�
1� V

V0

�
(12)

where positive p means outward pressure. From eqn (12), one

follows that the hydrostatic pressure difference p is a function of

the equilibrium vesicle volume V but usually not vice versa since

V also depends on the membrane elasticity, as pointed out

earlier.

To account for the volume constraint imposed by the enclosed

water, the external potential EV defined in eqn (11) needs to be

incorporated into the total system free energy as an external

potential, which requires computation of the instantaneous

enclosed volume of vesicles. Calculation of the volume enclosed

by a surface comprised of discrete particles necessitates trian-

gulation or tessellation of the surface. For such a dynamically

evolving particle system, triangulation poses computational

challenges for the following two reasons. First, triangulation

needs to be performed at each time step due to random dynamic

motion of particles. An efficient triangulation algorithm is highly

desired or the simulation becomes unaffordable. Second, algo-

rithms for exact triangulation developed in computational

geometry exist only for convex shapes, whereas the conforma-

tions of the vesicles under consideration may evolve into concave

shapes. To circumvent these difficulties, we assume that the

particles are of hexagonal close packing, and propose an

approximate local triangulation algorithm as follows. For an

arbitrary particle i, we identify its six nearest neighbors, forming

six triangles surrounding particle i (shown in Fig. 3). Considering

a triangle formed by particles i, j, and k, the triangle area Aijk can

be calculated using the following equation,

Aijk ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rji,rji

�
ðrki,rkiÞ �

�
rji,rki

�2
q

(13)

where rji ¼ rj � ri and rki ¼ rk � ri, and the volume of the

corresponding tetrahedron formed by the triangle and the origin

O (which can be arbitrary) can be simply computed as,
This journal is ª The Royal Society of Chemistry 2010



Vo�ijk ¼ 1⁄6 (rj � rk)$ri (14)

The simple expression in eqn (14) makes it convenient to

compute the forces imposed on the particles due to the volume

constraint. The sequence of vectors rj and rk are chosen such that

rj � rk points to the local outward normal of the vesicle. This is

easily accomplished since the local outward normal is implied

from the particle-fixed vector ni, but may be troublesome for

other models in which the particles only carry translational

degrees of freedom.

This local triangulation algorithm is robust, simple and thus

efficient. Due to the random Brownian motion of the particles,

the hexagonal close-packed distribution is only approximately

satisfied. Nevertheless, compared to the exact triangulation

(Delaunay triangulation) for a spherical vesicle, the relative error

of the vesicle volume calculated by our local triangulation

scheme is only about 0.2%. In the fluid membrane, the coordi-

nation number of a particle changes between five, six, and seven

randomly with time. Around a particle, the local triangulation

algorithm based on the six-neighbor assumption gives larger or

smaller volume and area for five- or seven-neighbors, respec-

tively. Consequently, errors of these two cases cancel each other

in the global sense. This algorithm was justified by its effective

volume control of the vesicles in shape transformations presented

later.
Fig. 4 Map of vesicle equilibrium shapes and shape transformation pathw

outward budding (or tubular) shape for slow (or fast) volume change rate; lo

inward budding; central pathway branch (q0 ¼ 0�): spherical, prolate, and dum

change rate promotes dumbbell to tube shape transformation; for fast volume

transformation pathway. The biconcave cannot be directly induced from the
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Dynamics of vesicle shape transformations

Fluid vesicle configurations in equilibrium state have been

extensively studied in the past several decades both experimen-

tally and theoretically.8,54 Among several elastic models for fluid

vesicle shape determination,8 the spontaneous curvature model

searches for the equilibrium shapes of vesicles by minimizing the

Helfrich–Canham curvature–elastic energy Eb given in eqn (1)

under the fixed area-to-volume ratio constraint55 and a given

spontaneous curvature c0. One notes the intimate relationship

between the spontaneous curvature model and our mesoscopic

model, which ensures that the present model is well suited for the

simulation of vesicle shape transformations. In comparison, the

bending resistance and the spontaneous curvature in our meso-

scopic model are incorporated in the orientation-dependence of

the potential and the potential parameter q0, respectively. The

much larger in-plane modulus KA sets a higher energy scale than

the bending rigidity B. This in-plane and out-of-plane energy

scaling ensures that the fluid membrane of the model deforms

inextensibly, which fulfils the inextensibility condition imposed

in the spontaneous curvature model. As an added feature, since

the membrane particles are allowed to laterally diffuse and thus

simulate the in-plane viscous effect, our model is capable of

elucidating the rate effect of volume change on dynamics of

shape transformations.
ays. Upper pathway branch (q0 ¼ 3.4�): sphere, prolate, dumbbell, and

wer pathway branch (q0 ¼ �2.3�): sphere, biconcave, stomatocyte, and

bbell shapes, and then bifurcates into two sub-pathways. A slow volume

change rate, the vesicle follows a biconcave–stomatocyte–inward budding

dumbbell shape, but from the spherical shape.
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Equilibrium vesicle shapes and shape transformation pathways

