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Abstract

We demonstrate analytically that two types of spectral holes located approximately in the center of the Bragg regime

could be exhibited by a slanted chiral sculptured thin film (STF) containing a 90� twist defect midway through its

thickness. One is a nonspecular spectral reflection hole excited by an incident circularly polarized plane wave of the

same handedness as the chiral slanted STF, and the other a specular transmission hole excited by an incident circularly

polarized plane wave of the opposite handedness. The occurrences of these holes depend on the device thickness, and a

crossover thickness can be defined. The existence of both types of spectral holes is sensitive to the dual-periodicity of the

slanted chiral STF, and can be completely subverted by the Rayleigh–Wood phenomenon.
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PACS: 42.25.Fx; 42.40.Eq; 42.79.Dj; 77.55.+f; 78.20.Fm

Keywords: Chirality; Circular Bragg phenomenon; Rayleigh–Wood anomaly; Sculptured thin films; Spectral reflection hole; Specular

transmission hole; Structural handedness

1. Introduction

Volume gratings are commonly used as dielec-

tric mirrors in optics. Such gratings are either

. . .HLHLHL. . . multilayers [1] (where H stands
for a high-permittivity layer and L for a low-per-

mittivity layer) or the permittivity varies sinusoi-

dally in the thickness direction [2]. Being periodic

systems, volume gratings exhibit the Bragg phe-

nomenon – which manifests itself as a high-re-

flectance wavelength-regime, provided the grating

thickness spans a sufficient number of permittivity

periods.
Haus and Shank [3] proposed the creation of a

spectral hole in the reflection spectrum by inserting
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a phase defect half-way along a volume grating.

The spectral hole is a narrow transmission feature

in the center of the Bragg wavelength-regime, and

is useful for narrowband filtering. The proposal is

implemented chiefly in quarter-wavelength-shifted

distributed feedback lasers [4].
When normally illuminated, so that the wave

propagation vector inside a volume grating is

parallel to the thickness direction, the Bragg phe-

nomenon is insensitive to the polarization state of

the incident light. This is because the described

volume gratings are made of isotropic dielectric

substances. But periodically nonhomogeneous

materials can possess structural handedness; and if
they do, the Bragg phenomenon turns to be po-

larization-sensitive.

Cholesteric liquid crystals (CLCs) [5,6] as well as

chiral sculptured thin films (STFs) [7,8] are peri-

odically nonhomogeneous in the thickness direc-

tion, as their permittivity dyadics vary helicoidally

in that direction. Accordingly, the high-reflectance

characteristic of the Bragg regime is observed only
when the circular polarization state of incident

light matches the structural handedness of the

material; otherwise, low reflectance is observed.

Liquid-crystalline as well as thin-film chiral mirrors

are available for circular-polarization-sensitive re-

flection [9,10]. The introduction of a phase defect

half-way inside a structurally chiral structure also

gives rise to a spectral hole – but only when the
circular polarization state of the incident light

matches the structural handedness [11–13].

The polarization-sensitivity of structurally

chiral spectral-hole filters cannot, of course, be

exhibited by isotropic spectral-hole filters. Very

recently, Kopp and Genack [14] reported an even

more interesting feature. As a CLC with a phase

defect becomes thicker, but with its period fixed,
the spectral hole in the co-handed reflectance

spectrum diminishes steadily and eventually

vanishes. Simultaneously, a spectral hole appears

and grows in the transmittance spectrum for in-

cident light of the other circular polarization

state. The bandwidth of the second spectral hole

is a few thousandths of the bandwidth of the

initial spectral hole, according to theoretical cal-
culations. Although these conclusions were re-

ported for CLCs, in this paper we have verified

the results to qualitatively hold for chiral STFs

as well.

Reflection and transmission for all structures

discussed heretofore are purely specular [15,16].

Spectral-hole filters implemented with these

structures, therefore, cannot be used for nonspec-
ular applications [17]. If, however, the direction of

nonhomogeneity were inclined with respect to the

thickness direction, then the structure would be

periodic in the thickness direction as well as in a

direction perpendicular to it [18]. The specular

nature of the Bragg phenomenon and the non-

specular nature of the Rayleigh–Wood phenome-

non (generally observed with surface-relief
gratings [19,20]) can be expected to interact with

each other.

With this motivation, slanted chiral STFs were

recently proposed by us [21]. Several physical va-

por deposition techniques have emerged for man-

ufacturing STFs [10,22–26]. Normally, the helical

microcolumns of a chiral STF grow upright on the

substrate. However, it is possible to grow the mi-
crocolumns slanted at angle a 6¼ 0� with respect to

the substrate normal [25,27], which should lead to

the fabrication of slanted chiral STFs.

The interactions of the two orthogonal period-

icities of slanted chiral STFs have been researched

[21]. In particular, the circular Bragg phenomenon

for slanted chiral STFs ða 6¼ 0�Þ is partially non-

specular, in contrast to that for an unslanted chiral
STF ða ¼ 0�Þ, and is highly affected or even totally

subverted at large jaj by the Rayleigh–Wood

anomalies that occur due to the transverse peri-

odicity.

In this paper, we examine the optical response

of a slanted chiral STF with a phase defect inserted

midway through its thickness. The chosen defect is

a twist defect characterized by an angle /t 6¼ 0�
[12–14]. The plan of this paper is as follows: Sec-

tion 2 provides a detailed description of the theo-

retical treatment of the boundary value problem to

be solved. First, the geometry of the boundary

value problem, the constitutive relations of the two

halves of the slanted chiral STF, and the field

representations above and below the central twist

defect are presented. Then, coupled wave theory
[28,29] is used to formulate a matrix ordinary

differential equation [16] for the fields excited in
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both the halves. Finally, the numerical solution

procedure adopted for the boundary value prob-

lem is briefly described, the details being available

elsewhere [21]. Section 3 is devoted to the presen-

tation and discussion of the numerical results ob-

tained. An expð�ixtÞ time-dependence is implicit,
with x as the angular frequency of the incident

plane wave, and t as the time. Vectors are in

boldface, while dyadics are double-underlined.

2. Theoretical analysis

Let the region 06 z6 2L be occupied by the
slanted chiral STF with a twist of angle /t between

the upper and the lower halves about their com-

mon axis of nonhomogeneity, as shown in Fig. 1,

while the half-spaces z6 0 and zP 2L are vacuous.

A plane wave is incident from the lower half-space

z6 0 on to the plane z ¼ 0. As a result, reflection

and transmission into the two half-spaces occur.

2.1. Constitutive relations

The relative permittivity dyadic �ðr; k0Þ of the

slanted chiral STF of thickness 2L is factorable as

�ðr; k0Þ ¼ S
y
ð�aÞ � S

z
ðrÞ � S

y
ðvsÞ � �ref k0ð Þ � ST

y
ðvsÞ

� ST

z
ðrÞ � ST

y
ð�aÞ; 06 z6 2L; ð1Þ

where the position vector r ¼ xux þ yuy þ zuz; k0 is

the free-space wavelength, and the superscript T

denotes the transpose. As most STFs are locally

biaxial [24,30], the reference relative permitivity

dyadic is given by [31]

�
ref

k0ð Þ ¼ �a k0ð Þuzuz þ �b k0ð Þuxux þ �c k0ð Þuyuy : ð2Þ

The wavelength-dependences of the scalars �a;b;c
are assumed to emerge from a single-resonance

Lorentzian model [32,33] as

�a;b;cðk0Þ ¼ 1þ pa;b;c

1þ N�1
a;b;c � ika;b;ck

�1
0

� �2� � ; ð3Þ

where pa;b;c are the oscillator strengths. The pa-

rameters ka;b;c and Na;b;c determine the resonance

wavelengths and absorption linewidths. Based on

the local columnarity of the STFs, we surmise that

j�b k0ð ÞjP j�c k0ð ÞjP j�a k0ð Þj away from the reso-

nance wavelengths of the bulk material deposited
as the thin film [31,34].

The rotational nonhomogeneity of the chosen

thin film is captured by the dyadic

S
z
ðrÞ ¼ uxux

�
þ uyuy

�
cos

p
X

r � u‘ð Þ
h

þ /
i

þ h uyux

�
� uxuy

�
sin

p
X

r � u‘ð Þ
h

þ /
i

þ uzuz; ð4Þ
the axis of rotational nonhomogeneity (i.e., the

helical axis) being parallel to the unit vector

u‘ ¼ sin aux þ cos auz. The structural period along

the helical axis is denoted by 2X. The parameter

h ¼ 1 for structural right-handedness, while

h ¼ �1 for structural left-handedness. The central
twist defect is described through the angle

/ ¼ 0�; 06 z6L;
/t; L6 z6 2L:

	
ð5Þ

Finally, the dyadic

S
y
ðcÞ ¼ uxuxð þ uzuzÞ cos c

þ uzuxð � uxuzÞ sin c þ uyuy ð6Þ
serves two different roles. Whereas S

y
ðvsÞ delin-

eates the role of the growth process with 90�� vs

being the angle of declination from the helical axis,
S
y
ð�aÞ represents the slanted orientation of the

helical axis. Since STFs are generally fabricated

using physical vapor deposition [22,26], the

Fig. 1. Schematic of the boundary value problem involving the

slanted chiral sculptured thin film with a twist angle of /t in-

troduced between the upper and lower halves about the axis of

nonhomogeneity. Nonspecular reflection and transmission can

occur because a 6¼ 0�.
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growing microcolumns of an STF must be ori-

ented at some angle to the substrate plane such

that the so-called angle of rise v ¼ vs � jaj. Hence,

v 2 ð0�; 90�
 for the ideal helical microcolumns of a

slanted chiral STF to always grow upwards in re-
lation to the substrate plane, while 0� < vs < 90� is
mandated by the equation of a helix. Thus, a is

restricted to the range ð�vs; vsÞ. When a ¼ 0�, the
slant is absent and the usual chiral STFs are rep-

resented by �ðr; k0Þ � �ðz; k0Þ.

2.2. Incident, reflected and transmitted plane waves

Clearly, �ðr; k0Þ � �ðx; z; k0Þ is periodic along the

x and the z axes, but is independent of y. There-
fore, the field representation in the two half-spaces

must be periodic with respect to x. It must also

comprise both specular and nonspecular plane-

wave components, in accordance with the Flo-

quet–Bloch theorem [28,35,36].

Let the incident plane wave propagate at an
angle hinc to the þz axis and at an angle winc to the

þx axis (in the xy plane), in the lower half-space

z6 0. Hence, the incident, the reflected and the

transmitted electromagnetic field phasors are best

expressed in a set of Floquet harmonics [29] re-

spectively, as follows:

Ei ¼
X

n¼0;�1;�2;...

isn � pþ
n

� �
ffiffiffi
2

p aðnÞL

�
�

isn þ pþ
n

� �
ffiffiffi
2

p aðnÞR

�

� exp i kxnx
��

þ ky0y þ kznz
�
; z6 0; ð7Þ

Hi ¼
X

n¼0;�1;�2;...

�i

g0

isn � pþ
n

� �
ffiffiffi
2

p aðnÞL

�
þ

isn þ pþ
n

� �
ffiffiffi
2

p aðnÞR

�

� exp i kxnx
��

þ ky0y þ kznz
�
; z6 0; ð8Þ

Er ¼
X

n¼0;�1;�2;...

�
�

isn � p�
n

� �
ffiffiffi
2

p rðnÞL þ
isn þ p�

n

� �
ffiffiffi
2

p rðnÞR

�

� exp i kxnx
��

þ ky0y � kznz
�
; z6 0; ð9Þ

Hr ¼
X

n¼0;�1;�2;...

�i

g0

�
�

isn � p�
n

� �
ffiffiffi
2

p rðnÞL �
isn þ p�

n

� �
ffiffiffi
2

p rðnÞR

�

� exp i kxnx
��

þ ky0y � kznz
�
; z60; ð10Þ

Et ¼
X

n¼0;�1;�2;...

isn � pþ
n

� �
ffiffiffi
2

p tðnÞL

�
�

isn þ pþ
n

� �
ffiffiffi
2

p tðnÞR

�

� exp i kxnx
��

þ ky0y þ kznðz� 2LÞ
�
;

zP 2L; ð11Þ

Ht ¼
X

n¼0;�1;�2;...

�i

g0

isn � pþ
n

� �
ffiffiffi
2

p tðnÞL

�
þ

isn þ pþ
n

� �
ffiffiffi
2

p tðnÞR

�

� exp i kxnx
��

þ ky0y þ kznðz� 2LÞ
�
;

zP 2L: ð12Þ

In (7)–(12) and thereafter, g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0
p

is the in-

trinsic impedance, while l0 and �0 are the permit-

tivity and the permeability, of free space. The
transverse wavenumbers

kxn ¼ k0 sin hinc coswinc þ njx;
ky0 ¼ k0 sin hinc sinwinc;

n ¼ 0;�1;�2; . . . ;

ð13Þ

where k0 ¼ x
ffiffiffiffiffiffiffiffiffi
l0�0

p ¼ 2p=k0 is the free-space

wavenumber, and

jx ¼ ðp=XÞj sin aj ð14Þ
because the slanted chiral STF has a period

Lx ¼ 2X=j sin aj along the x axis. The vertical

wavenumbers,

kzn ¼
þ k20 � k2xn � k2y0
� �1=2

if k20 P k2xn þ k2y0;

þi k2xn þ k2y0 � k20
� �1=2

otherwise;

8><
>:

ð15Þ
are either real-valued (for propagating harmonics)
or imaginary (for evanescent harmonics).

The nth-order Floquet harmonic in any of the

fields (7)–(12) involves left and right circularly

polarized (LCP and RCP) components with am-

plitudes aðnÞL and aðnÞR for the incident plane wave,

rðnÞL and rðnÞR for the reflected field, and tðnÞL and tðnÞR

for the transmitted field. As the incident plane

wave is a Floquet harmonic of order n ¼ 0, the
coefficients aðnÞL ¼ aðnÞR ¼ 0 8n 6¼ 0. The vectors,

sn ¼ �ky0ux þ kxnuy

kxyn
;

p�
n ¼ � kxnux þ ky0uy

kxyn

� �
kzn
k0

þ kxyn
k0

uz;

n ¼ 0;�1;�2; . . . ;

ð16Þ
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individually denote linear polarization of the per-

pendicular and the parallel types in electromag-

netics literature [37], respectively, with respect to

the direction vectors d�
n ¼ kxnux þ ky0uy � kznuz

� �
=

k0; whilst

kxyn ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xn þ k2y0
q

ð17Þ

is defined for convenience.
Since faðnÞL g and faðnÞR g are supposedly known,

the amplitude sets frðnÞL g, frðnÞR g, ftðnÞL g and ftðnÞR g,
(n ¼ 0;�1;�2; . . .), have to be determined by

solving a boundary value problem.

2.3. Coupled wave equations

Each of the nine components �pqðx; zÞ; ðp; q ¼
x; y; zÞ, of the relative permittivity dyadic �ðrÞ of (1)
is represented as

�pqðx; zÞ ¼
X

n¼0;�1;�2

�ðnÞpq ðzÞ exp injxxð Þ;

p; q ¼ x; y; z; 06 z6 2L;
ð18Þ

where �ðnÞpq ðzÞ are the Fourier amplitudes; we have

dropped explicitly mention of wavelength-depen-

dences at this point. The Floquet–Bloch theorem

entails the decompositions

E rð Þ ¼
X

n¼0;�1;�2;...

EðnÞ
x zð Þux

h
þ EðnÞ

y zð Þuy þ EðnÞ
z zð Þuz

i

� exp i kxnx
��

þ ky0y
�
; 06 z6 2L; ð19Þ

H rð Þ ¼
X

n¼0;�1;�2;...

H ðnÞ
x zð Þux

h
þ H ðnÞ

y zð Þuy þ H ðnÞ
z zð Þuz

i

� exp i kxnx
��

þ ky0y
�
; 06 z6 2L; ð20Þ

for the electromagnetic field phasors within the

chosen thin-film device. Parenthetically, we note
that Rokushima and Yamakita [18] also used

the Floquet–Bloch theorem for locally uniaxial

chiral liquid crystals; however, their represen-

tation is periodic with respect to the helical

axis.

On substituting (18)–(20) in the frequency-do-

main Maxwell curl postulates

r� E rð Þ ¼ ixl0H rð Þ;
r� H rð Þ ¼ �ix�0�ðrÞ � E rð Þ;
0 < z < 2L; ð21Þ
and exploiting the orthogonalities of the functions

exp½iðkxnxþ ky0yÞ
 across any plane z ¼ constant, we
derive the following set of coupled wave equations:

d

dz
EðnÞ
x zð Þ � ikxnEðnÞ

z zð Þ ¼ ik0g0H
ðnÞ
y zð Þ; ð22Þ

d

dz
EðnÞ
y zð Þ � iky0EðnÞ

z zð Þ ¼ �ik0g0H
ðnÞ
x zð Þ; ð23Þ

ky0EðnÞ
x zð Þ � kxnEðnÞ

y zð Þ ¼ �k0g0H
ðnÞ
z zð Þ; ð24Þ

d

dz
H ðnÞ

x zð Þ � ikxnH ðnÞ
z zð Þ

¼ � ik0
g0

X
~nn¼0;�1;�2;...

�ðn�~nnÞ
yx ðzÞEð~nnÞ

x zð Þ
h

þ �ðn�~nnÞ
yy ðzÞEð~nnÞ

y zð Þ þ �ðn�~nnÞ
yz ðzÞEð~nnÞ

z zð Þ
i
; ð25Þ

d

dz
H ðnÞ

y zð Þ � iky0H ðnÞ
z zð Þ

¼ ik0
g0

X
~nn¼0;�1;�2;...

�ðn�~nnÞ
xx ðzÞEð~nnÞ

x zð Þ
h

þ �ðn�~nnÞ
xy zð ÞEð~nnÞ

y zð Þ þ �ðn�~nnÞ
xz ðzÞEð~nnÞ

z zð Þ
i
; ð26Þ

ky0H ðnÞ
x zð Þ � kxnH ðnÞ

y zð Þ

¼ k0
g0

X
~nn¼0;�1;�2;...

