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Adhesive Contact on Randomly
Rough Surfaces Based on the
Double-Hertz Model
A cohesive zone model for rough surface adhesion is established by combining
the double-Hertz model (Greenwood, J. A., and Johnson, K. L., 1998, “An Alternative to
the Maugis Model of Adhesion Between Elastic Spheres,” J. Phys. D: Appl. Phys., 31, pp.
3279–3290) and the multiple asperity contact model (Greenwood, J. A., and Williamson,
J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. Lond. A, 295, pp.
300–319). The rough surface is modeled as an ensemble of noninteracting asperities with
identical radius of curvature and Gaussian distributed heights. By applying the double-
Hertz theory to each individual asperity of the rough surface, the total normal forces for
the rough surface are derived for loading and unloading stages, respectively, and a
prominent adhesion hysteresis associated with dissipation energy is revealed. A dimen-
sionless Tabor parameter is also introduced to account for general material properties.
Our analysis results show that both the total pull-off force and the energy dissipation due
to adhesive hysteresis are influenced by the surface roughness only through a single
adhesion parameter, which measures statistically a competition between compressive
and adhesive forces exerted by asperities with different heights. It is also found that
smoother surfaces with a small adhesion parameter result in higher energy dissipation
and pull-off force, while rougher surfaces with a large adhesion parameter lead to lower
energy dissipation and pull-off force. [DOI: 10.1115/1.4026019]

Keywords: adhesive contact, rough surface, cohesive zone model, double-Hertz theory,
adhesion hysteresis

1 Introduction

It is well known that surface adhesion plays a crucial role in
microscale contact problems. For smooth contact surfaces, there
exist three famous theories for adhesive contact between elastic
spheres proposed by Johnson et al. [1] (JKR model), Derjaguin
et al. [2] (DMT model) and Maugis [3] (M-D model), respec-
tively. In particular, a continuous transition between JKR and
DMT can be achieved by the M-D model, which is applicable for
more general materials with any Tabor parameter [4,5]. In parallel
with the M-D model, Greenwood and Johnson [6] put forward an
alternative simple and useful adhesive contact model known as
the double-Hertz (D-H) model. In this model, the difference
between two Hertzian pressure distributions was employed to rep-
resent the adhesive tensile stress between two contact surfaces. It
was found that results obtained by the D-H model are very close
to those from the M-D model. An obvious advantage of the
double-Hertz model is that the analysis relies solely on the classi-
cal Hertzian solutions, which makes it more analytically tractable
than the Maugis’s theory. For this reason, the double-Hertz model
is often favored in the studies of adhesion involving more com-
plex contact systems, such as contact on rough surfaces [7], visco-
elastic materials [8], and functionally graded elastic materials [9].

In fact, even a highly polished surface may have surface rough-
ness on multiple length scales. Modeling the contact mechanics
between rough surfaces with adhesion, however, is a challenging
task. Several theoretical approaches have been developed to
account for the mechanics of contact involving surface roughness.
In a seminal paper, Greenwood and Williamson [10] modeled
rough surfaces as an ensemble of noninteracting asperities with
identical radius of curvature and height which follows a Gaussian

