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A phase-field model, accounting for large elasto-plastic deformation, is developed to study the evolution of phase, morphology and
stress in crystalline silicon (Si) electrodes upon lithium (Li) insertion. The Li concentration profiles and deformation geometries are
co-evolved by solving a set of coupled phase-field and mechanics equations using the finite element method. The present phase-field
model is validated in comparison with a non-linear concentration-dependent diffusion model of lithiation in Si electrodes. It is
shown that as the lithiation proceeds, the hoop stress changes from the initial compression to tension in the surface layer of the Si
electrode, which may explain the surface cracking observed in experiments. The present phase-field model is generally applicable to
high-capacity electrode systems undergoing both phase change and large elasto-plastic deformation.
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As a promising anode material for lithium (Li)-ion batteries,1–3 the
theoretical Li capacity of Silicon (Si) is 4200 mAh/g (corresponding
to the lithiated phase of Li4.4Si), which is one order of magnitude
larger than the commercialized graphite anode.1,2 Recent experiments
revealed that the lithiation of crystalline Si (c-Si) occurs through a
two-phase mechanism, i.e., growth of lithiated amorphous LixSi (a-
LixSi, x ∼ 3.75) phase separated from the unlithiated c-Si phase by
a sharp phase boundary of about 1 nm thick.4–8 An abrupt change
of Li concentration across the amorphous-crystalline interface (ACI)
gives rise to drastic volume strain inhomogeneity. The resulting high
stresses induce plastic flow, fracture, and pulverization of Si elec-
trodes, thereby leading to the loss of electrical contact and limiting
the cycle life of Li-ion batteries.9–11

Electrochemically driven mechanical degradation in high-capacity
electrodes has stimulated enormous efforts on the development of
chemo-mechanical models to understand how the stress arises and
evolves in lithiated Si electrodes.12–15 These chemo-mechanical mod-
els often treated the lithiation-induced stress as the diffusion-induced
stress by considering Li diffusion in a solid-state electrode that results
in the change of composition from its stoichiometric state. Deviation
from stoichiometry usually results in a volume change that generates
stress if the Li distribution is non-uniform. Early chemo-mechanical
models only involved a unidirectional coupling. Namely, the diffusion-
induced mechanical stress was considered, whereas the effect of me-
chanical stress on diffusion was ignored. Both experimental and com-
putational studies, however, have shown that the mechanical stresses
play an important role in the lithiation kinetics of Si electrodes.4,6,16,17

Recently, fully coupled chemo-mechanical models were developed to
incorporate the mechanical stress into the chemical potential.18–22 In
these models, the local stress modulates lithiation kinetics (reaction
rate and diffusivity),4,6,23 and in turn, lithiation kinetics regulates the
stress generation in lithiated Si electrodes.6 However, most efforts of
coupling the diffusion with stress were made in the elastic regime of
Si electrodes.
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Motivated by recent experimental observations of drastic morpho-
logical changes in lithiated Si electrodes, more sophisticated models
have recently been developed to account for the large elasto-plastic
deformation coupled with Li diffusion.12,15,18,19,21,24 Based on non-
equilibrium thermodynamics, Zhao et al.15,21 considered the coupled
large plastic deformation and lithiation in a spherical Si electrode.
Bower et al.12,18 developed a theoretical framework to incorporate fi-
nite deformation, diffusion, plastic flow, and electrochemical reaction
in lithiation of Si electrodes. Such models treated Li diffusion in a
single phase with a gradual variation of Li concentration, which is
inconsistent with the two-phase lithiation mechanism uncovered by
the recent in situ transmission electron microscopy (TEM) experi-
ments. Huang et al.25,26 and Yang et al.27,28 developed a non-linear
concentration-dependent diffusion model in which Li diffusivity was
treated as a non-linear function of Li concentration so as to effectively
generate a sharp phase boundary. However, such non-linear diffusion
model, implemented in a general finite element framework, failed to
provide a characteristic length scale as the interface thickness varied
with the lithiation time. Cui et al.24 and Liu et al.4 studied the lithiation
of Si by considering the interfacial chemical reactions and bulk dif-
fusion as two sequential processes. But they did not directly simulate
the concurrent processes of Li diffusion and reaction.