�ðn�~nnÞ
zx ðzÞEð~nnÞ

x zð Þ
h

þ �ðn�~nnÞ
zy ðzÞEð~nnÞ

y zð Þ

þ �ðn�~nnÞ
zz zð ÞEð~nnÞ

z zð Þ
i
: ð27Þ

These six equations hold for all n ¼ 0;�1;�2; . . .
The solution procedure for (22)–(27) is de-

scribed in detail in a predecessor paper [21], to

which we refer the interested readers. It suffices to

mention here that both n and ~nn are restricted to the

range ½�NT ;NT 
; NT > 0, and a system of 4ð2NT

þ1Þ ordinary differential equations is solved nu-

merically, with (7)–(12) providing the necessary
boundary conditions.
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Finally, reflectances (RðnÞ
LL, etc.) and the trans-

mittances (T ðnÞ
LL , etc.) are defined as

RðnÞ
LL RðnÞ

LR

RðnÞ
RL RðnÞ

RR

" #
¼ Im nnfnð Þ

Im n0f0ð Þ

jrðnÞ
L

j2

ja0L j
2

jrðnÞ
L

j2

ja0Rj
2

jrðnÞ
R

j2

ja0L j
2

jrðnÞ
R

j2

ja0Rj
2

2
64

3
75;

T ðnÞ
LL T ðnÞ

LR

T ðnÞ
RL T ðnÞ

RR

" #
¼ Im nnfnð Þ

Im n0f0ð Þ

jtðnÞ
L

j2

ja0L j
2

jtðnÞ
L

j2

ja0Rj
2

jtðnÞ
R

j2

ja0L j
2

jtðnÞ
R

j2

ja0Rj
2

2
64

3
75;

n 2 ½�NT ;NT 
;

ð28Þ

where Imð _ÞÞ denotes the imaginary part, and

nn ¼
1ffiffiffi
2

p kxnkzn
k0kxyn

� i
ky0
kxyn

� �
;

fn ¼
1ffiffiffi
2

p ky0kzn
k0kxyn

� i
kxn
kxyn

� �
;

n 2 ½�NT ;NT 
:

ð29Þ

Co-polarized remittances (i.e., reflectances and

transmittances) have both subscripts identical,

while cross-polarized remittances have both sub-

scripts different. The principle of conservation of

energy mandates the inequalitiesX
n2½�NT ;NT 


RðnÞ
LL

h
þ RðnÞ

RL þ T ðnÞ
LL þ T ðnÞ

RL

i
6 1; ð30Þ

X
n2½�NT ;NT 


RðnÞ
LR

h
þ RðnÞ

RR þ T ðnÞ
LR þ T ðnÞ

RR

i
6 1; ð31Þ

which reduce to equalities for nondissipative thin

films. The sums on the left sides of (30) and (31)

are denoted by 1� AL and 1� AR, where AL and

AR are the absorbances for incident LCP and RCP

plane waves, respectively.

3. Results and discussion

3.1. Preliminaries

The solution procedure was implemented using

double-precision arithmetic in Fortran 90 on a

Solaris computer. The following constitutive and

structural parameters were chosen: pa ¼ 2:0; pb ¼
2:6 and pc ¼ 2:1; ka ¼ kc ¼ 140 nm and kb ¼ 150

nm; Na ¼ Nb ¼ Nc ¼ 40,000; X ¼ 300 nm; vs ¼
30�; h ¼ 1. These constitutive parameters are po-

tentially realizable using silicon dioxide, and are

thus likely to be compatible with semiconductor

and optical technologies. The half-thickness L
varied from 25X to 100X in our study, the mini-

mum value of L chosen to let the circular Bragg

phenomenon develop fully [16,21]. The slant angle
a was set to be positive and less than vs. The twist

angle /t was generally assumed equal to 90�, in
order to produce a spectral hole roughly in the

center of the Bragg regime. For compatibility with

the commonplace planar structures in electronics

and optics, we examined only the normal-incidence

case (i.e., hinc ¼ 0�) with winc ¼ 0�; hence, sinwn ¼
0 8n. We focused on the wavelength-regime
k0 2 1000; 1110½ 
 nm.

The maximum order parameter for the Floquet

harmonics was fixed at NT ¼ 3 for the chosen

wavelength-regime, after ensuring that every re-

flectance and transmittance greater than 0.001

converged to 1% accuracy. All propagating har-

monics and some evanescent harmonics were

thereby covered. Moreover, we ensured that the
left sides of both (30) and (31) converged, and that

neither condition was violated by more than

1 ppm.

3.2. Unslanted chiral STF device

Let us begin with a ¼ 0�, which provides the

STF analog of the CLC devices considered by
Kopp and Genack [14]. The center-wavelength of

the Bragg regime is then estimated as 1090 nm,

and the full-width-at-half-maximum bandwidth as

72 nm [21].

Fig. 2 shows a narrow spectral hole (about 2 nm

bandwidth) in the total co-polarized reflectance

RRR ¼
P

n R
ðnÞ
RR and, correspondingly, a peak in the

total co-polarized transmittance TRR ¼
P

n T
ðnÞ
RR,

excited by a normally incident RCP plane wave

when L ¼ 27X. The plots in Fig. 2 are similar to

those discussed by Hodgkinson et al. [12]. How-

ever, on extrapolating from Kopp and Genack

[14], a spectral hole must also be generated by an

incident LCP plane wave, provided the ratio L=X
is sufficiently large.

Indeed, Fig. 3 shows an ultra-narrow (about 0.02
nm bandwidth) spectral hole in the total co-polar-

ized transmittance TLL ¼
P

n T
ðnÞ
LL and a corre-
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sponding peak in the total co-polarized reflectance
RLL ¼

P
n R

ðnÞ
LL excited by an incident LCP plane

wave when L ¼ 91X. Therefore, there are two types

of spectral holes of opposite circular polarization

states, depending on different values of L=X. Fur-

thermore, one type of hole is found in co-handed

reflectance – when the handedness of the incident

circularly polarized plane wave is the same as the

structural handedness of the chosen thin film – and
the second in cross-handed transmittance (when the

handednesses of the incident plane wave and the

chiral STF do not coincide).

Fig. 4 shows the plots of TRR and RLL versus the

ratio L=X at the peak wavelength kp ¼ 1090:328
nm, which is the center-wavelength of the 0:02 nm

spectral hole of Fig. 3. If Lco is defined as the

crossover thickness at which TRR ¼ RLL, spectral
holes of the second type appear only for L > Lco.

The crossover thickness is seen in Fig. 4 to be

Lco � 54:5X. As L increases above Lco, the spectral
reflection hole wanes and the spectral transmission

hole enhances to steady state.

(a) (b)

Fig. 3. Same as Fig. 2, but for L ¼ 91X.

Fig. 4. Total transmittance TRR ¼
P

n T
ðnÞ
RR and total reflectance

RLL ¼
P

n R
ðnÞ
LL versus L=X at the peak wavelength kp ¼ 1090:328

nm. See Fig. 2 for other parameters. The crossover thickness

Lco � 54:5X.

(a) (b)

Fig. 2. (a) Total reflectances RRR ¼
P

n R
ðnÞ
RR, etc., and (b) total transmittances TRR ¼

P
n T

ðnÞ
RR, etc., computed for the unslanted chiral

STF device with the following parameters: a ¼ 0�, vs ¼ 30�, pa ¼ 2:0, pb ¼ 2:6, pc ¼ 2:1, ka ¼ kc ¼ 140 nm, kb ¼ 150 nm,

Na ¼ Nb ¼ Nc ¼ 40,000, X ¼ 300 nm, h ¼ 1, /t ¼ 90�, L ¼ 27X and hinc ¼ winc ¼ 0�.
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3.3. Slanted chiral STF device

There is no distinction in the direction of prop-

agation of Floquet harmonics of orders n ¼ 0 and

n 6¼ 0, when a ¼ 0� [21]. But a distinction appears
for a 6¼ 0� between Floquet harmonics of orders

n ¼ 0 and n 6¼ 0, the former being classified as

specular and the latter as nonspecular in the litera-

ture on diffraction gratings [38]. Regardless of the

value of a in our studies, non-negligible remittances

were found to be only of orders n ¼ �2 (nonspec-

ular) and n ¼ 0 (specular). The remittances of other

orders turned out to be negligible (<0.01) in the
wavelength-regime focused on. Plots of only the

non-negligible remittances are presented in this

paper. All presented results apply for negative

values of a, provided all remittances of order n are

considered as the remittances of order �n.
Let us commence with a ¼ 15�. The center-

wavelength of the Bragg regime can be estimated

as the solution of the equation [21]

kBr
0 ¼ X cos að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c kBr

0

� �q�
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~��d kBr

0

� �q �
; ð32Þ

where

~��d k0ð Þ ¼ �a k0ð Þ�b k0ð Þ
�a k0ð Þ cos2 v þ �a k0ð Þ sin2 v

: ð33Þ

In comparison with Figs. 2 and 3 therefore, Figs. 5

and 6 display a blue-shifted Bragg regime with

kBr
0 � 1053nm,while kBr

0 � 1090nm inFigs. 2 and3.

Fig. 5 shows the remittance spectrums for
L ¼ 27X. A hole centered at kBr

0 in the spectrum of

Rð�2Þ
RR , and a corresponding peak in the spectrum

of T ð0Þ
RR, are clearly evident therein. The bandwidth

of the hole is still about 2 nm. Thus, a major effect

of a 6¼ 0� is to produce a nonspecular spectral re-
flection hole.

That reflection hole is absent in the remittance

spectrums of Fig. 6, for which L ¼ 91X. Instead, a

hole appears in the spectrum of T ð0Þ
LL , which is

purely specular; and it is accompanied by signifi-

(a) (b)

(c) (d)

Fig. 5. (a,b) Nonspecular and specular reflectances and (c,d) nonspecular and specular transmittances of order n, computed for the

slanted chiral STF device with the following parameters: a ¼ 15�, vs ¼ 30�, pa ¼ 2:0, pb ¼ 2:6, pc ¼ 2:1, ka ¼ kc ¼ 140 nm,

kb ¼ 150 nm, Na ¼ Nb ¼ Nc ¼ 40,000, X ¼ 300 nm, h ¼ 1, /t ¼ 90�, L ¼ 27X and hinc ¼ winc ¼ 0�. Remittances of maximum magni-

tudes less than 0:01 are not shown.
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cant peaks in the spectrums of Rð�2Þ
LL ; Rð0Þ

LL and

T ð�2Þ
LL . The peak wavelength kp ¼ 1052:80 nm and

the bandwidth is �0.15 nm.

The crossover thickness of the slanted chiral

STF device can be estimated from the plots of

various remittances against L=X in Fig. 7. Actu-

ally, the peak wavelength turns out to be a func-

tion of both a and L. For a ¼ 0�; kp ¼ 1090:328
nm for all L. In contrast, kp varies from 1052.65 to

1053:75 nm as L changes from 25X to 100X, when
a ¼ 15�. The remittances at the peak wavelengths

seem to be varying somewhat irregularly with L in

Fig. 7, in contrast to that in Fig. 4 for the unsl-

anted chiral STF device. However, the values of

T ð0Þ
RR and Rð�2Þ

LL þ Rð0Þ
LL þ Tþ

LL at 1052.80 nm do vary

quite smoothly with L. From their plots therefore,

the crossover thickness is determined as Lco ¼
42:0X for a ¼ 15�. Only for L < Lco does the
spectral reflection hole exist in Rð�2Þ

RR ; when L > Lco,

the spectral transmission hole in T ð0Þ
LL takes over

just as for the unslanted chiral STF device.

Though the chiral STF device, whether slanted

or unslanted, is very weakly dissipative, significant

absorption occurs only for LCP incidence in the

wavelength-regime of the spectral transmission

hole (L > Lco). In contrast, the absorbance for RCP
incidence first increases to a small value (< 0:1) as L
increases to Lco, and then drops to a minuscule

value ð< 0:01Þ. Fig. 8 shows the absorbance spec-

trums for LCP incidence in both the unslanted and

the slanted chiral STF devices when L ¼ 91X.

Clearly, absorbance is higher for the unslanted

chiral STF device than for the slanted one, in their

respective spectral transmission hole regimes.
When dissipation in the chiral slanted STF is

enhanced – for example, by choosing smaller Na;b;c

in (3) – the spectral hole in T ð0Þ
LL for L > Lco fades

away, although the spectral hole in Rð�2Þ
RR for

L < Lco still exists. We concluded thus from several

calculations not reported here. This conclusion is

not surprising because the transmission hole is

affected by the entire thickness 2L of the thin film,
whereas the reflection hole is affected only by the

first few thickness periods [39,40].

While the transmission hole always occurs in

the spectrum of T ð0Þ
LL for L > Lco, the corresponding

reflectance peaks appear in different Floquet har-

monics as the slant angle a changes. Fig. 9 shows

(a) (b)

(c) (d)

Fig. 6. Same as Fig. 5, but for L ¼ 91X.
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the peaks in the co-polarized reflectances of dif-
ferent orders for a ¼ 5�; 10�; 15� and 16:7�, re-

spectively, excited by an incident LCP plane wave

when L ¼ 91X. The spectral hole in T ð0Þ
LL shown in

Fig. 9 is nearly unaffected by a, though its band-

width increases with a (with the exception of

a ¼ 16:7�). But the reflectance peak first shifts

from a nonspecular mode (Rðþ2Þ
LL ) to the specular

mode (Rð0Þ
LL), and then is shared by the specular and

the other nonspecular modes (Rð0Þ
LL and Rð�2Þ

LL ), as a
increases up to 15�. A further increase of a returns

the peak in Fig. 9 to the specular mode.

In fact, as a increases beyond 15�, the circular

Bragg phenomenon is subverted by a Rayleigh–

Wood anomaly, which is the conversion of the

nth-order Floquet harmonic from propagating to

evanescent, or vice versa. This conversion occurs
at the wavelength [21]

kRW
0n

¼ 2X
jnj sin a

: ð34Þ

At a fixed a, the nth-order Floquet harmonic is

evanescent along the z axis for k0 > kRW
0n

.
As a increases from 0�, in the present instance,

kRW
0�2

decreases from ‘‘infinity’’ and begins to ap-

proach the center-wavelength kBr
0 of the Bragg re-

gime predicted by (32). Both kRW
0�2

and kBr
0 blue-shift

as a increases, but kRW
0�2

decreases more rapidly

than kBr
0 , and the Rayleigh–Wood anomaly even-

tually wipes out the circular Bragg phenomenon.

No wonder, the spectral hole in Rð�2Þ
RR is absent in

Fig. 10 for a ¼ 16:7� and L ¼ 27X. But the spectral

hole in T ð0Þ
LL survives at about kp ¼ 1043:98 nm

when L ¼ 91X; see Fig. 9(d). For a > 17:1�, the
circular Bragg phenomenon vanishes completely,

and in consequence, neither of the two types of

spectral holes exists.

Finally, the twist angle /t 6¼ 90� affects the
spectral holes too. Most significantly, the spectral

holes are not located roughly in the center of the

(a)

(b)

Fig. 7. (a) Reflectances Rð�2Þ
LL and Rð0Þ

LL as well as transmittance

T ðþ2Þ
LL , and (b) transmittance T ð0Þ

RR and the sum Rð�2Þ
LL þ Rð0Þ

LLþ
T ðþ2Þ
LL , versus L=X at the peak wavelength kp ¼ 1052:80 nm. The

curves are obtained by least-squares fitting of fifth-order poly-

nomials to the computed data (shown by heavy dots).

(a)

(b)

Fig. 8. Absorbance AL ¼ 1�
P

n ½R
ðnÞ
RL þ RðnÞ

LL þ T ðnÞ
RL þ T ðnÞ

LL 
 for

LCP incidence for (a) the unlanted chiral STF device and (b)

the slanted chiral STF device (a ¼ 15�), when L ¼ 91X. See Fig.

2 for other parameters. For comparison, TLL and T ð0Þ
LL , respec-

tively, are also plotted.
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(a)

(c)

(b)

(d)

Fig. 9. Reflectances RðnÞ
LL (n ¼ 0;�2) and transmittance T ð0Þ

LL , computed for the slanted chiral STF device with (a) a ¼ 5�, (b) a ¼ 10�,
(c) a ¼ 15� and (d) a ¼ 16:7�. See Fig. 6 for other parameters. Reflectances of maximum magnitude less than 0.01 are not shown.

(a) (b)

(c) (d)

Fig. 10. Same as Fig. 5, but for a ¼ 16:7�.
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(a) (b)

(c) (d)

Fig. 11. Same as Fig. 5, but for /t ¼ 45�.

(a) (b)

(c) (d)

Fig. 12. Same as Fig. 6, but for /t ¼ 45�.
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Bragg regime as for /t ¼ 90�, but are shifted to-

wards the edges of the Bragg regime when

/ 6¼ 90�. This is illustrated by Figs. 11 and 12 –

which show the spectral holes of the chiral

slanted STF device as before, but with /t ¼ 45�.
Evidently, the spectral holes, located close to 1071
nm, are blue-shifted in the Bragg regime.

4. Concluding remarks

In this paper, we have theoretically analyzed an

optical device made by introducing a central twist

defect in a slanted chiral sculptured thin film. A
slanted chiral STF is periodically nonhomogenous

in two directions: normal and parallel to the sub-

strate plane. The normal and transverse periodic-

ities are intimately coupled by the slant angle

a 6¼ 0�.
A coupled wave theory was employed for the

planewave response of the slanted chiral STF de-

vice of finite thickness. The twist angle /t, if equal
to 90�, gives rise to two types of spectral holes

roughly centered in the Bragg regime: one is in the

nonspecular reflectance excited by an incident

RCP plane wave, and the other in the specular

transmittance excited by an incident LCP plane

wave. The thickness of the device determines

which of the two hole is observed. Both types of

holes eventually disappear – as the Bragg regime
also does – as a increases, having been subverted

completely by the Rayleigh–Wood phenomenon.

Corresponding to the spectral reflection hole, a

peak occurs in the co-handed and specular trans-

mittance for all a. However, a reflectance peak

accompanying the spectral transmission hole turns

out to be cross-handed and can be evinced in

specular and/or nonspecular directions. The spec-
tral reflection hole is less susceptible than the

spectral transmission hole to the dissipative prop-

erties of the chiral STF.
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Abstract

The introduction of either a central layer defect or a central twist defect in a periodic structurally chiral material

generates circular-polarization-sensitive spectral holes in the remittance spectrums for normally incident plane waves.

We propose and theoretically establish here the third method to generate such spectral holes using two-section chiral

sculptured thin films (STFs). Both sections of the proposed device have the same periodicity and handedness, but their

dielectric properties are different and related in a specific way. The concept of pseudoisotropy is highly relevant for the

production of the proposed device.

� 2005 Elsevier B.V. All rights reserved.
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Keywords: Cholesteric liquid crystals; Layer defects; Pseudoisotropy; Sculptured thin films; Structural chirality; Spectral holes; Twist

defects
1. Introduction

The generation of an intra-band spectral hole

was first demonstrated by inserting a phase defect
0030-4018/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.optcom.2005.01.055
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in the center of a scalar Bragg grating [1]. The sca-

lar Bragg grating, without the central phase defect,

has a spectral regime of high reflectance for nor-

mally incident plane waves. This regime is called
the Bragg regime. When the central phase defect

is inserted, the Bragg regime is punctured by a

much narrower high-transmittance regime. This

second regime is called a spectral (reflection) hole

and is widely employed in laser optics [2] as well

as in optical-fiber communication [3,4].
ed.
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As a scalar Bragg grating is insensitive to the

polarization state of the incident plane wave, the

incorporation of a central phase defect gives rise

to a reflection hole regardless of the polarization

state. In order to generate circular-polarization-
sensitive reflection holes, periodic structurally chi-

ral materials – exemplified by chiral sculptured

thin films (STFs) and cholesteric liquid crystals

(CLCs) [5–9] – are used in lieu of scalar Bragg

gratings. In general, these materials discriminate

between incident plane waves of different circular

polarization states in the Bragg regime. Periodic

structurally chiral materials and circularly polar-
ized plane waves possess handedness. In the Bragg

regime, the reflectance is very high for a co-handed

normally incident plane wave, but not for the

cross-handed one – leading to the term circular

Bragg phenomenon. As the high reflectance in the

Bragg regime is co-handed only, so is the reflection

hole in the Bragg regime generated by the insertion

of a central phase defect in the periodic structur-
ally chiral material.