distribution. In this model, the classical Hertz theory was applied
to the contact analysis of each individual asperity. Following this
idea, Fuller and Tabor [11] investigated the adhesive contact
between rough surfaces by utilizing the JKR theory to study the
contact of each individual asperity. They found that the adhesion
behavior solely depends on a single parameter, i.e., the ratio
between the dispersion of asperity heights and the maximum elas-
tic extension which an asperity can sustain before the contact pair
breaks apart. This parameter represents the statistical average of a
competition between the compressive forces exerted by the higher
asperities and the adhesive forces of the lower asperities. A simi-
lar model was then proposed by Maugis [12] who adopted the
DMT model to analyze the contact of each individual asperity.
Generally speaking, the JKR-based rough contact model is more
suitable for describing the contact between relatively large and
soft bodies, while the DMT-based rough contact model is more
suitable for contact problems between small and rigid bodies. To
bridges the gap between the solutions of these two models,
Morrow et al. [13] developed a cohesive zone model for rough
surfaces by applying the M-D theory to each asperity of rough
surfaces. Since the adhesive traction outside the contact zone was
included in each contact asperity, a transition between JKR-based
and DMT-based rough contact solution was captured. A common
conclusion in the above multiple asperity contact models is that
increasing roughness may result in a monotonic decrease of adhe-
sion. This result was later validated by experiments for large
surface roughness, where the interaction between asperities can be
ignored [14,15]. Recently, the multiple asperity contact models
were extended to account for power-law shaped rough asperities
[16], interactions between asperities [17–19], non-Gaussian sur-
face roughness [20], and a fretting contact case [21]. Moreover,
several theoretical methods have also been proposed to examine
the adhesive behaviors of various rough surfaces, such as the self-
affine fractal surface [7,22], periodic surface roughness [23], and
sinusoidal undulations [24–29].
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On the other hand, adhesion hysteresis was found to be a com-
mon phenomenon in adhesive contact of rough surfaces, where
the work needed to separate two surfaces is usually greater than
that gained by adjoining them together. Under this circumstance,
the measured curve is widely observed to show two distinct
branches associated with the loading and unloading stages, respec-
tively. The area of the hysteresis loop formed by the loading and
unloading branches quantifies the value of energy dissipation
[30–32]. Kesari et al. [15] reported an experiment result and
revealed that adhesion hysteresis may exist without moisture,
plasticity, and viscoelasticity, but only depends on adhesion and
roughness. To interpret this result theoretically, Kesari and Lew
[33] developed a JKR-type adhesion solution to capture the effec-
tive macroscopic adhesive contact behavior of small rough sur-
face, which agrees well with the experiment data. Later on, the
case in which power-law graded solids are involved has also been
studied [34]. For larger roughness sizes, the roughness-adhesion
mechanism was also revealed in the multiple asperity contact
model [35]. Based on the JKR-based rough contact model [11],
Wei et al. [35] investigated the effect of roughness on adhesion
hysteresis and provided equations for measuring the contact forces
in the loading and unloading phases. The resulting energy loss
was found to depend on a dimensionless parameter which is the
same as the adhesion parameter in the Fuller and Tabor model
[11]. Up to now, it remains a challenge to characterize the adhe-
sion hysteresis on rough surfaces with use of a cohesive zone
model, which is available for various materials with different
Tabor parameters.

The main purpose of the present paper is to develop an adhesive
contact model of rough surfaces which is applicable to the full
range of Tabor parameters. The distinct feature of our work is that
the double-Hertz model is employed to describe the contact behav-
ior of each asperity. With use of the proposed model, not only the
adhesive forces exerted by the asperities in intimate contact are
considered, the effect of noncontact asperities within the range of
adhesive interaction is also accounted for appropriately. Special
emphasis is also placed on investigating the effects of surface
roughness on the total pull-off force and energy dissipation due to
adhesion hysteresis. The remainder of the paper is organized as fol-
lows. First, the main results of the double-Hertz theory for a single
contact asperity are summarized in Sec. 2. The established equilib-
rium equations in Sec. 2 are then expressed in a curve-fitted explicit
form in Sec. 3. The rough contact model is established and the cor-
responding solution for the total applied force is derived in Sec. 4.
Based on these results, the adhesion hysteresis and the total pull-off
force of the rough contact system are examined systematically in
Sec. 5. Some concluding remarks are finally provided in Sec. 6.

2 Double-Hertz Solution for a Single Contact Asperity

In this section, we shall first study the single asperity contact
problem, which constitutes the theoretical basis of the present
work. Figure 1 shows an elastic sphere of radius R in adhesive
contact with a rigid half-space under a normal loading P (negative
when tensile). The spherical asperity has a constant Young’s mod-
ulus E and a constant Poisson’s ratio v. Between the two contact-
ing surfaces, the corresponding surface traction consists of two
terms: the Hertz pressure pH acting on a circular contact region of
radius a and the adhesive tension pA acting on an interaction zone
of radius c. The annular region bounded by radii a and c is a non-
contact but still interacting region known as the cohesive zone.
Greenwood and Johnson [6] observed that the difference between
two Hertzian pressure distributions with contact radii a and c can
be used to describe pA, and proceeded further to derive the dimen-
sionless P� a� c, d� a� c and c� a relations as

P� ¼ 2

3p
½a�3 � kðc�3 � a�3Þ� (1)

d� ¼ a�2 � kðc�2 � a�2Þ (2)

1 ¼ kð1þ kÞ 2

3p
ðc� � a�Þ2ðc� þ 2a�Þ (3)

where the nondimensional parameters in the above equations are
defined as

a� ¼ a

ðR2Dc=E�Þ1=3
(4)

c� ¼ c

ðR2Dc=E�Þ1=3
(5)

P� ¼ P

2pRDc
(6)

d� ¼ d
�d
¼ d

ðRDc2=E�2Þ1=3
(7)

with Dc and E� ¼ E=ð1� v2Þ denoting the surface energy and the
effective elastic modulus of the elastic asperity, respectively.