Phase-field method (PFM) has been applied to a vast range of phe-
nomena in materials processes, e.g., solidification,29 solid-state phase
transformation,30 recrystallization,31 and grain growth.32,33 PFM is
formulated based on the theory of irreversible thermodynamics, and
is advantageous in addressing the time-dependent evolving morpholo-
gies and describing the complex microstructure evolution process. In
particular, the diffuse interface between adjacent phases can be conve-
niently captured by a gradient term without the need of cumbersome
tracking of a sharp interface in every step of numerical simulations.
The early attempt along this line was to couple PFM with a linear
elasticity model by Van de Ven et al.,34 who investigated the effect
of coherency strains on phase stability in LiFePO4. Later, Bazant
et al.35,36 developed a thermodynamically consistent PFM, coupled
with the linear elasticity, to simulate the non-linear Butler-Volmer
reaction kinetics. More recently, Anand et al.37 proposed a general
formalism to couple phase-field with large elasto-plastic deformation.
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Di Leo et al.38 subsequently implemented this formalism with a nu-
merical approach to simulate the LiFePO4 electrode material. How-
ever, these phase-field models either assume linear elastic deforma-
tion that is not applicable to the Si electrodes undergoing large plastic
deformation during lithiation, or are still at the early stage of de-
velopment without numerical implementations for the high-capacity
electrode materials.

In this paper, we aim to develop a phase-field model coupled with
large elasto-plastic deformation. We employ this model to simulate
lithiation of Si electrodes, which involve both the large geometrical
change and phase change. The Li-poor/Li-rich phase boundary is
naturally captured without any special treatment (e.g., usage of an
interfacial domain). We solve the elasto-plastic equilibrium equations
in every step of temporal phase-field evolution by the finite element
method (FEM). Our phase-field model is numerically implemented in
the physical space such that it is well suited to study the effects of
complex geometries and boundary conditions. Moreover, this model is
thermodynamically consistent and enables the full chemo-mechanical
coupling.

Problem Description

We study a simple model problem: lithiation of a nanowire elec-
trode with a cross section of radius A, as shown in Figure 1a. Upon
lithiation, the Li distribution becomes non-uniform in the radial di-
rection, but retains circular symmetry. The insertion of Li atoms
causes the nanowire electrode to swell to a radius a, as shown in
Figure 1b. The non-uniform distribution of Li generates the stress
inside the nanowire. A key feature of lithiation in the c-Si electrode is
the formation of a phase boundary of 1 nm in thickness,4–8,11 which
separates the Li-rich and Li-poor phases (see Figure 1c). The electron
diffraction pattern indicates that the Li-rich phase is a-Li3.75Si. This
composition is further confirmed by the apparent volume expansion
close to that of c-Li3.75Si as well as the dynamic formation of Li3.75Si
nanocrystals within the amorphous phase.4,6,9 In the c-Si core the
lattice expansion remains negligibly small, indicating the low Li con-
centration and accordingly the Li-poor phase therein. Across the sharp
phase boundary, Li concentration changes abruptly. In other words,
the Li-poor phase does not continuously transform to the Li-rich one
with a gradual change of Li content, and lithiation is mediated by the
phase boundary migration. The sharp phase boundary plays a criti-
cal role in stress generation and fracture in c-Si during lithiation.4,6

Hence, it is important to develop a fully coupled chemo-mechanical
model to simulate the co-evolution of phase, morphology and stress
during the lithiation process.

Figure 2. Schematic diagram showing (a) decomposition of deformation gra-
dient and definition of intermediate configuration; (b) double well chemical
free energy function.

A Constitutive Model of Lithiation-Induced Elasto-Plastic
Deformation

In this section, a constitutive model is developed to characterize
the large elasto-plastic deformation in a lithiated Si electrode.

Kinematics of deformation.— The kinematics for any material
point in a continuum can be described by a continuous displacement
field u given by

u = x − X, [1]

where x is the position of the material point at time t and X is the
initial position at t = 0. The deformation gradient is defined as F(X, t)
= ∇Xx, where ∇X is the gradient operator with respect to X.

In continuum mechanics, a multiplicative decomposition of the
deformation gradient is typically assumed

F = FeF∗, F∗ = FcFp, [2]

where Fc represents the chemically-induced deformation gradient due
to the compositional inhomogeneity, Fp is the plastic deformation
gradient, and Fe is the elastic deformation gradient. Eq. 2 indicates
that the total deformation can be considered as an accumulation of
an inelastic deformation followed by an elastic deformation . The
state of the material point after inelastic deformation is named as the
intermediate state, as shown in Figure 2a. In particular, such state is
stress free and is not necessarily compatible in kinematical sense.39