Theoretical analysis has recently engendered

another spectral hole – i.e., a cross-handed trans-

mission hole – in a periodic structurally chiral

material by the introduction of a central phase de-

fect [10–12]. The thickness of the periodic structur-

ally chiral material is crucial to the exhibition of

the two types of spectral holes. When the thickness
is relatively small, the co-handed reflection hole

occurs. As the thickness increases, the co-handed

reflection hole diminishes to vanish eventually

and it is gradually replaced by the cross-handed

transmission hole. The bandwidth of the second

type of spectral holes is a tiny fraction of that of

the first type. However, even modest dissipation

can be deleterious to the second type of spectral
holes [11,13]. Needless to add, the second type can-

not be generated using scalar Bragg gratings.

The central phase defects investigated thus far

are of two types:

(i) Layer defect: A homogeneous layer, whether

isotropic [5,6] or anisotropic [14], is inserted

in the center of the periodic structurally
chiral material. The thickness of the

homogeneous layer determines the center

wavelength of the spectral hole, with a quar-
ter-wave layer positioning the spectral hole

quite accurately in the center of the Bragg

regime [15].

(ii) Twist defect: One half of the periodic structur-

ally chiral material is rotated about the thick-
ness axis with respect to the other half by a

certain angle [8,10,11,16]. The amount of rota-

tion determines the center-wavelength of the

spectral hole, with a 90�-twist positioning the

spectral hole in the center of the Bragg regime.

Combinations of the two types of phase defects

are likely to offer superior performance than either
alone [12].

We propose here a third method to generate

both types of spectral holes in periodic structurally

chiral materials. This method can be implemented

with chiral STFs but not with CLCs. It is based on

the selection of a two-section chiral STF with the

two sections having different dielectric properties

but the same periodicity and the same handedness.
The relevant boundary value problem for nor-

mally incident plane waves is briefly described in

Section 2, while the proposed method and its pos-

sible implementation are examined in Section 3.

The concept of pseudoisotropy is highly relevant

to the implementation of our proposal [17,18].
2. Theory

Suppose the region 0 < z < D is occupied by a

two-section chiral STF, while the half-spaces
z 6 0 and z P D are vacuous, as shown in Fig. 1.

The relative permittivity dyadic of the chiral STF

is stated as follows

�ðrÞ ¼

S
z
ðzÞ � S

y
ðv1Þ � �a1uzuz þ �b1uxux þ �c1uyuy

� �
�S�1

y
ðv1Þ � S�1

z
ðzÞ; 0 < z < D=2;

S
z
ðz� D=2Þ � S

y
ðv2Þ � �a2uzuz þ �b2uxux þ �c2uyuy

� �
�S�1

y
ðv2Þ � S�1

z
ðz� D=2Þ; D=2 < z < D:

8>>>>>><
>>>>>>:

ð1Þ
Here and hereafter, �aj;bj;cj ; ðj ¼ 1; 2Þ, are the

reference relative permittivity scalars of the jth
section; {ux,uy,uz} are the unit cartesian vectors

with uz parallel to the axis of nonhomogeneity of

the chiral STF; the rotational dyadic
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Fig. 1. Schematic of the boundary value problem involving a two-section chiral STF whose lower and upper sections have different

reference relative permittivity scalars �a, b, c and tilt angle v. The structural half-period X and handedness are uniform throughout the

chiral STF.
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S
z
ðzÞ ¼ uzuz þ uxux þ uyuy

� �
cos pz

þ h uyux � uxuy
� �

sin pz; ð2Þ

where p = p/X, 2X is the structural period, and the

parameter h = 1 for structural right-handedness

and h = �1 for structural left-handedness; and
the tilt dyadic

S
y
ðvjÞ ¼ uyuy þ ðuxux þ uzuzÞ cos vj

þ ðuzux � uxuzÞ sin vj; j ¼ 1; 2; ð3Þ

represents the locally aciculate morphology of the

STF with vj as the tilt angle. The scalars

�aj;bj;cj ; ðj ¼ 1; 2Þ, are implicitly dependent on the

free-space wavelength k0, and vj > 0 for chiral

STFs. The ratio D/2X is set as a positive integer.

For convenience, we define

~�dj ¼
�aj�bj

�ajcos
2vj þ �bjsin

2vj
; j ¼ 1; 2: ð4Þ

Parenthetically, the relative permittivity dyadic of

CLCs can be described by (1) as well, but with

the restrictions vj � 0 and �aj � �cj .
The two-section chiral STF is axially excited by

a normally incident, circularly polarized plane

wave from the half-space z 6 0. The procedure to

obtain the planewave reflectances and transmit-
tances is devised from the solution of a boundary

value problem detailed elsewhere [15,19]. Let us

content ourselves here by stating that 4 · 4 alge-
braic matrix equation [5]

½f
exit

� ¼ ½M �½f
entry

� ð5Þ

eventually emerges, where the column-4 vectors

[fentry] and [fexit] contain the x- and the y-compo-

nents of the electromagnetic field phasors at the

entry and the exit pupils, respectively. The 4 · 4

matrix

½M � ¼ exp i½P
2
�D=2

� �
exp i½P

1
�D=2

� �
ð6Þ

relating [fentry] and [fexit] is computed using the

matrixes

½P
j
� ¼

0 �ihp 0 2pg0
k0

ihp 0 � 2pg0
k0

0

0 � 2p
k0g0

�cj 0 �ihp
2p
k0g0

~�dj 0 ihp 0

2
666664

3
777775; j ¼ 1;2;

ð7Þ

where g0 is the intrinsic impedance of free space.

The derivation of (6) does not account for the

possible excitation of Voigt waves [20]; but that
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possibility is remote, and can occur only for highly

dissipative chiral STFs [21].
3. Proposed method

The planewave remittances (i.e., reflectances

and transmittances) can be easily computed after

solving (5). But our interest was in finding relation-

ships between �cj and ~�dj ; ðj ¼ 1; 2Þ for the gener-

ation of the two types of spectral holes.

We determined that the relationships

�c1 ¼ ~�d2 ;

~�d1 ¼ �c2 ;

�
ð8Þ

lead to the identity

½P
2
� ¼ ½Bðp=2Þ�½P

1
�½Bðp=2Þ��1

: ð9Þ

Therefore, satisfaction of the conditions (8) implies

that (6) converts to

½M � ¼ ½Bðp=2Þ� exp i½P
1
�D=2

� �
½Bðp=2Þ��1

� exp i½P
1
�D=2

� �
; ð10Þ

where

½Bð/Þ� ¼

cos/ �h sin/ 0 0

h sin/ cos/ 0 0

0 0 cos/ �h sin/

0 0 h sin/ cos/

2
6664

3
7775:

ð11Þ
The matrix [M] of (10) is identical to that formu-

lated for an axially excited chiral STF with a cen-

tral 90�-twist defect [8]. Therefore, the two-section
chiral STF satisfying the conditions (8) should

resemble a chiral STF with a central 90�-twist de-
fect in terms of the response to normally incident

plane waves.1 Accordingly, both types of spectral
1 It is worth mentioning that, although the responses to

normally incident plane waves are the same for the two-section

chiral STF satisfying (8) and for a chiral STF with a central 90�-
twist defect, the z-directed components of the electric fields in

the region 0 < z < D are different in general. Therefore, the two

types of devices, although functioning equivalently in terms of

the generation of spectral holes, are not identical electromag-

netically.
holes must emerge in the optical remittance spec-

trums of a two-section chiral STF obeying (8) as

the thickness D changes; see the spectrums of the

co–polarized remittances in Figs. 2 and 3 for an

illustrative example. The bandwidths of the spec-
tral holes are so small that dispersion of the consti-

tutive scalars �aj;bj;cj can be ignored in most

instances.

The theoretical underpinnings of the proposed

method having been thus established, let us turn

our attention to the feasibility of fabricating the

described device. Chiral STFs are fabricated by

directional physical vapor deposition, whereby
the vapor of an inorganic material is directed to-

wards a substrate at an angle vv 2 (0,p/2] to the

substrate plane [15,24]. Optical characterization

experiments on (nonchiral) columnar thin films

[23] indicate that �a, b, c and v are all monotonically

increasing functions of vv. From the collected data,

it has been shown that there exists a value vpi

(called the pseudoisotropic value) of v such that
�c ¼ ~�d [25]. Furthermore, �c?~�d for v ? vpi; thus,
the local birefringence changes sign as the

pseudoisotropic value of v is crossed. The value

of vpi is dependent on the type of evaporant [23]

and most likely on the deposition conditions as

well [26].

It follows that the two sections of the proposed

device must be deposited with vapors of different
materials (or combinations of materials). For

example, suppose ~�d1 > �c1 , and therefore
~�d2 < �c2 . Then the section labeled j = 1 must be

deposited at a low enough value of vv1 such that

v1 < vpi1 , whereas the section labeled j = 2 must

be deposited at a high enough value of vv2 such that

v2 > vpi2 . Furthermore, the two materials should be

properly selected such that �c1 þ ~�d1 ¼ �c2 þ ~�d2 .
Could the proposed device be made by deposit-

ing vapor of a single material? Based on the limited

experimental data reported for columnar thin films

[23], the answer is in the negative. Since the sum

�c þ ~�d increases monotonically with vv, (8) cannot
be fulfilled with just one material being deposited

first with vapor directed at angle vv1 and then at

vv2 6¼ vv1.
Could a pair of CLCs be made to satisfy the

conditions (8)? The answer to this question is in

the negative as well, because (i) v = 0 for CLCs
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Fig. 2. Spectrums of: (a) reflectances RRR and RLL and (b) transmittances TRR and TLL, computed for a structurally right-handed,

defect-free chiral STF with �c1 ¼ �c2 ¼ 2:72; ~�d1 ¼ ~�d2 ¼ 3:02, X = 200 nm, and D = 60X. The Bragg regime of the chiral STF is

estimated as 600 < k0 < 695 nm. The circular Bragg phenomenon is evident as a high co-handed reflectance (RRR) and a high cross-

handed transmittance (TLL) in the Bragg regime. (The double subscript LL in TLL indicates that the incident and the transmitted plane

waves are Left circularly polarized. Likewise, TRR is the transmittance of an incident Right circularly polarized plane wave as a Right

circularly polarized plane wave. The cross–polarized remittances, such as RLR, etc., can be minimized by using index-matching layers

[22], which was not implemented for this figure.)
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Fig. 3. Spectrums of: (a) reflectances RRR and RLL and (b) transmittances TRR and TLL, computed for a structurally right-handed,

two-section chiral STF with �c1 ¼ ~�d2 ¼ 2:72; ~�d1 ¼ �c2 ¼ 3:02, and X = 200 nm. The thickness of the device is (a) D = 60X and (b)

D = 180X. Compared with the remittance spectrums in Fig. 2 for the defect-free chiral STF, the remittance spectrums of the two-

section chiral STF exhibit two types of spectral holes in the center of the Bragg regime. A co-handed reflection hole in the spectrum of

RRR emerges in the center of the Bragg regime when D is relatively small. As D increases, the co-handed reflection hole vanishes and is

replaced by a cross-handed transmission hole in the spectrum of TLL when D is sufficiently large.
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and (ii) the rodlike shapes of molecules [27] impose

the restriction ~�d > �c. In other words, neither a

single-material, two-section chiral STF nor a com-

bination of two CLCs can be utilized to implement

the proposed third method for the generation of

the two types of spectral holes. However, with
the choice of a single-material chiral STF for one

section and a CLC for the second section, it could,

in principle, be possible to satisfy (8).

To conclude, we have theoretically established

here the third method (in addition to the ones call-

ing for the insertion of layer and twist defects) to

generate circular-polarization-sensitive spectral

holes using STF technology. The proposed device
is optically similar to a chiral STF with a central

90�-twist defect. Finally, we have assessed the tech-

nological feasibility of implementing the proposed

method.
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/�� ��������� ������	 � 0��� * ��� ��� � ����
������ 	�&���� /���� �������� ����� ��� �&�	�� � ����
��������� !��� ��� ��		�� �� ���� ��� ����� /�� 0�#� �� ��� ��		�� ���� �� �*�? � �	 �� ������ �+�*'

�@.�����-1 !��� ��� � /�� 0�#� �� ��� ��		�� ���� � 0��� - ��� � ��4
������ 	�&��� �� �'�?C �� ��� ���

��	
����� ��� ��� ����� 	����3 �� ��� &�������3 �	������ !��� ���� � 0���� ' �	 *� /���� � ������� � �

����� ��� �������� ����� ����!��� ��� ��� ����� ������&��3 �� ���	 ������� ������ &�������3 ������� �

��� ���� �������� ��	��

0�� ��� ����	 �������� ��	�� � �4�	 !�&������ �� �������� �� ����� ���� ���� �� �� ������ !��

� ���	 �� ������� �� ��� ���	 ������� ��������� �� �������� �� � ��4���� .�� ���31� 8����� ���

��4���� �� ������	� ��!�&��� ��� ����� ���	� � ����� .�� �������� ���� ������ �����1 �� �� ������� �

0��� '� �������	 �������� �� ��� ����� ����������� �� � �����* � ��%��* ��� � ��5 ���� !�&� ������3 ���	�� � � �!�
������

	�&��� .� � '1� .�1 ��� � + �����-� .�1 ��� � '+ �����-� .�1 ��� � *+ �����-� .	1 ��� � -+ �����-� ��� ��� ��4� ��� ����� ��


���������

�7 )�!��!�� �� �
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��������	 &����� /�� ����������3 �� ���� �������� ��	� �� �&�	�� ���� ��� ���� �� �� &����� ��� � 0��� (� ���

� ����
������ 	�&��� �������� �� + � D'+ ��

0�� &��3 ���� ������&��3 �� ���	 �������� � ����	 ��	� �� �������� ��3 �� ������A �� ������ � ��


������ !�&������ �� !���� �� �� ��4���� .�'1 !�� � ���	 �� ������� �3 	�&����� �� ��� ���� � ���

&���� !���	 ����� �� �� ���� �	 ������ ������ !���	 �� ��������	 ������3� /��� ��	� �� �� ����������	

���� ��� ���� �� �� &����� ��� � 0��� D� ��� � ��4
������ 	�&��� �������� �� + � D+C�--D ��

;7&7 ����	� ������

>�3 ��� ��
������6�	 ����������� ��� �� �� �� �������	 !�� �������� ��� ����	 	�&���� /��

��������� �� ���� I�����3 ��� ������	 � 0��� ? ��� ��� � +� '+� *+� �	 -+ �����-� !�� � � '(? ��

� � F+�� �	 �� � '(C�FD �� 0�&� ��	
���� &����� �� > !��� �������	 ��� ��� �������	 ���������� $ ���
�� ����� �������� ��� �������� ���� �� ��� ������3 ������ �� ��!�� !�&������� �� ��� �������� ; �� ���� ���

����	 	�&��� �� ������ ��������3 �� ��� ���� 	�&��� � ��� ���� �������� ��	�� /�� ���� &����� �� ���

	������ �� ������ � � + �� � � '� ������� ��� �������� .�	� ����� ��� ������&� ���������1 �� �� �� ���

�!� ������� � ������� ��� ����!��	 ������� 	��������� $	��	� ��� �������� ���� ���� &���� !��

������ � � + �� '� 0����������� ��� ������&��3 �� ���	 ������� 	������ ���	��3 �� � � '� ������� ��� ���	


���������	 ������ ��	���� � ���������

0�� &����� �� > ����!��� ������ ��� +�D� ��� ����	 	�&��� �H��� ������ �4��������� �������A ���

�������� ���� �� ��3 ������ ��� ���� 	�������� !��� �������� ��� � /!� ������ ��� �������� ������
����� ��� ���� ���������

0��� *� ���� �� 0��� '� ��� ��� � ����
������ 	�&��� .� � -1�

(+ �7 )�!��!�� �� �
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�	 ����� �� ������� �!��������� ��� ��� "��� �����

5����
��
������ �4�������� !��� �	������ �� ����� ��� ���	����	 ��	
����� �� �������� ����� !���

���	 ������ � ��� �������	 ���� 	�&���� �� 	�������	 � ������� *�' �	 (�'� /�� ����� ���	 � ����� �4

�������� !�� ��� �� ���	 � %��� :(< .��+''*==1� $� �� � �!�
������ .� � '1 ����
��	�	 .� � �'1

���������� 7��� ������ ��� ��4 ���������� ���� .� � '*�1 �	 � �������� �� -�D ���

0��� -� ���� �� 0��� '� ��� ��� � ��4
������ 	�&��� .� � D1�

0��� (� 5��� �� �� &����� ��� ��� � ����
������ 	�&��� .� � -1 �������� �� + � D'+ �� ��� ��� ��4� ��� ����� �����������

�7 )�!��!�� �� �
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0��� C ���!� ��� ����� �4��������� ����������� ���� !��� ���������	� /���� ��� �����3 � >���
>����� :**< 5� ����
� ��	 ������������ :**< ��� 	������� �� ��� ����� ���������	 �� �������	 �3 ��� ������

/��3 	�H�� � ���� ������ ���������3 ������6�	 .0��� C�1 �� �������6�	 .0��� C�1� .0��� C�1 ���	�� ����� !��

���	� /�� ����� !�� ���	�	 !��� !���� &�� � ��H �� ��������	 ��� ���� � ������ ������� !���� �� �

����������� �� �����4������3 (+��� �	 ��� ��� ����� !�� ����!�	 �� ����&�� �3 �&�������� �� ����

������������ M���� � �3����� !����� �	 �&�������� �3���� ����� '++ ��������� !��� �����	�	�

$ ��� ���������� �� 0��� C�� ��� ���	�� ����� �� ��5� �	 ��� ����� ����������� �� � ��� � �%� ��

�������	� /�� ������ �� ������ � 0��� F� � !���� ��� ������� ����������� �������� �� ���! �� �

����� ���� �	 ��� ���� � 0��� = �������� ���! ��� ������� ������ ���� ���������	 ��� !����� �	
	�3�� ��������� ����� D � ��� ����� !�� ��������	 �	 ��� �������� ���� !�� ��	
������	 �3 ����� *? �� ��

!��� ��� ������ ����� ���� .�1 !����� ��	���� ��� 	���� �� ��� �������� 8���� �������� .��1 ��� ��������

���� ������ ����� �	 �����	 � ��� �������� 8���� �������� �	 .���1 ��� ������� �������� ���������� ���

����&���	 ����� �&��������� ���������� ���! ���� ��� ��	
����� �� ��� ���� �� ������������ �� ������� �

��� � ���'�*� � �'�*� ��* 	�� �� ��� ������ �� !����� �	 ��� ������� 	���� �� ��� �������� 8���� ������� �� 	��

�� ��	����� � ��� ���� ����������� �� � ���'�*� � �'�*� ��
/�� !�&������ 	���������� ���&� ���! � 0��� = �	������ � ���� !����� ������� �	 � ���� ���!��

����&��3 ���� �� ����� -+ �� /���� ��3 �� �������	 !��� ��������3 ���� !����� ����� �	 ����&��3 ����� ��
����� D � �������	 ������� ��� ��� ����� ����������� �� � '�' �� !�&� ����� !��� � �����
�������

������������ �	 ����� *+ � �����	�	 ��� ��� ������� ������� �� � (�( �� �����
������ ������ �/0 .�� �

!�&������ + ����	�����3 ���� ��� ��� 8���� !�&������1 :*-<�

$ ��������� �� �� ��&���� �� ������� � ������� ����� !��� � ���������	 ���� ������ !��� �� ���

	���&���� �������6�	 ����� �� ��� ����� �	 ��� ����� ��� 	���&���� ��� �������	 ����� �� ��� ����


��������� ���� ���� �3�� �� �������� � ��	� !� ���� �&��������	 �������� ���� ������ ���������	 !���

�������6�	 ������

$ ���������� ��	� !��� �������6�	 ���	�� ������ � � ���� � �%� � ��% � �%%��* !�� �������	�
#��� ��� ���	� ��� ������� �������� �� ��� �������� ����� ��� �����
������6�	 ����� �%� �	 ��% ��� �����

�� ��� !�&�������� �	 �%% � '� /��� � !�� �4�����	 �� ��&�� ���� �� ����� ��� ���������3 �������� ����

�� ��� ��� !��� � ����������� �H���� 0��� '+� ������ ���� ��� �4�����	 ���� �� � �	 ��� �������3 �� ���

�������� ����� 	���� ���	�� �	 	�3�� �� ��� ������������

$ ��� ���� &��� ��� ��������� ��� ���	� � ������� �������� �� ��� �������� ����� !������ ��� �����

�%�� ��% �	 �%% ��� ��� �����, ���� � � ���� � �%� � ��% � �%%��* !�� �4�����	 �� ������ �� � �


&����	 &����� �� ���� /��� ���	����� �� ������	 �3 0��� '+� � !���� ��� �
������6�	 &���� �� , ��

������	 ��� �������6�	 ����� ���	�� �� � ����� ���� !��� ������� �� ��� 6
�4��� $ � ������� ���������� :(<�

0��� D� 5��� �� �� &����� ��� ��� ��� � ��4
������ 	�&��� .� � D1 �������� �� + � D+C�--D �� ��� ��� ��4� ��� ����� �����������

(* �7 )�!��!�� �� �
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0��� ?� �������	 �������� �� ��� ����� ����������� �����* ��� �&� ��	
���� &����� �� �� .�1 ��� � + �����-� .�1 ��� � '+ �����-�

.�1 ��� � *+ �����-� .	1 ��� � -+ �����-� ��� ��� ��4� ��� ����� �����������

0��� C� 74��������� ����������� � !���� � �����������3 ����
��	�	 ����� �� ���������	 !��� .�1 ��5 ������ .�1 �	 .�1 �������6�	

������

�7 )�!��!�� �� �
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0��� F� ������ �� ��������� �����	�	 �� ��� ����� !�� ���	�	 !��� !����� �	 ��� ����!�	 �� ����&�� �3 �&�������� � ����

0��� =� $������ � ��� !�&������ �� ��� �������� ���� �����	�	 	���� !����� �	 �����I��� �&���������

(( �7 )�!��!�� �� �
7 9 1����� �����	������	� ":; �&%%"� <<=;#



!� ���!�	 ���� � ������� ����� ����	 �� �����	 �3 '+� !������ 	����������� �� ��� ��������
���� ��� �����

�	 !��� ��3 � ����� .�* �1 ����
����� �� ��� �����
0����3 !� ��� ����� ��� ���� �������� �	 ���������� ��	�� �� �������� ���� �������6�	 ������

��� ����� !�� �������	 ���������3 	���� ���	�� �	 	�3�� �� ��� ������ �	 ����
�&��&�� ���������

�	 	���������� ���&�� �I��&���� �� ����� ���! � 0���� F �	 = !��� ������	�

#	 $�������% �����&�

2��� � ����� ��	�� !���� ������ � ������ ���������	 ��� ��� �� � �!�
����� ��������� ��������� ��

!��� �� �����
��
������ �4��������� !� ��&� ���! ���� ��������
���� ������ �����6���� !��� �/0 ����


����3 ��3 �� ���	 �� ���	 ���������� ������� � &�����3 �� �������� ��	�� ������� ��������� /��

����� ��	�� �����3�	 ���� ��3 �� �����	 �3 ��	���� 	�H���� ����	;���	 ��������� ���	���� ��

�		������ �������� �������

>� ������� �� ��� ������� ����&��� �� ��� ����� ��� �� ��� ������	 �� ���A �&� ������ � ��������

���� ������� !�� ��� ��	�	��� �� ��� ���	�� ���������3 ������6�	 ����� �� ��� �������� �� ��� ����������

��	�	��� �� ��� ����� �/0 :(�=<� ��� ������� �� � ���	 � ��� &��	 ������ 	��� �H��� ��� ����������
��������� /��� ������� ��3 ��������� �� ���	 �� ������6� ��� ����� � ��� ������� �� ������ �����������

0��� '+� >������ �	 	�������	 ��������� �����	�	 � .�1 ���������� �	 .�1 �������� ��	�� �� ��������� ��� ��� ��� ����� ����


�����	 !��� �������6�	 ������

�7 )�!��!�� �� �
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/���� ��������3 ���� ��� � ��	��� 0����� ��� &���� �� ���	�� ���� �4���	 +�' �� ����������� � ��	��

��� � �������� �������� ����� �� �� �����&�	� �	������ ���� ��� �������	 ����� �� ���� �������� ��� &�����

������� ���� &������� ����	� �	 ��I��	� ��� ��� ������ ����	� ���� ���� ���� �� ���� �� ����� ���� ���

������� �� ��� ���	 �� �� 	������	 	��� �� ��	��� ��� ����� ����� ����������� �� � ���'�*� � �'�*� � �� ���
������ �/0 ; ����3�� ���� �� �	 �� ���� �� ��� ������ �	 � ���� �� ���������3 	�H���� ���� ���� + �	

' ; ���� �� �� ���� ��������� !���� ���������3 	�������� ��� �������� 8���� ������� ��� !���� ���

����� �� ����	 :'<� 0����3� ���	� ��������� ����� ������ ��������� ��3 �� ��������� ��� ��������� ���

������� ��������� �� ��� �/0� M������ ����� �������� ����������� !� �����&� ���� ��� �������	 �����

��������3 �� �������� ��� � ����� ����� �� ���	��

'���������

:'< 9��� 9�������� �� ���������� �A >�)� ����� �� ��������� .7	��1� 7������������� 0���	� � 2��&������ ��������� �	

����������� ����3� )�! N���� *+++ .������� D1�

:*< �� ���������� ������ �	 ��������� 8A ����� D* .'==F1 *(-�

:-< 7� 7������ �� ���������� 7��� 5�3��  � ����� 5�3�� D .'===1 (D�

:(< $� � #�	������ "�#� ��� O�7� /���� �� ���������� ���� ������� >��� ������ 'F( .*+++1 DC�

:D< ���� ������� �� ����������  � ��	� >��� (C .*+++1 =C-�

:?< P�5� ����!��� �� %�	��� $777 5����� /������ ����� ? .'==(1 ==D�

:C< �� �������  � �����!�&� /������ 'F .*+++1 *-?�

:F< �� Q������ 9� M����3� ���� ������� >��� ������� ��������	 ��� �����������

:=< ���� ������� �� ����������  � ��	� >��� (C .*+++1 C(-�

:'+< �� 8��� 7� ����� 5�������� �� >������ 5������ 5����� >4���	� '=FC� �� FF�

:''< O� O���� 2� #���� #� 9������� 8��� 8������� 5�3�� ����� =? .'==*1 C*F�
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Abstract

Sculptured thin films (STFs) are unidirectionally nonhomogeneous, anisotropic, porous, nanoengineered materials

possessing morphological features of optically significant dimensions. Light emission efficiencies of chiral STFs are

examined to establish the role of a key structural factor: the local inclination angle v of the morphology. The centrality

of its so-called pseudo-isotropic value vpi is identified. When the source configuration has the same handedness as the

chiral STF, the emission spectrum is spread over the Bragg regime if v is in the neighborhood of vpi; otherwise, the

emission spectrum is highly localized in the short-wavelength (resp. long-wavelength) vicinity of the Bragg regime for

v > vpi (resp. v < vpi). In contrast, the emission spectrum is spread over the entire Bragg regime for the contra-wound

source configuration, regardless of the value of v. High emission efficiencies require that v be considerably less than

vpi. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The characteristics of radiation emitted by a

source depend not only on the source itself but also

on the medium into which radiation is emitted. This

becomes clear from even a cursory inspection of the

dyadic Green functions for different classes of me-

diums, a dyadic Green function being – in effect –

the field emitted by a point source into a particular

medium at a specific frequency [1,2]. Most theo-
retical analyses are confined to radiation from a

concentrated source, whether or not of infinitesimal

dimensions, which is contiguous to a homogeneous

medium that completely surrounds the source and

is of non-zero extent in all directions. Analyses for a
source interpenetrating the microscopic interstices

of a nonhomogeneous medium are extremely rare,

because they are difficult to implement – except for

plane-stratified mediums [3].

The situation is obviously more complicated for

unidirectionally and continuously nonhomoge-

neous mediums than for unidirectionally piecewise

nonhomogeneous mediums. The one exception this
author knows is furnished by the Green functions

for helicoidal bianisotropic mediums, by virtue of

the Oseen transformation [4,5]. Those Green

functions provide the analytical basis for treating

second harmonic emission [6,7] and biolumines-

cence from chiral sculptured thin films (STFs).
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A chiral STF can be morphologically likened to

a bed of microscopic springs, being essentially a

collection of parallel upright helical columns de-

posited on a substrate [9], as shown schematically

in Fig. 1. The optical response of a chiral STF is

controlled by three phenomenological factors and
three structural factors. The first three are the

relative permittivity scalars – denoted by �a, �b and
�c – arising from the local orthorhombic symmetry

of the thin film, and are functions of the free-space

wavelength k0. The latter three are the handedness

parameter h, the half-period X, and the local in-

clination angle v. Whereas h ¼ 1 for structural

right-handedness, h ¼ �1 for structural left-
handedness. Together with the pitch 2X of the

helical columns, h is responsible for the phenom-

enon of circular Bragg reflection: provided that the

film thickness is sufficiently large and k0 lies within

the so-called Bragg wavelength-regime, an axially

excited chiral STF exhibits extremely high reflec-

tance if the handedness of the incident light mat-

ches its structural handedness, and extremely low
reflectance if otherwise [9–11].

The influence of v has not been systematically

evaluated, either theoretically or experimentally.

Yet it is of very high importance, as the perusal of

optical literature on the related columnar thin

films (CTFs) easily demonstrates [12]. Chiral STFs

as well as CTFs are typically fabricated by di-

recting a collimated vapor flux onto a substrate.
The average direction of vapor flux makes the

angle vv to the substrate, this angle being carefully

controlled in order to engineer the appropriate

nanostructural morphology and realize the desired

value of v [13–15].

Therefore, the influence of the key structural

factor v on the emissive properties of chiral STFs

of finite width but infinite lateral extent was in-

vestigated. Sample numerical results from para-

metric studies as well as from a realistic example

are presented here, along with the conclusions
drawn therefrom. An expð�ixtÞ time-dependence

is implicit; vectors are underlined and dyadics are

double-underlined, while column 4-vectors as well

as 4� 4 matrixes are additionally enclosed in

square brackets; r ¼ xux þ yuy þ zuz is the posi-

tion vector with ux, uy and uz as the cartesian unit

vectors; and the z axis is parallel to the thickness

direction.

2. Theory in brief

The canonical boundary value problem in the

present context is that of a chiral STF which oc-

cupies the region 06 z6 L, while the half-spaces

z6 0 and zP L are vacuous. The source is dis-
tributed uniformly in any xy plane, but its distri-

bution can be a function of z.

Frequency-domain electromagnetic fields inside

the chiral STF must satisfy the Maxwell curl

postulates

r� EðrÞ ¼ ixl0HðrÞ;
r� HðrÞ ¼ �ix�ðrÞ � EðrÞ þ J soðrÞ;

�
06 z6L;

ð1Þ
wherein l0 ¼ 4p � 10�7 H m�1 is the permeability

of free space and J soðrÞ is the source current den-

sity phasor. The nonhomogeneous, frequency-de-

pendent permittivity dyadic of the chosen chiral

STF is expressed as follows [9]:

�ðrÞ ¼ �0Sz
ðz; hÞ � S

y
ðvÞ

� ½�auzuz þ �buxux þ �cuyuy 

� S�1

y
ðvÞ � S�1

z
ðz; hÞ: ð2Þ

In this equation, �0 ¼ 8:854� 10�12 F m�1 is the

free-space permittivity; the inclination dyadic

S
y
ðvÞ ¼ uyuy þ ðuxux þ uzuzÞ cos v

þ ðuzux � uxuzÞ sin v ð3Þ

Fig. 1. Schematic of the morphology of a structurally right-

handed (i.e., h ¼ 1) chiral sculptured thin film, with 2X as the

structural period and v as the local inclination angle.
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represents the locally columnar microstructure of

any chiral STF with v > 0�; while the rotation

dyadic

S
z
ðz; hÞ ¼ uzuz þ ðuxux þ uyuyÞ cos

pz
X

� �
þ hðuyux � uxuyÞ sin

pz
X

� �
: ð4Þ

As the lateral extent of the chiral STF is infinite

and the source current density phasor is indepen-

dent of both x and y, the electromagnetic field

phasors EðrÞ � EðzÞ and HðrÞ � HðzÞ for all

z 2 ð�1;1Þ. Light is emitted into the upper and

the lower half-spaces, the electric field phasor be-

ing

EðzÞ ¼ ðbLu� þ bRuþÞ expð�ik0zÞ; z6 0;
ðcLuþ þ cRu�Þ exp½ik0ðz� LÞ
; zP L;

�
ð5Þ

where u� ¼ ðux � iuyÞ=
ffiffiffi
2

p
and k0 ¼ x

ffiffiffiffiffiffiffiffiffi
�0l0

p ¼ 2p=
k0 is the free-space wavenumber. Whereas bL and

cL are the amplitudes of the left-circularly polar-

ized (LCP) components, bR and cR are the ampli-

tudes of the right-circularly polarized (RCP)

components, of the emitted plane waves.

The boundary value problem boils down to the

4� 4 matrix algebraic relation [8]

cL þ cR
iðcL � cRÞ

�iðcL � cRÞ=g0

ðcL þ cRÞ=g0

2
664

3
775¼ ½BðL;hÞ
ei½P

0 
L

bL þ bR
�iðbL � bRÞ

�iðbL � bRÞ=g0

�ðbL þ bRÞ=g0

2
664

3
775

8>><
>>:

þ
ffiffiffi
2

p Z L

0

e
�i½P 0 
zs ½c0ðzsÞ
dzs

9>>=
>>;:

ð6Þ

Here, g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
is the intrinsic impedance of

free space; the matrixes

½Bðz;hÞ


¼

cosðpz=XÞ �hsinðpz=XÞ 0 0

hsinðpz=XÞ cosðpz=XÞ 0 0

0 0 cosðpz=XÞ �hsinðpz=XÞ
0 0 hsinðpz=XÞ cosðpz=XÞ

2
664

3
775

ð7Þ

and

½P 0
 ¼

0 �ihp=x 0 xl0

ihp=x 0 �xl0 0

0 �x�0�c 0 �ihp=x
x�0~��d 0 ihp=x 0

2
664

3
775;

ð8Þ
the source 4-vector

½c0ðzÞ
¼

0

0

J so
y ðzÞcosðpz=XÞ�hJ so

x ðzÞsinðpz=XÞ
�J so

x ðzÞcosðpz=XÞ�hJ so
y ðzÞsinðpz=XÞþJ so

z ðzÞ ~��d
�a�b

ð�b��aÞsinvcosv

2
6664

3
7775;

ð9Þ
while

~��d ¼ �a�b=ð�a cos2 v þ �b sin
2 vÞ: ð10Þ

Provided the source current density phasor is

known and the relative remote possibility of Voigt

wave propagation [16] at the frequency of interest

is discounted, (6) can be solved using standard

techniques in order to determine the four emission

amplitudes bL;R and cL;R.
A variety of results can be obtained using the

presented formulation. In order to elucidate the

effect of v, which appears critically in the definition

of ~��d , let the source current density phasor be

specified simply but meaningfully as follows: The

handedness of the source current density phasor is

either the same as that of the chiral STF or the

opposite; i.e., the source configuration is either co-
wound or contra-wound. The former possibility

entertains the case for harmonic generation in the

helical columns of the chiral STF, while the latter

possibility models the case for bioluminescent

emission from macromolecular strands curled

around the helical columns. After eliminating

normally and binormally directed source current

densities from consideration but keeping only the
tangentially directed source current densities for

simplicity [17], let the entire chiral STF be occu-

pied uniformly by the source such that

J soðzÞ ¼ Js0Sz
ðz;�hÞ � S

y
ðvÞ � ux; 06 z6 L: ð11Þ

with the upper sign taken for co-wound and the

lower sign for contra-wound source configura-

tions. Thus, the emission source dipoles are either

stuck to or curled around the helical columns.
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Incidentally, lasing by fluorescent dyes in choles-

teric liquid crystals shows evidence of both types

of source configurations [18].

3. Numerical results and discussion

3.1. Parametric investigation

Details of the solution procedure are available

in the predecessor paper [8]. Calculations of the

emission efficiencies 1

BR;L ¼ 1

2g0

bR;L

Js0

����
����
2

; CR;L ¼ 1

2g0

cR;L

Js0

����
����
2

ð12Þ

were made for structurally right-handed chiral

STFs, in a parametric investigation of the role of v.
As the films are assumed to be occupied uniformly

by the source, there is no difference between the
upper and the lower half-spaces; hence, all nu-

merical studies correctly yielded BR ¼ CR and

BL ¼ CL. The half-period X was selected so that

the center-wavelength kBr
0 of the Bragg regime re-

mained invariant, i.e., X ¼ kBr
0 =ð�1=2c þ ~��

1=2
d Þ [9]. For

the sample numerical results presented here,

kBr
0 ¼ 633 nm, L ¼ 48X and h ¼ 1.

Fig. 2 shows the calculated emission efficiencies
as functions of v and k0 for the co- and contra-

Fig. 2. Emission efficiencies BR and BL computed as functions of v 2 ½0�; 90�
 and k0, when �a ¼ 2:7, �b ¼ 3:0 and �c ¼ 2:84 are

nondispersive over the k0 2 ½600; 680
 nm regime; h ¼ 1, kBr
0 ¼ 633 nm, X ¼ kBr

0 =ð�1=2c þ ~��
1=2
d Þ and L ¼ 48X.

1 The following definitions are slightly different from those

provided in the predecessor paper [8].

106 A. Lakhtakia / Optics Communications 202 (2002) 103–111



wound source configurations, when �a ¼ 2:7,
�b ¼ 3:0 and �c ¼ 2:84 are non-dispersive over the

k0 2 ½600; 680
 nm regime. These plots confirm the

following two earlier findings [8]:

(i) The emission spectrums are highly localized

with respect to the wavelength k0 either in or
in the immediate neighborhood of the Bragg

regime.

(ii) The polarization state of the emitted light is

virtually circular, and its handedness is identical to

the structural handedness of the source configu-

ration.

More significantly, these plots highlight the key

role played by the local inclination angle v. The
emission efficiencies are high for low values of v,
and vice versa. This relationship between v and the

emission efficiencies is dramatically illustrated by

the spectrums for the co- and contra-wound source

configurations, shown in Fig. 3 for three values

of v.
Let vpi 2 ½0�; 90�
 be defined as the solution (if

one exists) of the equation

�c ¼ �a�b=ð�a cos2 vpi þ �b sin
2 vpiÞ; ð13Þ

then

�c

< ~��d
¼ ~��d
> ~��d

8<
: for v

< vpi;
¼ vpi;
> vpi;

8<
: ð14Þ

for the values of �a, �b and �c used to generate

Figs. 2 and 3. Many other calculations, not re-

ported here, also show that the emission efficien-

cies are higher for �c < ~��d than for �c > ~��d , with
�c ¼ ~��d providing a baseline. For the data used to

produce Figs. 2 and 3, vpi ¼ 45�.
The angle vpi should be called the pseudo-isot-

ropy angle [19,20]. When a normally incident

plane wave axially excites a chiral STF that pos-

sesses v ¼ vpi, reflection and transmission occur as

if the chiral STF were isotropic and homogeneous

(despite being anisotropic and nonhomogeneous),

and the phenomenon of circular Bragg reflection

vanishes. However, the graphs in Fig. 3 clearly
show that emission betrays the anisotropy, non-

homogeneity and handedness of pseudo-isotropic

chiral STFs – because the two source configura-

tions emit differently from each other even when

v ¼ vpi.