By introducing the following Tabor parameter

l ¼ r0

R

E�2Dc

� �1=3

(8)

where the so-called maximum adhesive stress r0 is defined as

r0 ¼ k
2E�

pR
ðc2 � a2Þ1=2

(9)

a relationship between k in Eqs. (1)–(3) and the Tabor parameter
can be established as

l ¼ k
2

p
ðc�2 � a�2Þ1=2

(10)

Up to this point, for given material properties (i.e., prescribed l),
the relations among P�, d�, c�, and a� have been fully determined
by combining Eqs. (1)–(3) and (10). As an extension, the equilib-
rium equations in the absence of a contact zone (a ¼ 0) reduce to

P� ¼ � 2

3p
kc�3 (11)

d� ¼ 1:5

l
þ 1� k

2
c�2 (12)

Fig. 1 Schematic illustration of an elastic spherical asperity in
adhesive contact with a rigid half-space under a normal force P
(negative when tensile). The surface traction consists of two
terms: the Hertz pressure pH acting on the contact zone of ra-
dius a and an adhesive traction pA acting on the interaction
zone of radius c, respectively.
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where

k2 ¼ p2l3

12
ð1þ kÞ (13)

Figure 2 depicts the variations of a� and c� against the applied
load P� for an intermediate value of the Tabor parameter, i.e.,
l ¼ 1. The noncontact extension for c� curve is shown (dashed
line) for completeness. The corresponding JKR and DMT limiting
solutions are also included for comparison. It can be seen from
Fig. 2 that the DMT curve can be obtained from the Hertz curve
by simply shifting a value of 2pRDc horizontally, while the JKR
curve falls between the c� and a� curves. As l increases, both c�

and a� curves are expected to collapse to the JKR curve.
Figure 3 plots the equilibrium P� d curves for different values

of the Tabor parameter. In this figure, the horizontal tangent corre-
sponds to the normalized pull-off force P�c , which measures the
maximum load carrying capacity of the adhesive interface. Under
a displacement control condition, the vertical tangent in the P� d
curves for l > 1 represents the normalized maximum extension
d�c ¼ dc=�d at which an abrupt pull-off occurs, while for l < 1, d�c
corresponds to the extension at which the tensile force finally van-
ishes. The loading and unloading paths are distinct at zero inden-
tation depth, which form a hysteresis loop within the regime of
d� < 0, whose area quantifies the energy dissipation during a
loading/unloading cycle. Both P�c and d�c for a single contact as-
perity are important factors in the following contact analysis of
rough surfaces.

3 Approximation of the Double-Hertz Solution

As shown in Eqs. (1)–(3) and Eqs. (11)–(13), the double-Hertz
equations provide an implicit relationship among P�, d�, a�, and
c�, which is not convenient for further analytical treatments. To
circumvent this problem, in the present work, the P� � d� relation
is expressed in an explicit form by using the curve fitting method
through a nonlinear regression process. Depending on the values
of l, the equilibrium P� � d� curves are fitted numerically in the
following two cases.

For l � 1, the equilibrium P� � d� curve is fitted in a two-stage
process. Firstly, the dimensionless load P� is fitted in terms of a�

and d� through the following form:

P� ¼ b1 þ b2a�d�b1 þ b3a�d�b2 (14)

Secondly, a� is fitted in terms of d� as

a� ¼ b4 þ ðb5 þ b6d
�Þb3 (15)

where bi ði ¼ 1 � 6Þ and bj ðj ¼ 1 � 3Þ are all curve-fitted con-
stants. Substituting Eq. (15) into Eq. (14) leads to an explicit
P� � d� relation, which is helpful for further development.