Following Eq. 2, the total Lagrange strain can be given as

E = 1

2
(FTF − I) = (FcFp)TEeFcFp + (Fp)TEcFp + Ep, [3]

Figure 1. Schematic diagram showing a typical lithiation process from (a) the initial state with a lithiation-free and stress-free silicon nanowire electrode to
(b) the current state in which the electrode is partially lithiated with the sharp phase boundary and a stress field is developed. The model is consistent with (c) In
situ TEM observed core-shell structure in a partially lithiated Si electrode, where the crystalline core (c-Si) is surrounded by the amorphous shell (a-LixSi). The
amorphous-crystalline interface (ACI), i.e., the phase boundary separating the amorphous lithiated shell and the unlithiated crystalline core, is atomically sharp
(∼1 nm).4–8
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where

Ee = 1

2
[(Fe)TFe − I] Ec = 1

2
[(Fc)TFc − I]

Ep = 1

2
[(Fp)TFp − I] [4]

are, respectively, the elastic, chemical, and plastic strain tensors.

Stress equilibrium.— As the long-range Li diffusion is typically
much slower than the local stress relaxation, a mechanical equilibrium
holds at any time, i.e.

σ0
i j, j (X) = 0, [5]

where σ0(X) is the first Piola-Kirchhoff (P-K) stress tensor,

σ0 = ∂W (F, ĉ)

∂F
= ∂W (F, ĉ)

∂Ee

∂Ee

∂Fe

∂Fe

∂F
= ∂W (F, ĉ)

∂Ee
Fe(Fp)−1(Fc)−1.

[6]
We denote c and cmax as the current and maximum true Li concen-

tration in the lithiated Si, respectively. The normalized Li concentra-
tion is defined as ĉ = c/cmax. Note that ĉ represents the fraction of
lithiation at a material point relative to its fully lithiated state, which is
independent of the deformation gradient F of the associated material
point. For brevity, ĉ will still be called the Li concentration in the rest
of this paper.

Elasto-plastic deformation.— We take the total deformation gra-
dient F and the concentration ĉ as the independent variables, thus, the
elastic energy density in the Lagrangian description (initial configu-
ration) Wel (F, ĉ) can be written as

Wel (F, ĉ) = J c E

2(1 + v)
(tr (EeEe) + v

1 − 2v
[tr (Ee)]2), [7]

where E and v are, respectively, Young’s modulus and Poisson’s ratio
for the LixSi phase, both of which depend on ĉ, and J c is the chemical
deformation Jacobian. The elastic energy density corresponding to the
intermediate state wel (F, ĉ) is

wel (F, ĉ) = (J ∗)−1Wel (F, ĉ), [8]

where J ∗ is the Jacobian that transforms an infinitesimal element of
volume in the initial configuration to the corresponding fraction of
volume in the intermediate configuration, i.e.

J ∗ = det(F∗). [9]

Assuming the plastic deformation is volume preserving, i.e., the
plastic deformation Jacobian J p = det(Fp) = 1, one can write

wel (F, ĉ) = (J ∗)−1Wel (F, ĉ) = (J c)−1Wel (F, ĉ). [10]

We assume the chemical deformation is isotropic that is given by

Fc = βĉI, [11]

where β is the coefficient of chemical expansion associated with Li
insertion, and I is the second-order identity tensor.

Next, we turn to the constitutive law (i.e., the flow rule) of plastic
deformation. The rate of plastic stretch is expressed as

Dp = 1/2(Lp + LpT ), [12]

where Lp corresponds to the plastic part of the spatial gradient of
velocity, given as

Lp=FeFcḞp(Fp)−1(Fc)−1(Fe)−1. [13]

The plastic stretch rate, Dp , obeys the associated J2-flow rule.
Namely, plastic yielding occurs when the equivalent stress, τe

=
√

3
2 τ ′ : τ ′ , reaches the yield strength, σ y . Here τ ′ is the deviatoric

part of the Kirchhoff stress tensor τ, i.e., τ ′ = τ − tr (τ)I/3. Note that
the Kirchhoff stress tensor is related to the first P-K stress tensor as
τ = Fσ0(X). Also, the Cauchy stress is expressed as σ = J −1Fσ0(X),
where J corresponds to the total deformation Jacobian.