Fig. 3. Spectral sections of the plots of Fig. 2, for v ¼ 15� (solid line), 45� (dotted line) and 75� (dashed–dotted line).
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The critical nature of vpi is brought out in Figs. 2

and 3 in another way also. For v � vpi, emission

from the co-wound source configuration is

strongly peaked at the long-wavelength edge of the

Bragg regime; the peak shifts to the short-wave-

length edge for v � vpi; while the peak is situated
inside the Bragg spectrum for v in the neighbor-

hood of vpi. On the other hand, the emission

spectrum is fairly symmetrically distributed over

the entire Bragg regime for the contra-wound

source configuration, regardless of the value of v.
Although an explanation for these features is not

yet available, the presented observations are con-

sistent with those experimentally observed and

numerically simulated for lasing in dye-doped

cholesteric crystals (for which v ¼ 0� and �a ¼ �c)
[18].

3.2. A realistic example

As no data are available on the actual values of

�a, �b, �c and v for any chiral STF, the efficacy of

the conclusions drawn from the parametric studies

of Section 3.1 cannot be yet reported for actual

chiral STFs. In a preliminary move towards real-

ism, data for the related CTFs can however be

Fig. 4. Emission efficiencies BR and BL computed as functions of vv 2 ½20�; 90�
 and k0 2 ½600; 680
 nm, when �a, �b, �c and v are given

by (15); h ¼ 1, kBr
0 ¼ 633 nm, X ¼ kBr

0 =ð�1=2c þ ~��1=2d Þ and L ¼ 48X.

108 A. Lakhtakia / Optics Communications 202 (2002) 103–111



used. A CTF simply is a homogeneous STF –

obtained in the limit X ! 1 [9]. Data on CTFs

too is sparse, but enough is available to enable

initial work on chiral STFs.

For CTFs made of titanium oxide, the mea-

surements at k0 ¼ 633 nm reported by Hodgkin-
son et al. [21] yield the following empirical

relations:

�a ¼ ð1:0443þ 2:7394v� 1:3697v2Þ2;
�b ¼ ð1:6765þ 1:5649v� 0:7825v2Þ2;
�c ¼ ð1:3586þ 2:1109v� 1:0554v2Þ2;
tan v ¼ 2:8818 tan vv;

9>>=
>>;

20�6 vv 6 90�: ð15Þ

In these equations, v ¼ vv=ðp=2Þ, wherein vv is the

vapor incidence angle in radian.

Eqs. (15) were employed to calculate the emis-

sion efficiencies of a structurally right-handed

chiral STF made of titanium oxide as functions of
vv and k0. The center-wavelength of the Bragg

regime was fixed at kBr
0 ¼ 633 nm, the half-period

X ¼ kBr
0 =ð�1=2c þ ~��

1=2
d Þ, and the thickness L ¼ 48X.

Dispersion was effectively ignored for this initial

study, but can certainly be incorporated [8,22]

upon the availability of adequate data.

The computed emission efficiencies are shown

in Fig. 4 for the co-wound as well as the contra-
wound configurations, as functions of vv 2
½20�; 90�
 and k0 2 ½600; 680
 nm. Despite the

Fig. 5. Same as Fig. 4, but for vv 2 ½10�; 20�
.
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dependence of �a;b;c on v for the titanium oxide

chiral STFs, the broad spectral characteristics of

emission are the same as in Fig. 2 (for which �a, �b
and �c are uncorrelated with v).

An examination of (15) reveals that �c > ~��d in

Fig. 4, which implies that v must be greater than
vpi for the titanium oxide CTFs of Hodgkinson et

al. [21]. The experimental data underlying (15) was

collected over vv 2 ½20�; 90�
, and is therefore

strictly valid in that regime only. However, on

extrapolating it to vv < 20�, the value of vpi can be

estimated at �40.7� in correspondence with vpi
v ’

16:6�.
Shown in Fig. 5 are the computed emission

efficiencies for the extrapolation regime vv 2
½10�; 20�
. This regime covers the pseudo-isotropy

angle from both sides. The spectral characteris-

tics of the emission efficiencies are quite similar

to the sectional plots presented in Fig. 3. The

only exception is the double-peak feature in the

plots of BR for the contra-wound configuration

in Figs. 4 and 5. Although no explanation was
readily forthcoming for this feature, it is not

very significant because BL totally dominates BR

in the Bragg regime. Furthermore, this feature

may be a somewhat dubious artifact, as it ap-

pears for vv at the limit of the fabrication pro-

cess [21].

4. Conclusions

Several conclusions on the emission character-

istics of chiral STFs had been given in the prede-

cessor paper [8]. In addition to the two recounted

in Section 3.1, the numerical results obtained here

confirm the following:

(iii) The peak emission efficiencies are higher for
the co-wound than for the contra-wound config-

urations.

The predecessor paper did not, however, elu-

cidate the role of the local inclination angle v.
Neither was the watershed constituted by pseudo-

isotropy identified therein. These significant roles

have been clarified by the parametric investiga-

tion and the realistic example considered here.
The following three conclusions emerge there-

from:

(iv) The emission spectrum is spread over the

entire Bragg regime for the contra-wound source

configuration.

(v) In contrast, for the co-wound source con-

figuration, the emission spectrum is spread over

the Bragg regime only when v is in the neighbor-
hood of vpi. Otherwise, the emission spectrum is

highly localized in the short-wavelength (resp.

long-wavelength) vicinity of the Bragg regime for

v > vpi (resp. v < vpi).

(vi) Highly efficient emission requires that v be

considerably less than vpi, regardless of the source

configuration.

To end, the realistic example of Section 3.2
clearly indicates that strong emitters made of chi-

ral STFs ought to be easily realizable, because the

minimum value of v realized thus far is �25� [13].
Thus the ample promise of chiral STFs as biolu-

minescence platforms [8] and sources of circularly

polarized light [7] is strongly reaffirmed, and calls

out for experimental research. Yet another at-

tractive possibility is to fabricate chiral STF lasers
from dye-doped polymers, in the manner sug-

gested elsewhere [23,24].
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½P 0� ¼

0 �ihp=X 0 xl0

ihp=X 0 �xl0 0

0 �xe0ec 0 �ihp=X
xe0~eed 0 ihp=X 0
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CHIRAL MATERIALS
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ABSTRACT: Radiation due to six canonical configurations for the
source current density embedded in a structurally chiral medium is ana-
lyzed theoretically. The radiation spectrum is highly dependent on
whether its source is co-chiral or cross-chiral, and is localized either in
or on the edges of the Bragg regime. The obtained conclusions hold for
both chiral liquid crystals and chiral sculptured thin films doped with
fluorescent dyes, etc. © 2003 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 37: 37–40, 2003; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.10818

Key words: Bragg regime; fluorescence; lasing; luminescence; radia-
tion; structurally chiral medium

1. INTRODUCTION

Not only does radiation carry the signature of its source, but it is
also affected by the medium into which it is emitted. That effect is
clearly evinced in the dyadic Green functions available in closed-
form for several different classes of linear homogeneous mediums
[1–3]. If the medium is nonhomogeneous, its effect on the char-
acteristics of the radiation becomes even more significant. Witness
to this fact is optical radiation from dye-doped chiral nematic
liquid crystals [4–6], which is known to be almost circularly
polarized and confined to the so-called Bragg-wavelength regime
of these periodically nonhomogeneous materials [7, 8]. Theoretical
confirmation by explicit solution of the Maxwell curl postulates
has been obtained, with radiation possible at wavelengths inside
the Bragg regime as well as at one of its edges [9]. Radiation at the
edge of the Bragg regime is also consistent with a density-of-states
argument, which emerges from viewing a doped chiral nematic
liquid crystal as a photonic crystal [10].

Chiral nematic liquid crystals as well as chiral smectic liquid
crystals exemplify structurally chiral materials—which are aniso-
tropic, unidirectionally nonhomogeneous, and helicoidally peri-
odic substances [11, 12]. Their solid-state counterparts are the
so-called chiral sculptured thin films [13–15]. In this paper, we
focus on the characteristics of radiation from canonical source
configurations embedded in a structurally chiral material. The
source configurations could be excited either electronically or
optically [5], and could represent lasing [6], luminescence [5], or
fluorescence [16]. An exp(�i�t) time-dependence is implicit with
� as the angular frequency and t as the time; vectors are underlined
and dyadics are double-underlined, while column-4 vectors as well
as 4 � 4 matrixes are additionally enclosed in square brackets; and
r� � xu� x � yu� y � zu� z is the position vector with u� x, u� y, and u� z

as the Cartesian unit vectors.

2. BOUNDARY VALUE PROBLEM

The canonical boundary value problem in the present context is
that of a structurally chiral medium which occupies the slab region
0 � z � L, while the half-spaces z � 0 and z � L are vacuous.
Dielectric response properties are assumed. The source is distrib-

uted uniformly in any xy plane, but its distribution can depend on
z. The structurally chiral medium is nonhomogeneous along the z
axis.

Frequency-domain electromagnetic fields inside the slab region
must satisfy the Maxwell curl postulates

� � E� �r�� � i��0H� �r��
� � H� �r�� � �i���r�� � E� �r�� � J�so�r���, 0 � z � L, (1)

where �0 � 4	 � 10�7 H m�1 is the permeability of free space
and J� so(r�) is the source current density phasor. The nonhomoge-
neous, frequency-dependent permittivity dyadic of the chosen me-
dium is expressed as follows [17]:

��r�� � �0S z� z, h� � S y�
� � ��au� zu� z � �bu� xu� x � �cu� yu� y	

� S y
�1�
� � S z

�1� z, h�. (2)

In this equation, the relative permittivity scalars �a,b,c are func-
tions of �; �0 � 8.854 � 10�12 F m�1 is the free-space permit-
tivity; the tilt dyadic

Sy�
� � u� yu� y � �u� xu� x � u� zu� z�cos 
 � �u� zu� x � u� xu� z�sin 
 (3)

involves the angle 
 � 0°; while the rotation dyadic

Sz� z, h� � u� zu� z � �u� xu� x � u� yu� y�cos�	z


� � h�u� yu� x � u� xu� y�sin�	z


�
(4)

contains 2
 as the structural period. The structural handedness
parameter h can take one of only two values: h � 1 for right-
handedness and h � �1 for left-handedness. The angle 
 � 0°
and �c � �a for chiral nematic liquid crystals [7, 8].

As the lateral extent of the slab region is infinite and the source
current density phasor is independent of both x and y, the elec-
tromagnetic field phasors E� (r�) � E� ( z) and H� (r�) � H� ( z) for all
z � (��, �). Radiation is emitted into the upper and the lower
half-spaces, with the electric field phasor given by

E� � z�� � � �bLu� � � bRu� ��exp��ik0z�, z � 0
�cLu�� � cRu���exp�ik0�z � L�	, z � L, (5)

where u�  � (u� x  iu� y)/�2 and k0 � ���0�0 is the free-space
wavenumber. The free-space wavelength is denoted by �0 �
2	/k0. Whereas bL and cL are the amplitudes of the left circularly
polarized (LCP) components, bR and cR are the amplitudes of the
right circularly polarized (RCP) components of the radiated plane
waves.

The boundary value problem amounts to the following alge-
braic relation [17]:

�
cL � cR

i�cL � cR�
�i�cL � cR�/0

�cL � cR�/0

� � �B�L, h�	ei� P�	L��
bL � bR

�i�bL � bR�
�i�bL � bR�/0

��bL � bR�/0

�
� �2�C� 		 . (6)

Here and hereafter, 0 � ��0/�0 is the intrinsic impedance of free
space; the 4 � 4 matrixes
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�B� z, h�	

� �
cos�	z


� �h sin�	z


� 0 0

h sin�	z


� cos�	z


� 0 0

0 0 cos�	z


� �h sin�	z


�
0 0 h sin�	z


� cos�	z


� � (7)

and

�P�	 � �
0 �ih	/
 0 ��0

ih	/
 0 ���0 0
0 ���0�c 0 �ih	/


��0�̃d 0 ih	/
 0
�; (8)

while

�̃d � �a�b/��acos2
 � �bsin2
� (9)

is a meaningful shorthand notation [20]. The column-4 vector [C� ]
involves the source current density as well as the constitutive
properties of the slab region z � [0, L]. Eq. (6) can be solved
using standard techniques in order to determine the four-radiation
amplitudes bL,R and cL,R.

3. CANONICAL SOURCE CONFIGURATIONS

Because the structurally chiral mediums are helicoidally nonho-
mogeneous, a helicoidal representation for the source current den-

sity is naturally appropriate. The tangential, the normal, and the
binormal unit vectors in a helicoidal coordinate system conformal
with the chosen medium are denoted by Sz( z, h) � u� �,n,b, respec-
tively, where the unit vectors

u� � � u� xcos 
 � u� zsin 

u�n � �u� xsin 
 � u� zcos 


u�b � �u� y

�. (10)

The source current density can be decomposed into a co-chiral and
a cross-chiral parts as follows:

J� so� z� � Sz� z, h� � � Jn
co� z�u� n � J�

co� z�u� � � Jb
co� z�u� b	

� Sz� z, �h� � �Jn
cr�z�u�n � J�

cr�z�u� � � Jb
cr�z�u�b	, z � �0, L	.

(11)

Thus, Jn,�,b
co,cr( z) represent the six canonical source configurations

possible.
For our present purposes, we suppose that J� so( z) � 0� for z �

[0, zp] and z � [ zq, L], 0 � zp � zq � L, and that

J� so� z� � S z� z, h� � � Jn0
cou� n � J�0

cou� � � Jb0
cou� b	

� S z� z, �h� � �Jn0
cr u�n � J�0

cru� � � Jb0
cr u�b	, z � � zp, zq	. (12)

Thus the source current density is present inside the layer z � [ zp,
zq], and absent everywhere else.

Accordingly, following the analysis initiated in [17], we obtain

�C� 	 � �F̃ c�0, �i�P�	; zp, zq�	 �
0
0

�Jb0
co

�̃d

�a�b
���bJn0

cosin 
 � �aJ�0
cocos 
�

� ��b � �a�sin 
 cos 
�Jn0
cr cos 
 � J�0

crsin 
�

� (13)

� 
 F̃ c�2	



, �i�P�	; zp, zq�� �

0
0

�Jb0
cr

Jn0
cr sin 
 � J�0

crcos 

�

� h
 F̃ s�2	



, �i�P�	; zp, zq�� �

0
0

Jn0
cr sin 
 � J�0

crcos 

Jb0

cr
�.

The 4 � 4 matrixes [ F̃c(q, [ A ]; z, �)] and [ F̃s(q, [ A ]; z, �)] are
functions of wavenumber q and matrix [ A ], as well as the dis-
tances z and �. Both are best computed after diagonalizing the
matrix [A]; thus, [A] � [T][Q][T]�1, with the diagonal matrix �Q	
containing the eigenvalues of [ A ] and the orthogonal matrix
[ T ] comprising the eigenvectors of [ A ] [18]. Then,

� F̃c,s�q, � A 	; z, ��	 � � Fc,s�q, � A 	; z�	 � � Fc,s�q, � A 	; ��	,

(14)

where the 4 � 4 matrixes

� F c�q, � A 	; z�	 � � T 	�� I 	

� q2�Q	�2��1�� I 	cos qz � q�Q	�1sin qz��Q	�1e� Q 	 z�T 	�1 (15)

and

� F s�q, � A 	; z�	 � � T 	�� I 	 �

q2�Q	�2��1�� I 	sin qz � q�Q	�1cos qz��Q	�1e�Q	 z�T 	�1 (16)
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are functions of q, [ A ], and z; while [ I ] is the 4 � 4 identity
matrix. In this treatment, we have discounted the relatively remote
possibility of Voigt wave propagation [21, 22] in the wavelength
regime of interest.

4. NUMERICAL RESULTS AND CONCLUSIONS

Calculations of the radiation efficiencies

BR,L�
1

20
� �bR,L�2

�J� so� zp��2� , BC,L�
1

20
� �cR,L�2

�J� so� zp��2�
(17)

were made for structural right-handedness (h � 1), with the
source current density specified through Eq. (12). The relative
permittivity scalars �a,b�c were modeled as single-resonance
Lorentzian functions of �0 as per [17, 23]:

�a,b�c � 1 � pa,b,c
1 � �10�2 � i
180 � 10�9

�0
� 2��1

,

(18)

where the oscillator strengths pa � 1.6, pb � 2.0, and pc � 1.7.
Accordingly, dissipation is moderate in the �0 � [400, 800] nm
regime. The chosen values of the tilt angle 
 � 30° and the
half-period 
 � 150 nm ensure that the Bragg regime is delineated
by �0 � [513.4, 531.8] nm. The thickness ratio L/
 � 60 was
selected so that the circular Bragg phenomenon is fully developed.

Eq. (12) contains six canonical configurations of the source-
current density, characterized individually by the quantities
Jn0,�0,b0

co,cr . For each of these configurations, the radiation efficien-
cies are plotted in Figure 1 as functions of the wavelength. The
relevant sources are confined to the thin layer identified by zp �
20
 and zq � 22
. As noted in [9, 17], for J�0

co,cr only, Figure 1
shows that a clear distinction exists between radiation due to co-

and cross-chiral source current densities. The edges of the Bragg
regime are conspicuously marked by high radiation efficiencies for
all three co-chiral source configurations in Figure 1, while the
Bragg regime is not discernible at all for the three cross-chiral
source configurations. In Figure 2, for which zp � 10
 and zq �
40
, a more substantial portion of the structurally chiral medium
is occupied by sources, and the Bragg regime is then identifiable
also in the spectrums of radiation from the cross-chiral source
configurations.

From both figures, it is clear that the radiation spectrum is far
more localized for the co-chiral than for the cross-chiral source
configurations. The peak radiation efficiencies are higher for the
co-chiral than for the cross-chiral source configurations. The po-
larization state of the radiation is virtually circular, and its hand-
edness is identical to the structural handedness of the responsible
canonical source configuration. These findings had previously held
for J�0

co,cr only, but now they hold for Jn0
co,cr and Jb0

co,cr as well.
In Figures 1 and 2, the radiation is localized on the long-

wavelength edge of the Bragg regime for Jn0
co and J�0

co, but on the
short-wavelength edge for Jb0

co . With the assumption that disper-
sion and dissipation in the chosen wavelength regime are small
enough, the edges of the Bragg regime are proportional to ���c�
and ���̃d� [19]. For the value of 
 chosen for Figures 1 and 2, ��̃d�
� ��c�. As 
 increases, �c and �̃d come closer in magnitude.
Simultaneously, the Bragg regime blue-shifts; and it also narrows
to a minimum, and could even vanish (at the so-called pseudo-
isotropic point, whose existence depends on the constitutive pa-
rameter values [9, 20]). The peak of the radiation efficiency
spectrum, for any of the three co-chiral source configurations,
moves towards the middle of the Bragg regime. A further increase
in 
 makes ��c� exceed ��̃d�, widening as well as blue-shifting the
Bragg regime. At sufficiently high values of 
, the radiation is
localized on the short-wavelength edge of the Bragg regime for Jn0

co

and J�0
co, but on the long-wavelength edge for Jb0

co . This is depicted
in Figure 3, the graphs for which were calculated at 
 � 75°.