For l < 1, we need to consider both the intimate contact and
noncontact extension regimes. Under this circumstance, the
P� � d� relation are found to be

P� ¼ M1 þM2 exp �ðd
� � d1Þ2

2d2

 !
þM3½1� tanhðd3ðd� � d4ÞÞ�

(

� exp

�
d5

2
d� � d6j j þ d� � d6

�)
(16)

where Mi ði ¼ 1 � 3Þ and dj ðj ¼ 1 � 6Þ are all curve-fitted pa-
rameters. Figure 4 depicts fitted-curves for different values of l,
and shows that the curve fitting results (triangles) match
well with the exact solution of the double-Hertz model (lines).

Fig. 2 The variations of a� and c� with respect to P� in the
double-Hertz model with l ¼ 1. The corresponding JKR and
DMT limiting solutions are also shown for comparison. The
noncontact extension in the c� curve is shown (dashed line) for
completeness.

Fig. 3 The equilibrium P � d curves in the double-Hertz model
for a single contact asperity under different values of the Tabor
parameter. Here Pc represents the pull-off force and dc corre-
sponds to the maximum extension.

Fig. 4 Comparison between the exact double-Hertz solutions
(lines) and the corresponding fitted curves (triangles)
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The corresponding curve-fitted parameters for l � 1 and l < 1
are listed in Table 1 and Table 2, respectively. These approximate
but explicit P� � d� equations constitute the basis for the subse-
quent contact analysis involving rough surfaces.

4 Rough Adhesive Contact Model

In this section, we shall establish a rough adhesive contact
model with use of the results developed in previous sections. A
sketch of the adhesive contact between a rigid smooth surface and
a randomly rough elastic surface is illustrated in Fig. 5(a), where
the real surface roughness may be very complicated in topogra-
phy. Based on the reference plane of the rough surface defined by
the mean asperity height, z measures the asperity height, while d
represents the distance between the contacting surfaces. Following
Greenwood and Williamson [10], the randomly rough surface can
be modeled as an ensemble of noninteracting asperities with iden-
tical radius of curvature R and heights following Gaussian distri-
bution (as shown in Fig. 5(b)) with a probability density function

/ðzÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp � z2

2r2

� �
(17)

where r is the standard deviation of asperity heights. Lower val-
ues of r correspond to smoother surface, whereas higher values of
r represent rougher surface. It should be noted that this multiple
asperity contact model applies to surfaces with large roughness, in
which each individual contact is independent and the interaction
between asperities can be ignored [15].

When the two surfaces are brought together by a distance of d,
an asperity whose height is greater than d will come into contact
with the rigid surface with a probability

Probðz > dÞ ¼
ð1

d

/ðzÞdz (18)

where uðzÞdz is the probability that an asperity has a height
between z and zþ dz. If there are N asperities per unit area on the
rough surface, the total number of asperities contacting with the
smooth plane is expected to be

n ¼ N

ð1
d

/ðzÞdz (19)

In the loading process, when the two surfaces approach to each
other, the total normal force per unit area between the surfaces is
the sum of the forces exerted by all contacting asperities, that is

Pþrough ¼ N

ð1
d

PðdÞ/ðzÞdz ¼ 2pNRDc
ð1

d

P�ðd�Þ/ðzÞdz (20)

where P�ðd�Þ is the approximate explicit equations defined by
Eqs. (14)–(15) and Eq. (16).

Since the asperities with a height greater than d are deformed
by a value of d ¼ z� d at the tip, inserting Eq. (17) into Eq. (20)
and then changing the variable of integration from z to d give rise
to the total force applied on the whole rough surface as

Pþrough

2pNRDc
¼ 1

r
ffiffiffiffiffiffi
2p
p

ð1
0

P�
d
�d

� �
exp �ðdþ dÞ2

2r2

 !
dd (21)

By introducing the normalized variables D ¼ d=r, �D ¼ �d=r and
�d ¼ d=r, Eq. (21) can be rewritten as

Pþrough

2NpRDc
¼ 1ffiffiffiffiffiffi

2p
p

ð1
0

P�
D
�D

� �
exp �ðDþ

�dÞ2

2

 !
dD (22)

This equation determines the total forces between the two
approaching surfaces during a loading stage. When the separation
between the two surfaces reduces to a small enough value, the
compressive force resulting from the intimate contact asperities
will dominate and Pþrough will then become positive from negative.