In the J2-flow theory, the plastic stretch rate is given by

Dp = 3

2

τ ′

τe
D p

eq , [14]

where D p
eq = √

2Dp : Dp/3 is the equivalent plastic stretch rate.
The lithiated Si electrode is modeled as an isotropic elasto-plastic

material with a simple linear hardening rule

σy = σy0 + H ε̄p, [15]

where σy0 denotes the initial yield strength, H is the hardening modulus
of the material, and ε̄p is the total accumulated equivalent plastic
stretch, given by

ε̄p =
∫

t
D p

eq dt . [16]

In the above expressions, all the field variables such as the Green-
Lagrange elastic strain tensor Ee, the first P-K stress σ0, and the
plastic stretch rate Dp are functions of the deformation gradient ten-
sor F. Once F is known, Ee can be calculated from Eq. 4, σ0 from
Eqs. 6 and 7, and Lp from Eq. 13.

Phase-Field Model

A phase-field model usually relies on the continuous order param-
eter such as local concentration. In a lithiated Si electrode, Li atoms
are assumed to reside in the lattice sites of a crystalline phase of LixSi
- the actual phase could be amorphous, but with the same compo-
sition. The concentration field, as a conserved property, evolves by
long-range diffusion. Hence, in principle, a description of diffusion
and phase boundary migration within the electrode material requires
two fields: the Li concentration field describing the local degree of
lithiation, and a phase-field that distinguishes the crystalline state and
the amorphous state. For simplicity, in this paper both the local de-
gree of lithiation and the structural difference between the crystalline
and amorphous states together are described by a single Li concentra-
tion field. The temporal and spatial evolution of the Li concentration
field is obtained by solving the Cahn-Hilliard equation. It should be
emphasized that since every material point in lithiated Si can locally
undergo very large volume expansion up to about 300%, care must
be taken in choosing the appropriate field variable that accounts for
lithiation-induced large strains. In this work, we choose the normal-
ized Li concentration ĉ as the field variable, so as to facilitate the
coupling between the phase-field and constitutive models.

In a phase-field model, the free energy functional G is the total
free energy of an inhomogeneous system,

G =
∫
V

[
fch(ĉ) + κ

2
(∇ ĉ)2 + fel (F, ĉ) + f pl (F)

]
dV, [17]

where fch(ĉ), fel (F, ĉ) and f pl (F) represent the local energy den-
sity from the chemical, elastic and plastic contribution, respectively.
The Li concentration gradient term κ/2(∇ ĉ)2 contributes to the phase
boundary energy. More specifically, fch(ĉ) is the chemical free energy
density of the stress-free state and is given by a double-well function

fch (c) = cmax RT [ĉ ln(ĉ) + (1 − ĉ)ln(1 − ĉ) + �ĉ(1 − ĉ)] . [18]

While Eq. 18 is a regular solution model, the lithiated Si is amorphous
and cannot be simply characterized as a regular solution. Hence we
only take Eq. 18 as a mathematic function with double energy wells,
which represent the Li-poor and Li-rich phases, respectively. The
dimensionless parameter � controls the profile of the double-well
energy function. In addition, fel (F, ĉ) and f pl (F) are, respectively, the
elastic and plastic energy densities arising from the inhomogeneous
lithiation

fel (F, ĉ) = Wel (F, ĉ) [19]

and

f pl (F) =
∫

�Wpl (F)dt, [20]
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where �Wpl corresponds to the increment of the plastic energy den-
sity, given by

�Wpl (F) = τ : Dp. [21]

The Li potential μ is defined as the variational derivative of G,

μ = δG

δĉ
= ∂ fch + κ/2(∇ ĉ)2

∂ ĉ
+ ∂ fel

∂ ĉ
+ ∂ f pl

∂ ĉ
= μch + μel + μpl ,

[22]
where the chemical driving force, including the gradient term, is given
by

μch = ∂ fch

∂ ĉ
− κ∇2ĉ = cmax RT

[
�(1 − 2ĉ) + ln

ĉ

1 − ĉ

]
− κ∇2ĉ.

[23]
The elastic driven force μel is given by

μel = ∂ fel (F, ĉ)

∂ ĉ
= ∂ J cwel (F, ĉ)

∂ ĉ
= β

J c
�kk + J c ∂wel (F, ĉ)

δĉ
,

[24]
where �kk is the conventional Eshelby’s stress tensor,40,41 as

�kk = 3J cwel (F, ĉ) − τkk . [25]

Regarding Eq. 24, the terms of the order σ0E or higher can be
neglected if both the elastic and chemical strains are small, such that
J c = 1 and different stress measures are equivalent. Under these
conditions, one can show that Eq. 24 can be reduced to the classic
equation by Larche and Cahn42

μel = −βσkk + ∂Ci jkl

δĉ
Ei j Ekl . [26]