We restrict our simulations on homogeneous vesicles, though the

present model can simulate equally well the shape trans-

formations of heterogeneous vesicles. All our simulations start

with a pre-assembled, spherically shaped vesicle consisting of

totally 5861 particles. We assume that the flip-flop of lipid

molecules between the outer and inner leaflets of the bilayer is

a rare event in the course of vesicle shape transformation, and

thus prescribe a constant q0 to all the particles in the simulation

model. Here, positive (negative) q0 corresponds to a convex

(concave) spontaneous curvature. In experiments, osmotic

pressure difference across the membrane is modulated by adding

salts into the solution, effectively reducing the enclosed volume

and driving the shape transformation of vesicles. We characterize

the area-to-volume ratio by the reduced volume v, defined as the

ratio between the volume (V) of the vesicle and the volume

(Vsphere) of a spherical vesicle of equal area. The enclosed volume

of the vesicle is then gradually reduced to the desired volume V0

with a constant volume change rate v_ using the volume-control

algorithm described in the previous section. Afterwards, simu-

lation continues for a sufficiently long period until the vesicle

reaches its equilibrium conformation.

Figure 4 displays the equilibrium shapes and shape trans-

formation pathways of vesicles at three different spontaneous

curvatures. We varied the volume change rate by at least an order

of magnitude to explore the possible rate dependence. For

a negative spontaneous curvature (q0 ¼ �2.3�), reducing the

volume results in a shape transformation pathway consisting of

a sequence of oblate, biconcave, stomatocyte shapes and inward

budding. This pathway appears to be independent of the

imposed volume change rates. For a positive spontaneous

curvature (q0 ¼ 3.4�), the first two shape transformations result

in prolate and dumbbell shapes. Further reducing the volume

leads to shape bifurcation depending on the volume change rate.

A slow volume change rate of v_ ¼ 1.94 � 10�4 s�1 induces

outward budding when further reducing the volume of the vesicle

from the dumbbell shape. In contrast, a high volume change rate

of v_ ¼ 1.75 � 10�3 s�1 leads to dumbbell–tubular shape trans-

formation. At zero spontaneous curvature, the vesicle shape

transformation depends on the imposed volume change rate and

bifurcates into two distinct pathways, each of which resembles

the pathway for the cases of the positive and negative sponta-

neous curvatures. Independent of volume change rate, the vesicle
Fig. 5 Evolution of the hydrostatic pressure (a) and a
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follows prolate-to-dumbbell shape transformation for the first

two steps for relatively large reduced volume (v $ 0.7). For

smaller reduced volume, the shape transformation bifurcates

depending on the imposed volume change rate. A low volume

change rate (v_¼ 1.94� 10�4 s�1) promotes formation of a tubular

shape. However, different from the pathways seen in the positive

spontaneous curvature, the zero spontaneous curvature does

not promote bifurcation from dumbbell shape to

outward budding. On the other hand, the high volume change

rate (v_ ¼ 1.75 � 10�3 s�1) promotes biconcave–stomatocyte–

inward budding transformations. It should be pointed out that in

our simulations such a transformation cannot be induced from

the dumbbell shape but only directly from the spherical shape

(indicated by a dashed arrow in Fig. 4). This may be due to the

high energy barrier from dumbbell to biconcave shapes as

compared to the thermal energy. All these equilibrium shapes

and shape transformation pathways agree strikingly well with the

phase diagram based on the spontaneous curvature model55 and

a recent experiment.10 Besides yielding the shape transformation

pathways, our simulation results provide insights as to how to

tune the key experimental parameters quantitatively in order to

induce desired shapes and shape transformations.

To understand the mechanics of vesicle shape transformation,

we analyzed the dynamic evolution of the hydrostatic pressure

and membrane tension. Membrane tension S can be calculated

by the virial formula for a 2D fluid membrane that is only one-

particle-thick:47

S ¼ � 3NkBT

2A
� 1

2A

XN

i;j.i

rij,Fij (15)

where A is membrane area, Fij is the force exerted on particle i

by j. Fig. 5 plots membrane tension and hydrostatic pressure at

two representative spontaneous curvatures, corresponding to

two shape transformation pathways: the sphere–prolate–dumb-

bell–tube transformation for q0 ¼ 2.4� and the sphere–prolate–

dumbbell–biconcave transformation for q0 ¼ 0�. As an overall

trend, as the volume of the vesicle reduces, the hydrostatic

pressure exerted on the vesicle increases. From a force-balance

point of view, a negative (compressive) membrane tension is

necessary to balance a negative (outer-to-inner direction)

hydrostatic pressure in a convex membrane segment. Fig. 5

implies such force balance is approximately satisfied during

vesicle shape transformation. It is also seen that the hydrostatic
verage membrane tension (b) with vesicle volume.
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pressure abruptly decreases when the vesicle transforms from

a convex to a concave conformation (e.g., a dumbbell-to-

biconcave transformation). The vesicle surface area was also

calculated in the simulations using eqn (13), and it was found

that the area change in shape transformations in the simulations

is negligible.