The unloading stage starts from the minimum value of d (i.e.,
surface separation). During the unloading stage, as the separation
between the two surfaces increases, the elongation of the tips of
contacting asperities (i.e., d) will also increase gradually until
reaching a critical value dc shown in Fig. 3. Under this condition,
asperities with a height z > d are in the state of compression and
exert repulsive forces on the rigid surface, while those with a
height d � dc < z < d are stretched and experience adhesive ten-
sile forces. Consequently, the total applied force during the
unloading process can be calculated as

Table 1 Curve-fitted parameters for l � 1

l b1 b2 b3 b4 b5 b6 b1 b2 b3

1.0 �0.437 �1.020 1.957 0.293 1.676 0.961 0.678 2.590 0.499
1.2 �0.298 �0.683 1.451 0.370 1.600 0.922 0.231 2.962 0.501
2.0 �0.104 �0.775 1.397 0.584 1.322 0.791 0.208 3.008 0.520
3.0 �0.041 �0.796 1.433 0.668 1.248 0.761 0.208 3.008 0.525
4.0 �0.022 �0.799 1.457 0.700 1.225 0.753 0.209 3.006 0.526
5.0 �0.029 �0.806 1.527 0.716 1.214 0.750 0.232 2.961 0.527

Table 2 Curve-fitted parameters for l < 1

l M1 M2 M3 d1 d2 d3 d4 d5 d6

0.2 20.533 �24.165 �0.078 �6.516 272.987 0.312 �1.839 0.206 �0.517
0.3 19.206 �20.531 �0.028 �2.823 187.880 0.769 �1.907 0.696 �0.884
0.5 7.877 �8.256 0.005 �0.579 48.524 1.708 �1.825 3.103 �2.493
0.7 9.227 �5.586 0.508 1.751 37.927 �0.610 �3.495 �0.119 �1.660
0.9 6.548 �4.417 0.664 2.379 21.355 �0.400 �2.810 �0.268 �1.663

Fig. 5 Adhesive contact between a rigid smooth surface and a
randomly rough elastic surface in (a) a real case and (b) a sim-
plified model
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P�rough

2NpRDc
¼ 1ffiffiffiffiffiffi

2p
p

ð1
�DcðlÞ

P�
D
�D

� �
exp �ðDþ

�dÞ2

2

 !
dD (23)

where DcðlÞ ¼ dc=r is dependent on the Tabor parameter l.

5 The Adhesion Hysteresis and Total Pull-Off Force

As shown in Eqs. (22) and (23), the total applied forces at a
given separation are different in the loading and unloading stages,
which implies the existence of a adhesion hysteresis due to sur-
face roughness. To illustrate this phenomenon more clearly,
Figs. 6(a)–6(b) plot the normalized forces against the normalized
separation in a loading/unloading cycle for different values of l.
It can be observed from these figures that different loading and
unloading paths induced by the surface roughness compose a hys-
teresis loop whose area quantifies the dissipation energy during
the deformation process. In fact, this hysteresis for rough surfaces
can be viewed as the statistical average of the hysteresis for each
individual contact asperity, which has been characterized in
Fig. 3. Careful observation of Figs. 6(a)–6(b) indicates that for
prescribed material properties (i.e., l is fixed), the equilibrium
curves are dependent on the surface roughness only through a
dimensionless parameter 1=�D (termed as the adhesion parameter
in the following discussions). Since 1=�Dð¼�d=rÞ is proportional to
the standard deviation r of asperity heights for given material
properties (note that �d defined in Eq. (7) is fixed), larger 1=�D

corresponds to rougher surfaces, whereas lower 1=�D corresponds
to smoother surfaces.

Figure 7 plots the variations of the dissipation energy due to
hysteresis with the dimensionless parameter 1=�D for various val-
ues of l. It can be seen that as the surface becomes rougher with
increasing 1=�D, the dissipation energy decreases and tends to zero
for all values of l. Another observation that can be made from
this figure is that the total energy loss is a function of l. For a
given surface topography (1=�D is fixed), the dissipation energy for
soft materials corresponding to larger values of l is smaller than
that for hard materials corresponding to smaller values of l. This
phenomenon can be explained by the contact behavior of individ-
ual asperities shown in Fig. 3. Actually, when l is small, the adhe-
sive force will decay more slowly with larger values of dc, which
in turn renders the corresponding energy dissipation measured by
the enclosed area larger. Consequently, the total energy dissipa-
tion due to surface roughness is predicted to decrease with
increasing values of l.