We assume that the plastic energy density is independent of ĉ, so
that

μpl = ∂ f pl (F)

∂ ĉ
= 0. [27]

The Li diffusion equation is derived by

∂ ĉ

∂t
= −∇ J f lux , [28]

with the concentration flux J f lux related to the Li potential μaccording
to

J f lux = −MLi(ĉ)∇μ, [29]

where MLi is the Li mobility tensor that is in general a function of Li
concentration ĉ, as

MLi(ĉ) = D

∂ f 2
ch (ĉ) /∂ ĉ2

=
(

D

cmax RT

)
[ĉ(1 − ĉ)], [30]

where D is the inter-diffusion coefficient.
Combining Eqs. 22–30 yields the Cahn-Hilliard type of phase-field

equation

∂ ĉ

∂t
= ∇ · MLi(ĉ)∇

{
cmax RT

[
�(1 − 2ĉ) + ln

ĉ

1 − ĉ

]
− κ∇2ĉ + μel

}
.

[31]

Numerical Implementation

The phase-field equations coupled with the constitutive equations
of elasto-plastic deformation are solved by using a FEM-based nu-
merical method through a commercial software package, COMSOL.
Compared to the commonly used spectral method for the phase-field
simulations, the FEM-based approach facilitates the integration of the
combined phase-field and mechanics equations, such that it is well
suited to solve problems with large elasto-plastic deformation and
finite-sized geometry of an arbitrary shape under various initial and
boundary conditions.

Decomposition of the Cahn-Hilliard formulation.— The Cahn-
Hilliard formulation involves a fourth-order, non-linear parabolic
equation. Unfortunately, the present FEM-based numerical platform
is not directly applicable to the fourth-order equations. Hence, we
deal with the Cahn-Hilliard equation by decomposing it into a set of
two second-order equations: one is the parabolic equation expressed
as

∂ ĉ

∂t
= ∇ · MLi(ĉ)∇μ, [32]

and the other is

μ = cmax RT

[
�(1 − 2ĉ) + In

ĉ

1 − ĉ

]
− κ∇2ĉ + μel . [33]

The occurrence of two phases results from a non-convex, double-
well chemical free energy of Eq. 18 shown in Figure 2b. Experiments
show that the Li-rich phase likely consists of amorphous Li3.75Si at
room temperature, whereas the theoretical lithiation product is Li4.4Si.
Hence, the normalized Li concentration for the actual Li-rich phase
is 3.75/4.4 = 0.872. Thus, the coefficient � in Eq. 18 is chosen
as � = 2.6 in order to enforce the Li-rich phase to take such a
concentration value, as shown in Figure 2b.

Boundary conditions.— In the present numerical platform, two
types of boundary conditions are imposed, one corresponds to the
Cahn-Hilliard (phase-field) equation, and the other to the mechan-
ical stress equilibrium. For the former, since the governing equa-
tion is of the fourth-order, two boundary conditions are required to
solve the resulting two second-order partial differential equations after
decomposition. {

ĉ = ĉ
β

−n · μ = 0
on �d , [34]

where n is the outward normal at the outer surface �d of the Si
electrode.

1) In experiments, Li was observed to quickly cover the outer sur-
face of the Si nanowire electrode due to its much lower migration
barriers on the Si surface than in the bulk.9,10,43 We thus prescribe
a Dirichlet boundary condition that assumes a saturated Li con-
centration of ĉ

β
, corresponding to Li-rich phase (see Figure 2b),

on the Si outer surface throughout the lithiation process;
2) The flux of potential is set to be zero on the Si electrode outer

surface �d .

Further, regarding the mechanics boundary conditions, we assume
the outer surface �d of the Si electrode is traction free

− n · σ = 0 on �d . [35]

Due to circular symmetry, only a quarter of each Si nanowire
electrode is simulated and the symmetrical boundary conditions are
imposed in order to reduce the computational cost.

Transformation to the weak form.— Plane 3-node triangular ele-
ments with four degrees of freedom (c, μ, ui ) per node are used in
the 2D discretization. Time integration is accomplished using an im-
plicit first-order scheme. The weak (variational) form of the problem
reads:

find d = [ĉ, μ, ui ]T ∈ V × V where

V = {d(X, t)
∣∣d(X, t) ∈ H2, d(X, t) = d(X, t) on 0�d}, [36]

such that:∫
0�

˙̂c · q d0� +
∫

0�

MLi∇μ · ∇q d0� = 0 ∀q ∈ V =
[37]
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Table I. Phase-field simulation parameters and their normalized values.