Mixed source configurations are likely to be present in many
situations. Furthermore, the emission bandwidth of the source
could cover only a part, or all, or none of the Bragg regime.
Therefore, radiation spectrums are going to be more complicated

Figure 1 Radiation efficiencies versus wavelength due to canonical
source configurations of different types identified in Eq. (12). The struc-
turally chiral medium is characterized by Eq. (18) with pa � 1.6, pb �
2.0, pc � 1.7, 
 � 30�, 
 � 150 nm, L � 60
, and h � 1. The Bragg
regime is delineated by �0 � [513.4, 531.8] nm. The source current
densities are confined to the region z � [20
, 22
]

Figure 2 Same as in Fig. 1, except that the source current densities are
confined to the region z � [10
, 40
]
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than the ones shown in Figures 1–3. For instance, Chen et al. [5]
reported a change in the sign of what amounts to the difference
BL � BR for a dye-doped chiral nematic liquid crystal film—as
the wavelength changed from one side of the Bragg regime to the
other side. Based on the theoretical results reported here, we can
conclude that the luminophores (the dye molecules) in the film
must have been arranged in both co- and cross-chiral configura-
tions, and that the emission bandwidth of these luminophores
completely covered the Bragg regime.

To conclude, we have considered all six canonical configura-
tions for the source-current density that could cause a structurally
chiral medium to fluoresce, lase, or otherwise emit radiation. The
radiation spectrum is highly dependent on whether its source is
co-chiral or cross-chiral, and is localized either in or on the edges
of the Bragg regime. The obtained conclusions hold for both chiral
liquid-crystal elastomers and chiral sculptured thin films impreg-
nated with fluorescent dyes, etc.
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Figure 3 Same as in Fig. 1, except that 
 � 75°. The Bragg regime is
delineated by �0 � [506.8, 514.5] nm
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Abstract

The theory of second-harmonic-generated radiation (SHGR) from a chiral sculptured thin film (STF) for bio-sensing

is presented. Linear emission (LE) is supposedly due to luminescence-producing bio-reactions occurring in the void

regions of the chiral STF platform. The associated linear electromagnetic fields generate a nonlinear source polarization

field in the material that the platform is made of, provided the material has significant nonlinear properties in an

appropriate wavelength-regime. Information contained in the polarization state of SHGR could either supplement

information gleaned from LE or be useful just by itself.

� 2002 Elsevier Science B.V. All rights reserved.

PACS: 77.55.+f; 78.20.)e; 78.20.Bh; 78.60.Ps

Keywords: Bio-sensors; Luminescence; Sculptured thin films; Second-harmonic-generated radiation

1. Introduction

A typical nanoscale bio-sensor employs a porous platform infiltrated by a bio-selective species. When a

sample containing the species to be sensed (along with some reaction-enabling chemicals, if necessary) is
brought in contact with the platform, a reaction occurs. The reaction products disturb some physical

property, the degree of disturbance yielding an indication of the concentration of the species to be sensed

[1–3].

Porous silicon has emerged as a desirable platform for optical sensing of biological substances [4]. This is

in part because of the bio-compatibility [5], and in part due to the room-temperature visible luminescence

[6], of porous silicon. However, porous silicon has an isotropic three-dimensional texture – so that the

emitted light is not highly polarized, and a potentially important channel of information thus goes
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unutilized. Furthermore, the relatively broadband luminescence of porous silcon has to be narrowed by

confinement between two distributed Bragg reflectors [4].

Research on the optical response characteristics of chiral sculptured thin films (STFs) has shown that

both desirable features – a high degree of polarization and a narrow bandwidth – can be realized by

texturing the void regions of a porous platform. Chiral STFs are unidirectionally nonhomogeneous, an-

isotropic, porous materials that are nano-engineered using physical vapor deposition [7–9]. These materials
display the so-called circular Bragg phenomenon because their helicoidal microstructure is both periodic

and handed [10,11]. Basically, a structurally right-handed (resp. left-handed) chiral STF only a few periods

thick almost completely reflects axially incident, right (resp. left) circularly polarized light with wavelength

lying in the so-called Bragg regime; while the reflection of left (resp. right) circularly polarized light in the

same wavelength-regime is very little. Borrowing from the language of crystallography, we can say that a

chiral STF has a band gap [12, p. 297] for normally incident circularly polarized plane waves of one kind,

but not for those of the orthogonal kind. This phenomenon has been experimentally verified and exploited

in the design of several types of optical filters [13].
Analyte DNA single-strand fragments, if present in a sample along with an appropriate rare-earth

complex, will hybridize with probe DNA fragments containing complementary gene sequences – thereby

generating luminescence [14–16]. For genomic analysis, probe DNA fragments must be introduced in the

void regions of a chiral STF. The post-reaction, double-strand DNA fragments can either stick to or en-

twine about the helicoidal microcolumns of the film, leading to the postulation of canonical source com-

prising exclusively either co-wound or contra-wound filamentary sources of photons, respectively [17].

Initial theoretical investigations have shown that the circular Bragg phenomenon must then be evident in

the emission spectrums [17,18]. Thus, in contrast with porous silicon bio-sensors, luminescence would not
ensue from the platform but from the bio-reactions taking place in the void regions. Indirect verification is

provided by the spectral characteristics of lasing in dye-doped cholesteric liquid crystals [19,20], which are

topologically related to chiral STFs.

Although a STF platform is itself not luminescent in the foregoing scenario, it can still radiate light due

to any significant nonlinear optical properties it may possess. Electromagnetic fields created by the photon

source filaments (present in the void regions) with free-space wavelength k0 could trigger harmonic gen-
eration in the STF microcolumns 1 at wavelength k0=q, q ¼ 2; 3; . . . The spectrums of both the linear and the
harmonic radiations – emanating, respectively, directly and indirectly from the reaction of the rare-earth
complex with the probe and the analyte DNA fragments within a STF platform – could be examined to

determine the presence of the gene sequence in question and ascertain its concentration. This would reduce

errors due to mis-hybridization that occurs in spite of the expected sequence specificity [21].

With this motivation, we present here the theory of second-harmonic-generated radiation (SHGR) –

corresponding to q ¼ 2 – from chiral STFs for bio-sensing in the modality described in the two previous

paragraphs. Section 2 provides an appropriately detailed treatment of the theory as well as of the associated

algorithm for its numerical implementation. Briefly, the frequency-domain Maxwell curl postulates are

solved for both LE and SHGR. LE is directly due to canonical source current densities present in the void
regions of a chiral STF, while SHGR is due to a nonlinear source polarization phasor [22] induced by the

linear fields inside the chiral STF. Linear permittivity and nonlinear susceptibility functions are assumed for

the locally homogenized material�s anisotropic properties [23,24]. Illustrative data on the intensity and
polarization states of LE and SHGR, as well as conclusions drawn therefrom, are presented in Section 3.

A note about notation. Vectors are underlined and dyadics are double-underlined. Column vectors as well

as matrixes are additionally enclosed in square brackets. The position vector is denoted by

1 Whereas the sources of linear emission (LE) lie in the void regions, the skeleton of the STF is envisaged here as the site of harmonic

generation. Of course, harmonic generation could also occur in the void regions, under favorable conditions.
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r ¼ xux þ yuy þ zuz with ux, uy and uz as the Cartesian unit vectors; and the z axis is parallel to the thickness
direction. An expð�ixtÞ time dependence is implicit, with x as the angular frequency and t is the time.

2. Theory

2.1. Preliminaries

Both LE and SHGR from a chiral STF can be handled with the same basic framework [10]; and so the

common features are briefly recounted in this subsection.

Let a chiral STF occupy the region 06 z6 L while the half-spaces z < 0 and z > L are vacuous. The
radiation source is assumed to be a function of z but not of x and y, i.e., the photon source filaments are
uniformly distributed in the transverse plane.

Frequency-domain electromagnetic fields inside the chiral STF must satisfy the Maxwell curl postulates

r� Eðr;xÞ ¼ ixl0Hðr;xÞ;
r� Hðr;xÞ ¼ �ix�ðr;xÞ � Eðr;xÞ þ J soðr;xÞ; 0 < z < L; ð1Þ

where l0 ¼ 4p � 10�7 H m�1 is the permeability of free space (i.e., vacuum) and J soðr;xÞ is the source
current density phasor. The nonhomogeneous, frequency-dependent permittivity dyadic [25] of the chosen

chiral STF is expressed as follows [10]:

�ðr;xÞ ¼ �0Sz
ðzÞ � S

y
ðvÞ � �aðxÞuzuz

�
þ �bðxÞuxux þ �cðxÞuyuy

�
� ST

y
ðvÞ � ST

z
ðzÞ: ð2Þ

In this equation, �0 ¼ 8:854� 10�12 F m�1 is the free-space permittivity; �a;b;cðxÞ are relative permittivity
scalars which are dependent on the linear properties of the material that the film is made of as well as of the
matter filling the void regions [23]; the tilt dyadic

S
y
ðvÞ ¼ uyuy þ ðuxux þ uzuzÞ cos v þ ðuzux � uxuzÞ sin v ð3Þ

represents the locally columnar microstructure of any chiral STF with v > 0�; the rotation dyadic

S
z
ðzÞ ¼ uzuz þ uxux

�
þ uyuy

�
cos

pz
X

� �
þ uyux

�
� uxuy

�
sin

pz
X

� �
ð4Þ

contains 2X as the structural period; while the superscript T stands for the transpose. The chosen STF is

structurally right-handed.

As the lateral extent of the chiral STF is assumed infinite and the source distribution is supposedly

independent of both x and y, the electromagnetic field phasors Eðr;xÞ 	 Eðz;xÞ and Hðr;xÞ 	
Hðz;xÞ 8z 2 ð�1;1Þ. As a result of photon production inside the chiral STF, radiation is emitted into the
upper and the lower half-spaces. The electric field phasor of the radiation is stated as

Eðz;xÞ ¼
bLðxÞu� þ bRðxÞuþ
� �

exp � ik0zð Þ; z6 0;

cLðxÞuþ þ cRðxÞu�
� �

exp ik0ðz� LÞ½ �; zP L;

(
ð5Þ

where u� ¼ ðux � iuyÞ=
ffiffiffi
2

p
and k0 ¼ x

ffiffiffiffiffiffiffiffiffi
�0l0

p ¼ 2p=k0 is the free-space wavenumber. The magnetic field
phasor of the radiation may be computed by applying the relation Hðz;xÞ ¼ r � Eðz;xÞ=ðixl0Þ to the
foregoing expression. Whereas bLðxÞ and cLðxÞ are the amplitudes of the left-circularly polarized (LCP)
components, bRðxÞ and cRðxÞ are the amplitudes of the right-circularly polarized (RCP) components, of
the radiated plane waves.

For a specified photon source distribution J soðz;xÞ, 06 z6 L, the coefficients bLðxÞ, bRðxÞ, cLðxÞ and
cRðxÞ can be computed by solving four simultaneous algebraic equations stated in matrix notation as
follows [17]:
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1ffiffiffi
2

p
cLðxÞ þ cRðxÞ
i cLðxÞ � cRðxÞ½ �

�i cLðxÞ � cRðxÞ½ �=g0
cLðxÞ þ cRðxÞ½ �=g0

2
664

3
775 ¼ ½BðLÞ�ei½P

0ðxÞ�L 1ffiffiffi
2

p
bLðxÞ þ bRðxÞ

�i bLðxÞ � bRðxÞ½ �
�i bLðxÞ � bRðxÞ½ �=g0
� bLðxÞ þ bRðxÞ½ �=g0

2
664

3
775

8>><
>>:

þ
Z L

0

e
�i½P 0ðxÞ�zs ½c0ðzs;xÞ�dzs

9>>=
>>;: ð6Þ

Here and hereafter, g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
is the intrinsic impedance of free space; the 4�4 matrix

½BðzÞ� ¼

cosðpzXÞ � sinðpzXÞ 0 0

sinðpzXÞ cosðpzXÞ 0 0

0 0 cosðpzXÞ � sinðpzXÞ
0 0 sinðpzXÞ cosðpzXÞ

2
6664

3
7775 ð7Þ

denotes a rotation about the z-axis; the 4� 4 kernel matrix

½P 0ðxÞ� ¼

0 �ip=X 0 xl0
ip=X 0 �xl0 0

0 �x�0�cðxÞ 0 �ip=X
x�0~��dðxÞ 0 ip=X 0

2
664

3
775 ð8Þ

employs the function

~��dðxÞ ¼ �aðxÞ�bðxÞ
�aðxÞ cos2 v þ �bðxÞ sin2 v

; ð9Þ

while the source column vector

½c0ðz;xÞ� ¼

0

0

J soy ðz;xÞ cosðpzXÞ � J sox ðz;xÞ sinðpzXÞ
n o
� J sox ðz;xÞ cosðpzXÞ � J soy ðz;xÞ sinðpzXÞþ

n
J soz ðz;xÞ ~��d ðxÞ

�aðxÞ�bðxÞ �bðxÞ � �aðxÞ½ � sin v cos v
o

2
66666664

3
77777775
: ð10Þ

2.2. Tangential source filaments

The morphology of chiral STFs being helicoidal – to which one expects the photon source filaments

would conform – a helicoidal representation for the source current density phasor is appropriate [17]. In

this paper, we assume that the photon source filaments are aligned tangentially with respect to the film�s
columnar morphology, fill the entire thin film uniformly, and produce photons at an angular frequency x1.

If these filaments are co-wound, we set

J socoðz;x1Þ ¼ Js0Sz
ðzÞ � ux cos vð þ uz sin vÞ; 06 z6 L; ð11Þ

with Js0 representing the photon production strength; alternatively,

J socontraðz;x1Þ ¼ Js0S
T

z
ðzÞ � ux cos vð þ uz sin vÞ; 06 z6L; ð12Þ

for contra-wound filaments. Combinations of these two canonical configurations can also be handled by

the described procedures. The duration of photon production and emission is assumed to be far in excess of

2p=x1, which permits the use of frequency-domain analysis for LE as well as SHGR.
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2.2.1. Linear emission

We set x ¼ x1 in (6) for LE; and either

½c0ðz;x1Þ�co ¼ Js0 cos v

0

0
0

� ~��d ðx1Þ
�bðx1Þ

2
664

3
775 ð13Þ

in conformity with (11) for co-wound source filaments, or

½c0ðz;x1Þ�contra ¼ Js0 cos v

0

0

� sin 2pz
X

� �
�bðx1Þ � �aðx1Þ½ � ~��d ðx1Þ

�aðx1Þ�bðx1Þ
sin2 v � cos 2pz

X

� �

2
6664

3
7775 ð14Þ

for contra-wound source filaments in accordance with (12). Thus, the four coefficients bL;Rðx1Þ and cL;Rðx1Þ
can be computed by solving (6), following which step the LE efficiencies

BL;Rðx1Þ ¼
1

2g0

bL;Rðx1Þ
Js0

����
����
2

; CL;Rðx1Þ ¼
1

2g0

cL;Rðx1Þ
Js0

����
����
2

ð15Þ

can be obtained as functions of x1.

Although the integration on the right side of (6) can be implemented analytically for LE [17], we chose a

numerical technique for eventual ease in handling SHGR. For this purpose, we first set up the column

vector

½f ðzÞ� ¼ Exðz;x1Þ; Eyðz;x1Þ; Hxðz;x1Þ; Hyðz;x1Þ
� �T

: ð16Þ

It satisfies the equation [17]

½f ðzÞ� ¼ ½Bðz; hÞ�ei½P
0ðx1Þ�z ½f ð0Þ�

�
þ

Z z

0

e
�i½P 0ðx1Þ�zs ½c0ðzs;x1Þ�dzs

�
; 06 z6 L; ð17Þ

and possesses the boundary values

½f ð0Þ� ¼ 1ffiffiffi
2

p
bLðx1Þ þ bRðx1Þ

�i bLðx1Þ � bRðx1Þ½ �
�i bLðx1Þ � bRðx1Þ½ �=g0
� bLðx1Þ þ bRðx1Þ½ �=g0

2
664

3
775; ½f ðLÞ� ¼ 1ffiffiffi

2
p

cLðx1Þ þ cRðx1Þ
i cLðx1Þ � cRðx1Þ½ �

�i cLðx1Þ � cRðx1Þ½ �=g0
cLðx1Þ þ cRðx1Þ½ �=g0

2
664

3
775: ð18Þ

Then, we divided the span 06 z6L into N equal segments of thickness Dz ¼ L=N each, and defined

½K‘� ¼
Dz
2

e
�i½P 0ðx1Þ�z‘�1 ½c0ðz‘�1;x1Þ�

n
þ e�i½P

0ðx1Þ�z‘ ½c0ðz‘;x1Þ�
o
; ‘ 2 ½1;N �: ð19Þ

Accordingly, (17) was approximated as

½f ðnDzÞ� � ½BðnDzÞ�ei½P
0ðx1Þ�nDz ½f ð0Þ�

(
þ

Xn

‘¼1
½K‘�

)
; n 2 ½1;N �: ð20Þ

Setting n ¼ N in (20) and making use of the boundary values (18) therein, we computed the coefficients

bL;Rðx1Þ and cL;Rðx1Þ. Then, bL;Rðx1Þ were used in (20) to compute ½f ðnDzÞ� 8n 2 ½1;N � 1�.
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2.2.2. Second-harmonic-generated radiation

The direct sources of SHGR are not the photon source filaments, but the nonlinear dielectric properties

of the chiral STF. The field phasor Eðz;x1Þ gives rise to a nonlinear source polarization phasor PNLSðz;x2Þ,
06 z6 L, where [26,27]

x2 ¼ 2x1: ð21Þ
Hence,

J soðz;x2Þ ¼ �ix2PNLSðz;x2Þ; 06 z6 L: ð22Þ

The nonlinear source polarization phasor is best expressed in matrix notation as [26]

PNLSx ðz;x2Þ
PNLSy ðz;x2Þ
PNLSz ðz;x2Þ

2
64

3
75 ¼ 2

cosðpzXÞ � sinðpzXÞ 0

sinðpzXÞ cosðpzXÞ 0

0 0 1

2
4

3
5 cos v 0 � sin v

0 1 0

sin v 0 cos v

2
4

3
5

�
d33ðx1Þ d32ðx1Þ d31ðx1Þ d36ðx1Þ d35ðx1Þ d34ðx1Þ
d23ðx1Þ d22ðx1Þ d21ðx1Þ d26ðx1Þ d25ðx1Þ d24ðx1Þ
d13ðx1Þ d12ðx1Þ d11ðx1Þ d16ðx1Þ d15ðx1Þ d14ðx1Þ

2
4

3
5

�

cos2 v 0 sin2 v 0 � sin 2v 0

0 1 0 0 0 0

sin2 v 0 cos2 v 0 sin 2v 0

0 0 0 cos v 0 sin v
1
2
sin 2v 0 � 1

2
sin 2v 0 cos 2v 0

0 0 0 � sin v 0 cos v

2
666666664

3
777777775

T

�

cos2 ðpzXÞ sin2 ðpzXÞ 0 0 0 � sin 2pzX

sin2 ðpzXÞ cos2 ðpzXÞ 0 0 0 sin 2pzX

0 0 1 0 0 0

0 0 0 cosðpzXÞ sinðpzXÞ 0

0 0 0 � sinðpzXÞ cosðpzXÞ 0
1
2
sin 2pzX � 1

2
sin 2pzX 0 0 0 cos 2pzX

2
666666664

3
777777775

T
E2xðz;x1Þ
E2y ðz;x1Þ
E2z ðz;x1Þ

2Eyðz;x1ÞEzðz;x1Þ
2Exðz;x1ÞEzðz;x1Þ
2Exðz;x1ÞEyðz;x1Þ

2
666666664

3
777777775
;

ð23Þ
where

Ezðz;x1Þ ¼
�bðx1Þ � �aðx1Þ
�aðx1Þ�bðx1Þ

~��dðx1Þ cos v sin v Exðz;x1Þ cos
pz
X

� �h
þ Eyðz;x1Þ sin

pz
X

� �i
: ð24Þ

The subscripts on the nonlinear susceptibilities d33ðx1Þ, etc., were chosen for ready interpretation in the
notation of Fig. 1.5.2. of Boyd�s famous book on nonlinear optical materials [27]. The delineation of the
nonlinear susceptibilities of the chiral STF must take into account the linear and the nonlinear properties as

well as the volume fractions of all the materials in the STF platform [24].