It should be pointed out that at given hydrostatic pressure the

vesicle may be stabilized at different conformations. For

example, for zero spontaneous curvature at hydrostatic pressure

of ��0.013/s2, the vesicle may adopt either a biconcave or

dumbbell shape (see Fig. 5(a)). From mechanics point of view,

hydrostatic pressure and volume control play roles of load-

controlled and displacement-controlled loading. We adopt the

latter loading mechanism since it better mimics the relevant

experimental conditions.
Stress relaxation dynamics

Vesicle shape transformation is a result of strain energy relaxa-

tion of the vesicle under the prescribed enclosed volume.

Considering the vesicle in our model as a viscous material, the
Fig. 6 Effect of the volume-change rate on the vesicle shape transformatio

change rate (vc ¼ 1.75 � 10�3 s�1); bottom panel: shape transformation path

Fig. 7 Stress relaxation in dynamically evolving homogeneous vesicles at di

reduced volume reaches 0.6 at 200 s and 1800 s for the fast and slow volume

calculated shear stress magnitude. The curves for the shear stress in (a) are sh

stress curves in (a) look smoother than membrane tension curves in (b) becau
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internal stress state depends on the loading rate (the volume

change rate in this case), which in turn regulates the dynamic

shape transformation of the vesicles. For a low volume change

rate, the vesicle has sufficient time to relax its internal stresses.

On the other hand, for a relatively high volume change rate,

significant stresses in the membrane could be accumulated within

the vesicle. The dynamic shape transformation pathways induced

by different volume change rates shown in Fig. 6 clearly manifest

such a dynamic stress relaxation mechanism. For the fast volume

change rate (v_ ¼ 1.75 � 10�3 s�1), the shape transformation

follows a pathway sequence of spherical, triconcave, asymmetric

biconcave, and biconcave shapes. Differently, a slow volume

change rate (v_ ¼ 1.94 � 10�4 s�1) generates a shape trans-

formation pathway consisting of spherical, prolate, dumbbell,

and tubular shapes. It should be mentioned that, unlike the

shapes presented in Fig. 4 that are dynamically equilibrated, the

conformations in Fig. 6 are snapshots in the dynamic volume

change processes, which are not equilibrium shapes.

To see the role of the stress relaxation in vesicle shape trans-

formation, Fig. 7 shows the evolutions of the shear stress (a) and

membrane tension (b) with changing vesicle volume. The shear
n pathways. Top panel: shape transformation pathway for fast volume-

way for low volume-change rate (vc ¼ 1.94 � 10�4 s�1).

fferent volume-change rates. (a) Shear stress; (b) membrane tension. The

change rate, respectively. The shear stress is the average value of locally

ifted vertically such that the equilibrium average value is zero. The shear

se the number of data points in (a) is less than that of (b).
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stress is calculated by the virial formula. For the high volume

change rate, the shear stress and membrane tension undergo

large undulations in the period of volume change from v ¼ 1.0 to

0.6. Afterwards, the shear stress is fully relaxed to zero, while the

membrane tension is relaxed to a state set by the force balance

with the hydrostatic pressure. The undulations in the fully

relaxed state are mainly caused by thermal fluctuations. In

contrast, for the low volume change rate, both the shear stress

and membrane tension undergo small undulations in the entire

simulation period, indicating that the vesicle is almost fully

relaxed.

Conclusions

In this article, we extend a previously established one-particle-

thick fluid membrane model to study fluid vesicle shape trans-

formations. The mesoscopic membrane model features an

orientation-dependent inter-particle potential that effectively

captures the dual character of lipid membranes as solid shells

with out-of-plane bending rigidity and as 2D fluids with in-plane

viscosity. Extension of the membrane model involves incorpo-

rating an external potential that constrains the enclosed volume

of the vesicles to mimic the osmotic conditions. The extended

membrane model thus enables studies of dynamics of fluid vesicle

shape transformations in biologically and experimentally

relevant conditions.

Shape transformation pathways of homogeneous vesicles were

elaborated together with analyses of dynamic stress relaxation.

The produced shape transformation pathways agree strikingly

well with the experimental observations and those of previous

elastic membrane models, thereby validating the simulation

model. Given its great ease in modeling arbitrary vesicle

conformations, the present model may be exploited to the studies

of vesicle–substrate interactions,56,57 vesicle fusions and

fissions,21,58,59 membrane–protein interactions,21 and membrane

tethering,60 where the vesicles under investigations may adopt

complex morphologies.

In contrast to elastic membrane models for which equilibrium

shapes of vesicles are of the major concern, particles in our

numerical model are diffusible in the lateral direction, thereby

allowing the study of rate dependence of vesicle shape trans-

formations. Our simulations showed that the shape trans-

formation pathways can be altered by different volume-change

rates, which clearly manifest the role of in-plane viscosity. The

rate dependence may provide an additional controlling factor for

regulating vesicle shapes and vesicle shape transformation

pathways in experiments.
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