Real value Normalized value

Parameter Symbol Value Symbol Value

Mobility M 2.186 × 10−26m5/J × s M∗ = M/M N 10.0
Gradient energy coefficient κ 2.0 × 10−9J/m κ∗ = κ/(RT cmax × l2) 0.0005
Expansion coefficient β 0.5874 0.5874
Elastic modulus E 160 ∼ 40 GPa σ∗

y = σy/RT cmax 175
Poisson’s ratio ν 0.24 ∼ 0.22 0.24
Yield strength σy 1.5 GPa σ∗

y = σy/RT cmax 1.64
Strain hardness H 1.0 GPa H∗ = H/RT cmax 1.092
Radius A 70 nm A∗ = A/ l 1
Time step �t 2.45 s �t∗ = �t/(l2/M N RT cmax) 10−3

∫
0�

μ · p d0� +
∫

0�

κ∇ ĉ · ∇ p d0� ∀p ∈ V =

−
∫

0�

[
cmax RT

(
�(1 − 2ĉ) + In

ĉ

1 − ĉ

)
+ μel

]
· p d0� = 0

[38]

∫
0�

σ̇0
i j · ∇

(
∂v j

∂ Xi

)
d0� = 0 ∀vi ∈ V =

[39]
where the superscript 0 indicates that the integration extents are in the
reference (initial) configuration. Rates are indicated by the superposed
dot. The prefix ∇ on q, p, vi identifies the test (arbitrary virtual)
function.

Numerical Results

Model parameters.— We adopt an isotropic elasto-plastic model
along with a linear hardening law to describe the lithiation-induced
deformation in Si electrodes, as described before. For material proper-
ties in the elastic range, Young’s modulus and Poisson’s ratio are both
assumed to vary linearly with Li concentration from 160 to 40 GPa
and from 0.24 to 0.22,20,43 respectively. However, the material proper-
ties in the plastic range are not available. Hence, we use typical values
for the yield strength σy = 1.5 GPa, and the hardening modulus H =
1.0 GPa, which provide a reasonable fit to recent experiments.1,17,44

The coefficient of compositional expansion is taken as β = 0.5874
which yields a volume increase of 300% in the fully lithiated phase.
The gradient energy coefficient κ is assumed to be 2.0 × 10−9 Jm−1.
The mobility M0 = D/cmax RT for the Cahn-Hilliard equation (see
Eq. 30) is chosen to be 2.186 × 10−26m5/J · s, which corresponds to
the inter-diffusion coefficient D of 2 × 10−17m2/s. The initial radius
of Si electrode is A = 70 nm. The time step �t for integration is
taken as 2.45 s.

In both phase-field and non-linear diffusion models, the equations
are solved in their dimensionless forms. Both moduli and stresses
are normalized by cmax RT that is estimated as follows. The vol-
ume of one mole Si atoms in solid is given by V = msi/ρsi =
1.2 × 10−5m3/mole, where msi and ρsi are molar mass and density of
Si, respectively. It is known that the compound with maximum Li con-
centration among all the possible Li/Si compounds during the electro-
chemical reactions is Li4.4Si. Thus, the maximum nominal Li concen-
tration cmax is determined by cmax = 4.4/V = 0.3667 × 106mole/m3,
thus cmax RT = 0.915 GPa.

The length parameters are normalized by l = 70 nm, yielding
a normalized Si electrode radius of A∗ = A/ l = 1. The mobil-
ity M0 is normalized by a factor M N = 2.186 × 10−27m5/J · s
as M∗ = M0/M N = 10.0. To further normalize time, the factor
td = l2/M N cmax RT is employed as �t∗ = �t/td = 10−3. The
physical parameters and their normalized value are summarized in
Table I.

Validation of the phase-field model.— In this work, we focus on
validating the phase-field model so as to provide a solid basis for its
applications to the complex boundary-value problems in the future.
Figure 3 shows the radial distribution of normalized Li concentra-
tion, ĉ, at different lithiation times of t = 500, 5000, 9000�t . A
sharp interface is simulated between the Li-poor and Li-rich phases at
each snapshot, thus yielding a core/shell structure as experimentally
observed during lithiation of Si nanowires.3,5 Further, the lithiation
front distance at the time interval of t = 5000 − 9000�t is markedly
smaller than that from t = 500−5000�t , indicating the slowing down
of lithiation as lithiation proceeds, which agrees with the experimen-
tally observed self-limiting lithiation phenomenon.4,6 The lithiation-
induced compressive stress at the reaction front is expected to play
a role in lowering the lithiation rate.4,6 A systematic investigation of
such retardation effect will be reported in a forthcoming publication.