Consistently with (20) then, (6) may be specialized for SHGR as

1ffiffiffi
2

p
cLðx2Þ þ cRðx2Þ
i cLðx2Þ � cRðx2Þ½ �

�i cLðx2Þ � cRðx2Þ½ �=g0
cLðx2Þ þ cRðx2Þ½ �=g0

2
664

3
775 � ½BðLÞ�ei½P

0ðx2Þ�L 1ffiffiffi
2

p
bLðx2Þ þ bRðx2Þ

�i bLðx2Þ � bRðx2Þ½ �
�i bLðx2Þ � bRðx2Þ½ �=g0
� bLðx2Þ þ bRðx2Þ½ �=g0

2
664

3
775

8>><
>>: þ

Xn

‘¼1
½C‘�

9>>=
>>;; ð25Þ
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where

½C‘� ¼
Dz
2

e
�i½P 0ðx2Þ�z‘�1 ½c0ðz‘�1;x2Þ�

n
þ e�i½P

0ðx2Þ�z‘ ½c0ðz‘;x2Þ�
o
; ‘ 2 ½1;N � ð26Þ

and

½c0ðz;x2Þ� ¼ �ix2

0

0

PNLSy ðz;x2Þ cosðpzXÞ � PNLSx ðz;x2Þ sinðpzXÞ
� PNLSx ðz;x2Þ cosðpzXÞ � PNLSy ðz;x2Þ sinðpzXÞ

n
þPNLSz ðz;x2Þ ~��d ðx2Þ

�aðx2Þ�bðx2Þ
�bðx2Þ � �aðx2Þ½ � sin v cos vg

2
6666664

3
7777775
: ð27Þ

Clearly, the calculation of ½C‘� requires knowledge of ½f ð‘Dz� DzÞ� and ½f ð‘DzÞ� that were computed for LE.
After determining the coefficients bL;Rðx2Þ and cL;Rðx2Þ from (25), the SHGR efficiencies

BL;Rðx2Þ ¼
1

2g0

bL;Rðx2Þ
Js0

����
����
2

; CL;Rðx2Þ ¼
1

2g0

cL;Rðx2Þ
Js0

����
����
2

ð28Þ

were found.

3. Numerical results and discussion

The relative permittivity scalars �a;b;c were modelled as single-resonance Lorentzian functions of the free-
space wavelength k0 ¼ 2p=ðx

ffiffiffiffiffiffiffiffiffi
l0�0

p Þ as [12, p. 472]

�a;b;cðk0Þ ¼ 1þ pa;b;c 1
!

þ N�1
a;b;c

�
� ika;b;ck

�1
0

�2"�1

; ð29Þ

where the oscillator strengths are denoted by pa;b;c, while the parameters ka;b;c andNa;b;c assist in the delineation

of resonances and absorption bands, respectively. The values pa ¼ 1:6, pb ¼ 2:0, pc ¼ 1:7, ka;b;c ¼ 180 nm and
Na;b;c ¼ 100 were selected so that the resonance wavelengths of �a;b;c lie in the ultraviolet regime [12], while
dissipation is weak in the k0 2 ½200; 800� nm regime. More complex wavelength-dependencies can be easily
handled aswell by our numerical technique. The chosen values of the tilt angle v ¼ 30� andX ¼ 150 nm ensure
that the Bragg regime is delineated by k0 2 ½513:4; 531:8� nm. The thickness ratio L=X ¼ 60 was selected so
that the circular Bragg phenomenon is fully developed [10]. All calculations were carried out with Dz ¼ 5 nm,
after ascertaining that smaller values of Dz did not change the radiation efficiencies by more than 1%.
Chiral STFs are locally orthorhombic, which issue is incorporated in (2) for the linear properties. Insofar

as second harmonic generation is concerned, two orthorhombic sub-classes are possible [28], of which the

so-called 222 class has the simpler symmetry [29]. The 222 class was therefore chosen to provide illustrative

data. Accordingly, dmn ¼ 0 for all m and n in (23), except that d14, d25 and d36 are non-zero. As the
wavelength k01 ¼ 2p=ðx1

ffiffiffiffiffiffiffiffiffi
l0�0

p Þ is considerably larger than the resonance wavelengths of the material, we
took the Kleinman symmetry condition [27] to hold.

The radiation efficiency BLðxnÞ is the same as CLðxnÞ, n ¼ 1; 2; likewise, BRðxnÞ ¼ CRðxnÞ, n ¼ 1; 2. This
is because the chiral STF is assumed to be uniformly filled by the source filaments. Hence, spectrums of

only CL;RðxnÞ are shown here.

3.1. Linear emission

We begin with the LE spectrums shown in Figs. 1 and 2 for the co-wound and the contra-wound source

configurations, respectively. A comparison with the LE spectrums presented in the predecessor paper [17]

E.E. Steltz, A. Lakhtakia / Optics Communications 216 (2003) 139–150 145



shows that the calculations with our numerical integration technique are virtually identical to those ob-

tained with the analytical technique for both source configurations, assuming that the source filaments

completely impregnate the chiral STF. Luminescence is clearly localized with respect to k0, either in or in
the immediate neighborhood of the Bragg regime.

The polarization state of a plane wave comprises the shape of its vibration ellipse and its handedness.

From Figs. 1 and 2, it is evident that the vibration ellipse of the radiation is virtually circular, with its
handedness identical to the handedness of the source configuration. Thus, both desirable objectives – a high

degree of polarization and a narrow bandwidth – are evident in the LE spectrums.

3.2. Second-harmonic-generated radiation

As mentioned earlier, for the calculation of the SHGR spectrums, we assumed Kleinman symmetry to

hold: d14 ¼ d25 ¼ d36 ¼ d. These spectrums are presented in Figs. 3 and 4 for the co-wound and the contra-
wound photon source filaments, respectively. As in Figs. 1 and 2, SHGR is highly localized with respect to

Fig. 1. Computed spectrums of the LE efficiences CL;Rðx1Þ for co-wound source filaments. See Section 3 for the various constitutive
and geometric parameters used.

Fig. 2. Same as Fig. 1, except that the photon source filaments are contra-wound.

Fig. 3. Computed spectrums of the SHGR efficiencies CL;Rðx2Þ when d36 ¼ d25 ¼ d14 ¼ d CV �2, for co-wound source filaments. See

Section 3 for the other constitutive and geometric parameters used.
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k0. Indeed, the SHGR bandwidth is roughly half of the LE bandwidth. In contrast to Figs. 1 and 2 however,
the handedness of SHGR is opposite the handedness of the source filaments.

The vibration ellipse of SHGR is neither circular (as in Fig. 1) nor linear, but somewhere in between

those two extremes, for co-wound source filaments. On the other hand, according to Fig. 4, the vibration

ellipse is virtually circular for the contra-wound source configuration, similarly to Fig. 2. These results

underscore the importance of the polarization state of SHGR as an additional source of bio-sensory in-
formation.

We also decided to examine the individual roles of the nonlinear susceptibilities d36, d25 and d14 – by
setting two of these to zero while keeping the third equal to d. The resulting SHGR spectrums are presented
in Figs. 5–10.

All six of these figures exhibit localization of SHGR in the same manner as their counterparts (Figs. 1

and 2) for LE. This implies that the localization of SHGR is entirely due to the Bragg phenomenon dis-

played also by LE: If LE intensity is strong, as it will be at a wavelength either in or in the immediate

vicinity of the Bragg regime, strong electromagnetic fields must be generated inside the chiral STF. Hence,

Fig. 4. Same as Fig. 3, except that the photon source filaments are contra-wound.

Fig. 6. Same as Fig. 5, except that the photon source filaments are contra-wound.

Fig. 5. Computed spectrums of the SHGR efficiencies CL;Rðx2Þ when d36 ¼ d CV �2, d25 ¼ 0, and d14 ¼ 0 for co-wound source fila-
ments. See Section 3 for the various constitutive and geometric parameters used.
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the nonlinear source polarization phasor at half the particular wavelength would also be of high magnitude,
giving rise to strong SHGR. The LE and the SHGR spectrums can therefore be generally expected to be

similar in form.

Fig. 7. Same as Fig. 5, except for d14 ¼ 0, d25 ¼ d CV �2, and d36 ¼ 0.

Fig. 8. Same as Fig. 7, except that the photon source filaments are contra-wound.

Fig. 9. Same as Fig. 5, except for d36 ¼ 0, d25 ¼ 0, and d14 ¼ d CV �2.

Fig. 10. Same as Fig. 9, except that the photon source filaments are contra-wound.
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The polarization states of SHGR due to d36, d25 and d14 individually are all different. They are also
different from the ones depicted in Figs. 3 and 4. When the Kleinman symmetry condition holds, fields due

to all three nonlinear susceptibilities must interact to produce the spectrums of Figs. 3 and 4. Collectively,

the presented spectrums suggest that the nonlinear properties of chiral STFs could be engineered – possibly

by evaporating two or more materials simultaneously during physical vapor deposition [7,8] – to take full

advantage of the additional bio-sensory information offered by the SHGR characteristics.
The presented numerical results as well as the results of other calculations indicate the significance of the

relationship between the SHGR intensity, the linear fields in the chiral STF, and the void fraction. The

sources of the linear fields are the filaments occupying the void regions of the film. Clearly, the higher

the void fraction, the more photon sources could be formed, and the greater could be the linear field

magnitudes (subject to the constraints imposed by the morphology of the film). But second harmonic

generation would occur only in the material(s) that the film is made of; and very high void fractions would

therefore reduce the SHGR intensity. A compromise between these two trends appears necessary, to be

fixed both by experimentation on chiral STFs with different void fractions as well as by careful selection of
material(s) to make chiral STFs with.

A related issue is the efficiency of second harmonic generation within a chiral STF platform. Since

nonlinear susceptibilities are generally quite small in magnitude, it has been known for long that the phases

of linear and second harmonic fields must be carefully managed for efficient harmonic generation [30]. The

so-called phase-matching conditions are commonly exploited when the medium of second harmonic gen-

eration is homogeneous and in the form of a slab [27]. For nonhomogeneous (and anisotropic) materials,

these conditions are not known yet and their discovery constitutes an area of future research. Even in the

absence of theoretical guidance, however, optimization of second harmonic emission strengths can be
experimentally pursued, perhaps using wedges in lieu of planar slabs.

4. Concluding remarks

Recent trends in bio-sensors [2,21,31] strongly indicate the desirability of the development of new mo-

dalities for bio-sensing. In this work, we offer second harmonic emission generated indirectly (in the

skeleton) by luminescence-producing bio-reactions (occurring in the void regions) of chiral STFs as a new
multi-wavelength modality. Information contained in the polarization state of SHGR could supplement

information gleaned from LE (directly attributable to bio-reactions); alternatively, the former could be

useful just by itself. In either case, experimental investigations are warranted – particularly, with respect to

emitted intensities and sensitivity to reactant amounts and concentrations.
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ABSTRACT: The boundary conditions on the exposed face of a dielectric
mirror are shown to be effectively the same as those for perfect electric
conductors, whereas the boundary conditions on the exposed face of a
chiral mirror are very different from those for either perfect electric con-
ductors or perfect magnetic conductors. Cavities between two chiral mir-
rors have a relatively uniform field distribution, which is significant for
spectral-hole filters and coherent light generation. © 2005 Wiley Periodi-
cals, Inc. Microwave Opt Technol Lett 47: 63–64, 2005; Published online
in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
21082

Key words: boundary conditions; chiral mirror; cholesteric liquid crys-
tal; dielectric mirror; sculptured thin film

1. INTRODUCTION AND ANALYSIS

Metals in bulk are virtually perfect electric conductors over a large
frequency range, and therefore are often employed as mirrors. In
some instances, however, as the absorption due to their conduc-
tivity can be undesirable, metallic mirrors are replaced by dielec-
tric mirrors. These are stacks of alternating quarter-wave layers of
two homogeneous materials of high and low refractive indexes [1,
2]. In a certain frequency band, the periodicity of a dielectric
mirror leads to the display of the Bragg phenomenon, which is
characterized by very high reflectances and very small absorption.

Another type of nonmetallic mirror is furnished by cholesteric
liquid crystals (CLCs) [5]. A CLC is a uniaxial dielectric material
whose optical axis uniformly rotates about a fixed axis, which is
usually normal to two parallel planes. When a circularly polarized
plane wave is normally incident on one of those planes, it is highly
reflected provided (i) the structural handedness or chirality of the
CLC matches the handedness of the incident plane wave, (ii) the

CLC is sufficiently thick, and (iii) the frequency lies in a certain
band. If the chirality of the CLC is opposed to the handedness of
the incident plane wave, there is very little reflectance. A similar
functionality is demonstrated by chiral sculptured thin films [6].
Such mirrors are called chiral mirrors.

The interposition of a layer of some dielectric medium between
two dielectric mirrors creates a planar cavity, which functions as a
spectral reflection-hole filter. Such filters are widely used in optics
and optoelectronics [3, 4]. A similar interposition of an isotropic
dielectric layer between two chiral mirrors also creates a planar
cavity, as suggested by Adams et al. [7] in 1971 and realized
subsequently by several research groups [6, 8]. This communica-
tion was engendered by our investigation into the possible inter-
changeability of dielectric and chiral mirrors when designing pla-
nar cavities for circularly polarized light.

For definiteness, let the incident plane wave be right circularly
polarized (RCP). The plane wave reflected by a mirror can have
RCP and left circularly polarized (LCP) components, in general.
Let RLR denote the reflectance of a RCP plane wave as a LCP
plane wave, while RRR denotes the reflectance of a RCP plane
wave as a RCP plane wave. The spectra of these two reflectances
suffice for a comparative study of dielectric mirrors and chiral
mirrors.

Figure 1 shows the computed RLR spectrum of a dielectric
mirror designed to function best at a free-space wavelength of 600
nm, whereas RRR � 0. Were the incident plane wave to be LCP,
then RRL would be equal to RLR, and RLL would be null valued. In
other words, a dielectric mirror reverses the circular polarization
state on reflection.

Figure 2 shows the computed RLR and RRR spectra of a struc-
turally right-handed chiral mirror designed to function best also at
a free-space wavelength of 600 nm. Note that RRR is very high,
whereas RLR is very low and can be decreased even further by the
use of impedance-matching layers [9]. Thus, the circular polariza-
tion state is not reversed on reflection by a chiral mirror.1

Let us analyze the handedness of the reflected plane wave in
relation to that of the incident plane wave. Suppose that the plane
z � 0 is the exposed face of a mirror, whereas both incidence and
reflection take place in the half-space z � 0. Then, the total
electric field phasor in this half-space can be stated in general as

1 Were the incident plane wave to be LCP, RLL would be small whereas
RRL � RLR; thus, the device would not serve as a mirror.

Figure 1 Computed reflectance RLR of a dielectric mirror as a function of
the free-space wavelength. The chosen dielectric mirror is made of alternating
quarter-wave layers of two materials. The refractive indexes and layer thick-
nesses are 2.0 and 75 nm for the first material, 1.8 and 83.33 nm for the second
material. The mirror comprises 21 layers of the first material and 20 layers of
the second material. The design wavelength is 600 nm so that the design
frequency is 500 THz. For this mirror, RRR � 0

Figure 2 Computed reflectances RLR (solid line) and RRR (dotted line) of
a chiral mirror as functions of the free-space wavelength. The chosen chiral
mirror is made of a structurally right-handed CLC with ordinary refractive
index of 1.65, extraordinary refractive index of 1.72, and structural period
of 356.1 nm. The mirror is 20-structural-periods thick, the design wave-
length is 600 nm, and the design frequency is 500 THz
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Etot�z� �
x̂ � iŷ

�2
exp�ik0z� � rL

x̂ � iŷ

�2
exp��ik0z�

� rR

x̂ � iŷ

�2
exp��ik0z�, z � 0, (1)

and the corresponding total magnetic field phasor as

Htot�z� �
i

�0

x̂ � iŷ

�2
exp�ik0z� � rL

i

�0

x̂ � iŷ

�2
exp��ik0z�

� rR

i

�0

x̂ � iŷ

�2
exp��ik0z�, z � 0, (2)

where k0 is the free-space wavenumber and �0 is the intrinsic
impedance of free space; x̂ and ŷ are Cartesian unit vectors; and
RLR � �rL�2 and RRR � �rR�2.

For the dielectric mirror, it follows from Figure 1 that �rL� � 1
and rR � 0; that is, either the tangential electric field phasor or the
tangential magnetic field phasor on the face z � 0 is vanishingly
small. Figure 3 shows spectra of �E(0)� and �0�H(0)�. At the design
frequency, the tangential electric field phasor is null valued,
whereas the tangential magnetic field phasor is double that of the
incident plane wave. Clearly then, a dielectric mirror is similar to
a perfect electric conductor at the design frequency, and reverses
the circular polarization state of the reflected plane wave in rela-
tion to that of the incident plane wave.

Figure 4 shows the spectra of �E(0)� and �0�H(0)� for a chiral
mirror in the reflection band centered at the design frequency.
Neither the tangential electric-field phasor nor the tangential mag-
netic-field phasor on the exposed face are of vanishingly small
magnitudes; thus, a chiral mirror is similar neither to a perfect
electric conductor nor a perfect magnetic conductor at the design
frequency.

2. CONCLUSIONS

We conclude from the foregoing analysis that it is impossible to
replace a chiral mirror by a dielectric mirror in resonant cavities
for employment as reflection-hole filters and for coherent light
generation. Furthermore, the field distribution in a cavity between
two chiral mirrors is very different from that in a cavity between
two dielectric mirrors. In fact, whereas the field between two
dielectric mirrors is of the standing-wave type with uniform dis-
tribution of nodes and anti-nodes, this distribution is impossible
between two chiral mirrors. In the latter cavity, the field is circu-
larly polarized but not of the standing-wave type—which may

have certain unique applications because the electric field between
two chiral mirrors is relatively uniform. As an example, when
designing a resonant-cavity light-emitting device, spatial-gain
hole-burning can be effectively suppressed if a polarization-inde-
pendent gain medium is inserted in the cavity between two chiral
mirrors [10, 11].
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Figure 4 Magnitudes of E(0) (solid line) and �0H(0) (dotted line) on the
exposed face of a chiral mirror as functions of the free-space wavelength.
The chosen chiral mirror is the same as that in Fig. 2

Figure 3 Magnitudes of E(0) (solid line) and �0H(0) (dotted line) on the
exposed face of a dielectric mirror as functions of the free-space wave-
length. The chosen dielectric mirror is the same as that in Fig. 1
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Parallel-plate waveguides consisting of a thin- lm helicoidal bianisotropic medium
(TFHBM) layer bounded by dielectric half-spaces are shown to support guided wave
propagation with guide wavenumbers dependent on the direction of signal propa-
gation. Thus, the TFHBM interconnect behaves as a space-guide. The modal  elds
and power transmission distributions, as determined by the time-averaged Poynting
vector, are investigated and a scheme classifying each guided wave mode as either
hybrid electric or hybrid magnetic is presented.