On the other hand, the total pull-off force for rough adhesion,
as a measure of the adhesion strength of the contact system, is
quantified by the most negative value of the total applied force
during the unloading process, which is shown in Figs. 6(a)–6(b).
As the separation between two surfaces increases, the total force
becomes tensile (negative), reaches a minimum value (pull-off
force), and then tends asymptotically to zero when d is sufficient
large (i.e., the adhesion between the highest asperities is broken).

Figure 8 depicts the variations of the total pull-off force against
the adhesion parameter 1=�D for different values of l. As P�c repre-
sents the normalized pull-off force for an individual asperity, the
vertical axis Ppull�off=2NpRDcP�c corresponds to the reduction in
the pull-off force due to the dispersion of the asperity heights,
where 2NpRDcP�c expresses the sum of the pull-off force exerted
by N asperities per unite area on the rough surface. For the special
case of 1=�D ¼ 0, i.e., r ¼ 0, the rough surface turns out to be an
ensemble of spherical asperities with the same radius and height,
and 2NpRDcP�c is the maximum value attainable since these
asperities are assumed to deform independently of each other. As
the surface becomes rougher with increasing 1=�D, the total pull-
off force decreases smoothly to zero for all values of l. Besides,
for the same surface topography (i.e., 1=�D is fixed), decreasing l
leads to increasing magnitude of the pull-off force, which is quite
consistent with the case of a single contact asperity.

From the above discussions, it can be concluded that both the
adhesion toughness (measured by the dissipation energy) and
strength (measured by the total pull-off force) are influenced by
the surface roughness through the adhesion parameter. In fact, we
have

Fig. 6 The variation of normalized loading forces with respect
to the normalized separation during a loading/unloading cycle
for (a) l ¼ 0:3 and (b) l ¼ 5, respectively

Fig. 7 Energy dissipation due to adhesion hysteresis as a
function of the adhesion parameter 1=�D in a loading/unloading
cycle

Journal of Applied Mechanics MAY 2014, Vol. 81 / 051008-5

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/27/2015 Terms of Use: http://asme.org/terms



1
�D
¼ r

ðRDc2=E�2Þ1=3
¼ 3p

2

FE

FA

� �2
3

(24)

where

FE ¼
4

3
E�R

1
2r

3
2; FA ¼ 2pRDc (25)

Interestingly, FE corresponds to elastic compressive (Hertzian)
force required to press a sphere of radius R to a depth of r into an
elastic solid of modulus E�, while FA denotes the adhesive tensile
force maintained by a sphere of radius R. The adhesion parameter
can be treated as the statistical average of a competition between
compressive and adhesive forces imposed by asperities with dif-
ferent heights, which was also found in the JKR-based rough con-
tact model [11,35]. When 1=�D is small, the adhesive tensile forces
contributed by lower asperities win over the elastic compressive
forces exerted by higher asperities. Under this circumstance, the
adhesion effect of the rough surface becomes a dominant factor
and hence the adhesion hysteresis and the total pull-off force turn
out to be high. Both these two values reach their maximum near
the limit of 1=�D ¼ 0. On the contrary, as 1=�D becomes larger, the
elastic compressive forces exerted by higher asperities outperform
the adhesive tensile forces contributed by lower asperities and
therefore the effect of adhesion becomes weak. Accordingly, the
corresponding adhesion hysteresis and the total pull-off force
become small. For a rough surface with large enough values of
1=�D, the whole contact process occurs in the absence of adhesion
and the adhesion hysteresis and the total adhesive force will vanish.

6 Conclusions

Based on the classical double-Hertz model and the multiple as-
perity contact model, the present paper has established an adhe-
sive contact model for rough surfaces, which can be applied to
general material properties characterized by a Tabor parameter.
Our analysis results reveal that surface roughness can influence
the total pull-off force and the energy dissipation resulting from
loading/unloading hysteresis only through a dimensionless param-
eter, which measures the statistical average of a competition
between compressive and adhesive forces imposed by asperities
with different heights. When the adhesion parameter is small, the
adhesive effect will dominate and therefore both the energy dissi-
pation and the pull-off force will be larger. In contrast, when the
adhesion parameter is relatively large, the rougher the contact
surface, the smaller the adhesion effect. Under this circumstance,

the corresponding energy dissipation and pull-off force will be
lower. These findings may be helpful for designing and control-
ling the contact systems involving rough surfaces.
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