We next compare the radial stress distributions predicted from the
present phase-field with the previously developed non-linear diffusion
model.25 As shown in Figure 4, three stress components are included,
i.e., the radial stress, σr , the hoop stress σθ, and the von Mises effective
stress, σe = |σr − σθ|. Specifically, Figure 4a and 4b show the results
of the present phase-field model at t = 500�t and t = 9000�t ,
respectively, giving the phase boundary position at R/A = 0.85 and
R/A = 0.5. Figure 4c and 4d show the corresponding numerical
results from the non-linear diffusion model.25

Figure 4a and 4c are representative of the early stage of lithia-
tion, while Figure 4b and 4d the late stage of lithiation. The present
phase-field model exhibits the overall consistency with the previous
non-linear diffusion model. The small difference arises possibly from
the fact that a rate-dependent plasticity model without strain hardening
was employed in the previous non-linear diffusion model, whereas a
rate-independent plasticity model with linear (but weak) strain hard-

Figure 3. Radial distribution of Li concentration, ĉ = c/cmax, at different
lithiation times.
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Figure 4. Comparison of radial distributions of the von Mises effective stress, σe , radial stress, σr and hoop stress σθ obtained by: (a) the phase-field model at
time of t = 500�t with phase boundary located approximately at R/A = 0.85, (b) the phase-field model at time of t = 9000�t with phase boundary around at
R/A = 0.5, (c) the non-linear diffusion model25 with phase boundary at R/A = 0.85 and (d) the non-linear diffusion model25 with phase boundary at R/A = 0.5.
All the stress components are normalized by Young’s modulus of Si, Esi.

ening is used in the present phase-field model, that is necessary for
numerical stability. Furthermore, the mesh density and geometry could
contribute to numerical differences between the two models, e.g., the
phase-field results exhibit small fluctuations in stress distribution and
a further improvement on numerical stability is necessary in the future.

For completeness, the main findings from Figure 4 are summarized
as follows:

1) As lithiation proceeds to the late stage, Figure 4b and 4d show that
the hoop stress σθ is tensile in the surface layer of a Si electrode,
opposite to the compressive hoop stress at the early stage, as
shown in Figure 4a and 4c. This reversal of hoop compression to
tension explains the surface cracking of Si electrodes as observed
in in situ lithiation experiments.

2) The traction-free boundary condition dictates that the radial
stress, σr , at the surface of a Si electrode vanishes all the time.
Also, the radial stress, σr is always equal to the hoop stress σθ in
the Li-poor phase, due to the symmetry of the system.

3) Both the radial stress σr and hoop stress σθ in the Li-poor phase
change from tension to compression, as the lithiation proceeds.

Further, to visualize the evolution of the hoop stress in the time
domain, Figure 5 plots the hoop stress at the center and at the surface
of the Si electrode with respect to the lithiation time. It is seen that the
hoop stress at the center is positive, increases to a (positive) maximum
at the initial stage, and then changes its sign, i.e., decreases quickly to
a negative value. In contrast, the hoop stress at the surface is initially

negative, reaches a (negative) maximum, then starts to reverse and
becomes positive rapidly. At the initial stage of lithiation, compressive
plastic yielding occurs near the surface layer that undergoes large
compressive stress. As the lithiation proceeds, the newly lithiated
region at the moving phase boundary starts to expand. However, the
surface layer has already been fully lithiated and thus acts as a thin shell
to constraint the expansion occurring at the moving phase boundary
inside the Si electrode. As a result, a tensile hoop stress is generated
near the surface layer, resembling the inflation of a balloon causing
the wall stretch.

Phase boundary width.— The phase-field model can yield a phase
boundary between the Li-poor and Li-rich phases with a well-defined
boundary width λ, while such an essential material length scale is
missing in the previous non-linear diffusion model. The phase bound-
ary width can be theoretically estimated according to30

λ = (ĉβ − ĉα)
√

κ/2�g = 1.12 nm, [40]

where ĉα and ĉβ are the normalized Li concentration of the Li-poor and
Li-rich phases, respectively, as indicated in Figure 2b; κ is the gradient
energy coefficient defined earlier; and �g is the barrier height in
the chemical free energy shown in Figure 2b. The theoretical value of λ
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Figure 5. The evolution of the hoop stress, σθ, at the (a) surface and (b) center of Si electrode. All the stress components are normalized by Young’s modulus of
Si, Esi.

Figure 6. Comparison of evolution of phase boundary width, λ, from the
analytical estimate and phase-field model.

agrees well with the experimental measurement, and it also provides
a basis for the validation of the present phase-field model.

Figure 6 shows the evolution of phase boundary width λ from
the present phase-field model, which is compared with the theoreti-
cal estimation. The simulation result is consistent with the theoretical
value during the entire lithiation process. More importantly, in the
non-linear diffusion model, the phase boundary width can increase
to several times the initial value with lithiation. In contrast, the vari-
ation of phase boundary width in the present phase-field model is
almost negligible. Hence, the material length scale related to this
phase boundary thickness is well captured by the present phase-field
model.

Effect of plasticity on stress evolution.— In order to illustrate the
effect of plasticity, we compare the results of pure elasticity and elasto-
platicity. Figure 7 shows the radial distribution of three stress com-
ponents at t = 500�t and t = 9000�t . The solid and dashed lines
represent, respectively, the stresses distribution from the pure elas-
ticity and elasto-plasticity models. In addition, Figure 5 shows the
hoop stress evolution at both the center and surface of the Si electrode

Figure 7. The effect of plasticity on radial distributions of the von Mises effective stress, σe , radial stress, σr and hoop stress σθ at different lithiation times of
(a) t = 500�t , (b) t = 9000�t . The solid and dash lines represent, respectively, the stresses distributions by the models with only elasticity and with elasto-plasticity.
All the stress components are normalized by Young’s modulus of Si, Esi.
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Figure 8. Radial distribution of equivalent plastic strain at different lithiation
moments.

during the entire lithiation process. As expected, plastic yielding sig-
nificantly reduces the stress levels at all lithiation stages. Plasticity
also alters the distribution of stress. In comparison, in the absence
of plasticity, the hoop stress σθ is always compressive at the surface
layer of the Si electrode and tensile in the Li-poor phase. This result
implies that fracture would initiate at the center of the Li-poor phase,
which contradicts with both the experimental observations and the
prediction with plasticity included (as discussed in detail previously),
that is, the reversal of hoop compression to tension in the surface
layer.

Another interesting observation is that the central region of the Si
electrode, corresponding to the Li-poor phase, remains elastic. More
specifically, from the radial distribution of equivalent plastic strain at
different lithiation moments, shown in Figure 8, it is clear that the
boundary between the elastic and plastic regions moves toward the
center in the Si electrode, in consistent with the movement of the
phase boundary (i.e., the abrupt change of the Li concentration pro-
file) in Figure 3. Interestingly, the center region still remains elastic
even at the late stage. This is because the stress field near the center
region is almost hydrostatic (σe = |σr − σθ| = 0), which does not fa-
cilitate plastic deformation in terms of the deviatoric stress-dependent
yielding criterion.

Conclusions

We have developed a phase-field model coupled with large elasto-
plastic deformation in an open system. The model accounts for the
concurrent processes of material insertion, phase change, and large
elasto-plastic swelling. The concentration profiles and deformation
geometries were co-evolved by a set of integrated phase-field and
mechanics equations. In order to facilitate the study of complex ge-
ometries and boundary conditions, these equations are numerically
solved by the finite element method.

As an example, the phase-field model was applied to studying the
stress evolution in a c-Si electrode upon lithiation. It is shown that
as the lithiation proceeds, the hoop stress can change from the initial
compression to tension in the surface layer of a Si electrode, which
explains the experimentally observed surface cracking.

The sharp phase boundary between the Li-poor and Li-rich phases
is naturally captured in the present phase-field model, in contrast to
the previous non-linear diffusion model where an elaborate interfacial
domain is needed to model the phase boundary. The phase boundary
width in the present model is shown to be nearly unchanged during
lithiation, in contrast to the non-linear diffusion model where the phase
boundary width changes with the lithiation extent.

Finally, we note that the present phase-field model is thermody-
namically consistent, thus enabling a full chemo-mechanical coupling.

Our model allows the phase-field method to simultaneously account
for the stress induced by lithiation as well as the Li transport mediated
by stress. A systematic investigation of the coupling between stress
and Li diffusion/reaction kinetics is beyond the scope of this study,
and will be reported in a forthcoming publication. Our phase-field
model is generally applicable to the high-capacity electrode systems
undergoing large elasto-plastic deformation.23,45,46
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