Keywords: optical interconnects; anisotropic waveguides;
sculptured thin ¯lms; space-guides; hybrid modes

1. Introduction

Implementation of optoelectronic devices requires the development of optical inter-
connects which, in addition to providing e¬ective signal transmission, must be sim-
ple to fabricate on integrated circuitry. In this paper, we present a theoretical study
which indicates that thin- lm helicoidal bianisotropic mediums (TFHBMs) are very
suitable for realizing optical interconnects. In fact, the adoption of semiconducting
TFHBMs may result in e¯ cient use of the available surface area (often called real-
estate) in electronic chips.

TFHBMs constitute one of two canonical classes of sculptured thin  lms (STFs),
which are non-homogeneous anisotropic thin  lms with nano-engineered morpholo-
gies consisting of parallel columns shaped as chevrons, S shapes, C shapes, helices,
etc. (Lakhtakia et al . 1996). Two recent reviews (Messier & Lakhtakia 1999; Venu-
gopal & Lakhtakia 2000a), as well as the proceedings of two recent conferences
(Lakhtakia & Messier 1999; Lakhtakia et al . 2000), are recommended for a survey
of most developments in STF research.

An STF behaves as a unidirectionally non-homogeneous continuum when excited
by time-harmonic  elds at su¯ ciently low frequencies (i.e. when the principal wave-
lengths of light are large compared with the columnar diameter). Since the concep-
tion of STFs in 1995, several possible applications have been proposed, including
laser mirrors, multi-notch  lters, optical gas sensors and low-permittivity materials
(Venugopal & Lakhtakia 2000a). Theoretical work on applications has led the way,
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but experimental work is now also gathering steam. Most recently, linear and cir-
cular thin- lm polarization  lters (Hodgkinson et al . 1999) and spectral-hole  lters
(Hodgkinson et al . 2000a) have been realized, and humidity sensors have also been
tested (Wu et al . 2000).

TFHBMs microstructurally comprise helical columns so that they are periodically
non-homogeneous along, say, the z-axis. Young & Kowal (1959) realized the  rst
TFHBM in 1959, though technological limitations prevented the veri cation of a
chiral columnar structure. The  rst TFHBM for which the chiral structure was ver-
i ed was developed in 1995 (Robbie et al . 1995). TFHBMs can be fabricated by
thermal evaporation at high vacuum levels with various materials (including MgF2,
SiOx and CaF2) and with su¯ cient control of features such as porosity, structural
period and columnar angle of rise (Robbie & Brett 1997; Hodgkinson et al . 1998;
Monteiro et al . 1998; Messier et al . 2000). A recently developed serial bideposition
technique can be used to realize TFHBMs which exhibit high optical activity with
typical values for optical rotation of 5¯ m m¡1 (Hodgkinson et al . 2000b).

Examining guided wave propagation in a TFHBM layer occupying the region
between two parallel conducting plates, Lakhtakia (1999) had proposed waveguiding
applications for TFHBM layers. For optical interconnects, however, waveguiding
TFHBM layers should be interfaced with dielectric materials instead of conduc-
tors. Accordingly, in x 2, we formulate the boundary-value problem for waveguiding
in a TFHBM layer bounded by isotropic dielectric half-spaces on both sides. The
formulated problem allows us to derive the dispersion equation that must be solved
to determine allowed guide wavenumbers. The results of our numerical studies are
presented in x 3, where we elucidate the space-guide concept, which encompasses the
e¯ cient use of semiconductor real-estate that the implementation of TFHBM inter-
connects may o¬er. The characteristics of the lower-order propagation modes are
presented in detail.

2. Theoretical analysis

(a) Constitutive relations

Suppose a linear dielectric TFHBM completely  lls the region jzj 61
2
D, while the

half-spaces z 6¡ 1
2
D and z >1

2
D are  lled by an isotropic dielectric medium with a

relative permittivity scalar ° r(!). The frequency-domain electromagnetic constitutive
relations of the TFHBM are as follows:

D(r; !) = ° 0 ° (z; !) E(r; !); B(r; !) = · 0H(r; !); jzj 61
2
D: (2.1)

Here, ! is the angular frequency, ° 0 and · 0 are, respectively, the permittivity and
permeability of free space (i.e. vacuum), the relative permittivity dyadic ° (z; !) is
given by

° (z; !) = Sz(z ¡ 1
2
D) Sy( À ) ° ¯

ref(!) ST
y (À ) ST

z (z ¡ 1
2
D); (2.2)

and the superscript `T’ denotes the transpose. The reference relative permittivity
dyadic is de ned as

° ¯
ref(!) = ° a(!)uzuz + ° b(!)uxux + ° c(!)uyuy ; (2.3)

where ux, uy and uz are the Cartesian unit vectors, and ° a(!), ° b(!), and ° c(!) are
frequency-dependent scalars. We assume the absence of absorption, which is realistic
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for optical waveguides (Sodha & Ghatak 1977; Hodgkinson et al . 2000c). In general,
° ¯

ref(!) is a biaxial dyadic, with ° b(!) > ° c(!) > ° a(!), as suggested by evidence
from columnar thin  lms (Hodgkinson & Wu 1997); but we note that the presented
formalism does not rely on these assumptions. Furthermore, we set ° a(!) > ° r(!) in
our numerical studies in order to ensure the existence of guided wave modes.

The rotational non-homogeneity of the TFHBM is exhibited through the dyadic

Sz(z) = (uxux + uyuy) cos
º z

«
+ (uyux ¡ uxuy) sin

º z

«
+ uzuz ; (2.4)

in which 2 « is the structural period. In the tilt dyadic

Sy( À ) = (uxux + uzuz) cos À + (uzux ¡ uxuz) sin À + uyuy ; (2.5)

À is the so-called angle of rise above the xy-plane; typically, À >20¯ (Messier et al .
2000). Equation (2.4) holds for a structurally right-handed TFHBM.

(b) Field representation

A speci c guided wave mode can be delineated with the following equations:

E(r) = exp[iµ(x cos Á + y sin Á)]e(z; µ; Á);

H(r) = exp[iµ(x cos Á + y sin Á)]h(z; µ; Á);
¡ 1 < z < 1: (2.6)

Here, the angle Á denotes the propagation direction and µ is the modal guide
wavenumber whose values have to be determined.

On substituting the constitutive relations (2.1) and the Fourier representations
(2.6) into the time-harmonic Maxwell curl equations,

r £ E(r) = i!B(r); r £ H(r) = ¡ i!D(r);

the following 4 £ 4 matrix ordinary di¬erential equation emerges:

d

dz
[f(z; µ; Á)] = i[P (z; µ; Á)][f(z; µ; Á)]; jzj < 1

2
D: (2.7)

In this expression, the 4 £ 4 matrix [P ] is

0 0 0 !· 0

0 0 ¡ !· 0 0

1
2
!° 0( ° c ¡ ~° d) sin

2 º z

«
¡ !° 0 ~° d sin2 º z

«
+ ° c cos2 º z

«
0 0

!° 0 ~° d cos2
º z

«
+ ° c sin2 º z

«
¡ 1

2
!° 0( ° c ¡ ~° d) sin

2 º z

«
0 0
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+ µ
~° d( ° a ¡ ° b)

2° a ° b

sin(2 À )

£

cos Á cos
º z

«
cos Á sin

º z

«
0 0

sin Á cos
º z

«
sin Á sin

º z

«
0 0

0 0 sin Á sin
º z

«
¡ cos Á sin

º z

«

0 0 ¡ sin Á cos
º z

«
cos Á cos

º z

«

+ !
µ2

k2
0

0 0
~° d

° a ° b
· 0 cos Á sin Á ¡

~° d

° a ° b
· 0 cos Á cos Á

0 0
~° d

° a ° b

· 0 sin Á sin Á ¡ ~° d

° a ° b

· 0 cos Á sin Á

¡ ° 0 sin Á cos Á ° 0 cos Á cos Á 0 0
¡ ° 0 sin Á sin Á ° 0 sin Á cos Á 0 0

(2.8)

the column 4-vector

[f (z; µ; Á)] = [ex(z; µ; Á); ey(z; µ; Á); hx(z; µ; Á); hy(z; µ; Á)]T; (2.9)

while ~° d = ° a ° b=( ° a cos2 À + ° b sin2 À ). In the limit « ! 1, the obtained matrix
di¬erential equation tallies with that given by Abdulhalim (1999) for homogeneous
biaxial dielectrics.

The solution of (2.7) can be expressed by the relationship

[f( 1
2
D; µ; Á)] = [T (D; µ; Á)][f( ¡ 1

2
D; µ; Á)]: (2.10)

The transition matrix [T (D; µ; Á)] is computed by the piecewise homogeneity approx-
imation method (Venugopal & Lakhtakia 2000b), whereby the non-homogeneous
TFHBM layer is modelled by N homogeneous sublayers, each of which di¬ers slightly
in constitution from the adjacent sublayers.

In the two half-spaces, the leakage  elds accompanying a guided wave mode are
simply planewave solutions of the time-harmonic Maxwell equations. Thus (Venu-
gopal & Lakhtakia 2000b),

E(r) = (bss + bpp¡) exp[ik¡ (r + 1
2
Duz)];

H(r) =
1

²
(bsp¡ ¡ bps) exp[ik¡ (r + 1

2
Duz)];

z 6¡ 1
2
D (2.11)

in the lower half-space and

E(r) = (css + cpp + ) exp[ik + (r ¡ 1
2
Duz)];

H(r) =
1

²
(csp + ¡ cps) exp[ik + (r ¡ 1

2
Duz)];

z >1
2
D (2.12)

in the upper half-space. Here, bs and bp are the amplitudes of the perpendicular- and
the parallel-polarized components of the  elds leaking into the half-space z 6¡ 1

2
D,
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and cs and cp likewise denote leakage into the half-space z >1
2
D. The vectors appear-

ing in (2.11) and (2.12) are given by

s = ¡ ux sin Á + uy cos Á;

p§ = ¨(ux cos Á + uy sin Á)[1 ¡ (µ=k)2 ]1=2 + uz(µ=k);

k§ = k[(ux cos Á + uy sin Á)µ=k § uz[1 ¡ (µ=k)2]1=2 ];

(2.13)

where k = k0
p

° r, ² = ² 0=
p

° r, k0 = !
p

° 0 · 0 is the free-space wavenumber, and
² 0 = · 0=° 0 is the intrinsic impedance of free space. Guided wave propagation is
possible only if µ > k; otherwise, energy launched into the TFHBM layer must leak
into the two half-spaces. For later reference, we delineate (i) the unit vectors u` =
ux cos Á + uy sin Á and u? = s in the xy-plane and (ii) the free-space wavelength
¶ 0 = 2 º =k0.

(c) Dispersion equation

Since the tangential components of E(r) and H(r) must be continuous across the
bimaterial interfaces z = ¡ 1

2
D and z = 1

2
D, the boundary values of [f(z; µ; Á)] are

expressed as (Venugopal & Lakhtakia 2000b)

[f( ¡ 1
2
D; µ; Á)] = [K(µ; Á)][0; 0; bs; bp]T;

[f( 1
2
D; µ; Á)] = [K(µ; Á)][cs; cp; 0; 0]T;

(2.14)

where the matrix function [K(µ; Á)] is

¡ sin Á ¡ cos Á 1 ¡ µ

k

2 1=2

cos Á ¡ sin Á 1 ¡ µ

k

2 1=2

¡ ² ¡1 cos Á 1 ¡
µ

k

2 1=2

² ¡1 sin Á

¡ ² ¡1 sin Á 1 ¡
µ

k

2 1=2

¡ ² ¡1 cos Á

¡ sin Á cos Á 1 ¡
µ

k

2 1=2

cos Á sin Á 1 ¡
µ

k

2 1=2

² ¡1 cos Á 1 ¡ µ

k

2 1=2

² ¡1 sin Á

² ¡1 sin Á 1 ¡
µ

k

2 1=2

¡ ² ¡1 cos Á

:

(2.15)
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Upon combining (2.14) with (2.10), we get the linear system

cs

cp

0
0

= f[K(µ; Á)]¡1[T (D; µ; Á)][K(µ; Á)]g

0
0
bs

bp

² [T̂ ]

0
0
bs

bp

; (2.16)

which we rearrange to obtain

T̂33 T̂34 0 0

T̂43 T̂44 0 0

T̂23 T̂24 0 ¡ 1

T̂13 T̂14 ¡ 1 0

bs

bp

cs

cp

² [A]

bs

bp

cs

cp

=

0
0
0
0

; (2.17)

where T̂mn represents the mnth element of the 4 £ 4 matrix [T̂ ]. Only eight of the
16 elements of [T̂ ] enter (2.17), because no plane waves are incident on the TFHBM
layer from the two half-spaces.

Our interest lies in determining pairs of (µ; Á) such that not all of the coe¯ cients
bs, bp, cs and cp are null-valued. Thus emerges the dispersion equation

det[A] = T̂34T̂43 ¡ T̂33T̂44 = 0: (2.18)

It involves only four elements of [T̂ ], while the remaining four elements of [T̂ ] in (2.17)
help in determining the relative values of the leakage  eld coe¯ cients. For guided
wave propagation in a given direction u`, values of µ denoted by µ(r)

Á (r = 1; 2; 3; : : : )
that satisfy the dispersion equation have to be numerically determined, where the
roots are indexed by the integer r in descending order of their magnitudes.

3. Numerical results and discussion

We implemented the aforementioned procedure using the C programming language
and the IMSL C numerical library subroutines for complex linear algebra. Deter-
mining the guide wavenumbers µ

(r)
Á for given propagation directions u`, we looked

at the guided wave mode shapes and power transmission pro les for the TFHBM
waveguide. We satisfactorily tested our computer program for the straightforward
case of an isotropic homogeneous dielectric slab waveguide (Sodha & Ghatak 1977).
We also validated our program against known results for homogeneous anisotropic
waveguides that emerge from our formulation on setting 1=« = 0 (Marcuse 1978;
Marcuse & Kaminow 1979; Seshadri 1998). Finally, we successfully checked our cal-
culation of [T̂ ] against those of Venugopal & Lakhtakia (2000b), who had used a
rotating Cartesian basis to solve a di¬erential equation that di¬ers from (but is
equivalent to) equation (2.7), in contrast to our use of a  xed Cartesian basis.

Only representative numerical results are provided here, the reader being referred
to Ertekin (2000) for numerous other relevant results. For waveguiding by a TFHBM
layer, we set ° a = 3:0, ° b = 4:6, ° c = 3:8 and À = 30¯, in accordance with measured
data reported by Hodgkinson & Wu (1997) for columnar thin  lms of titanium oxide
deposited at a vapour ®ux angle of 60¯ with respect to the substrate normal. We
also  xed our attention at ¶ 0 = 600 nm, while the propagation direction u`, the
waveguide thickness D and the half-period « were varied.
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By successively decreasing the sublayer thickness D=N , we established the con-
vergence characteristics of the numerical scheme to determine the transition matrix
[T ] using the piecewise homogeneity approximation method (Venugopal & Lakhtakia
2000b). In all instances, we found that all elements of [T ] converged within §0:1%
error in magnitude when D=N = 2:5 nm.

Values of det[A] were initially sampled within the domain 1:0 < (µ=k0) 62:2
at 1200 equal intervals. A sign change in both the real and imaginary parts of
det[A] within an interval indicates that a root µ

(r)
Á may lie within. The location

of the roots thus guessed were re ned with a simple bracketing bisection algorithm
(Schilling & Harris 2000), with the twin conditions that (i) det[A(D; µ; Á)] under-
goes a sign change in a small interval given by j(µ(r)

Á ¡ µ)=k0j < 10¡10, and (ii) that
j det[A]j 610¡10 in that interval.

(a) Guide wavenumbers

Let us  rst note some general characteristics of the proposed TFHBM intercon-
nect. The relation det[A(D; µ; Á)] = det[A(D; µ; Á + º )]¤ holds independently of
all parameters, the asterisk denoting the complex conjugate. Therefore, the guide
wavenumbers µ

(r)
Á for propagation directions u` and ¡ u` are the same. In the spe-

cial case that the layer consists of an integral number of periods (i.e. the ratio D=« is
an even integer), the additional relation det[A(D; µ; Á)] = det[A(D; µ; º ¡ Á)] holds.
This arises because all three principal axes of the permittivity dyadic ° (z; !) rotate,
as per equation (2.2), about the z-axis, through an integral number of turns between
the planes z = ¡ 1

2
D and z = 1

2
D, thereby imposing a symmetry constraint.

The normalized roots µ
(r)
Á =k0 calculated for D = 8 « , « = 200 nm and Á = 0, 15,

30, 45, 60, 75 and 90¯ are shown in  gure 1a. A complete understanding for wave-
guiding in all directions given by Á 2 [0¯; 360¯] is established by examining µ

(r)
Á for

Á 2 [0¯; 90¯] because both symmetry relations described in the previous paragraph
are valid for this case. The  gure clearly shows that the guide wavenumbers depend
on Á. Therefore, a TFHBM layer is a space-guide through which di¬erent signals can
be transported in di¬erent directions with di¬erent phase velocities !=µ

(r)
Á .

The variability of µ
(r)
Á with Á is most pronounced around the lower values of µ

(r)
Á

(where the solutions of the dispersion equation are widely spaced) and less evident
for values of µ

(r)
Á near the upper bound for roots (where the solutions are closely

spaced). Additionally, the directional dependence of µ
(r)
Á appears to persist even for

smaller values of the ratio D=« , which is evident from parts (b) and (c) of  gure 1
(for which D=« = 1).

The number density of guided wave modes is less when D is small. This conclusion
emerges from a comparison of parts (a) (D = 8 « = 1600 nm), (b) (D = « = 200 nm)
and (c) (D = « = 1600 nm) of  gure 1. In contrast, the mode number density appears
to be largely una¬ected by the half-period « . For instance, anywhere between 17 and
20 modes can be found in the domain 1:0 6µ=k0 62:2 for any Á in parts (a) and (b)
of  gure 1, where D = 1600 nm; but only three modes exist in  gure 1c (D = 200 nm)
for all Á. Thus the availability of guided wave modes can be tailored by properly
choosing the layer thickness D.

We also studied the directional dependence of the guide wavenumbers for the more
speci c case of a uniaxial TFHBM layer. While we do not present our computed
results here, µ(r)

Á still exhibits a dependence on Á. The same dependence on Á has
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Figure 1. Roots of dispersion equation for varying angles of propagation Á; ¶ 0 = 600 nm,
° a = 3:0, ° b = 4:6, ° c = 3:8, À = 30¯, « = 200 nm. Á (deg): (i) 0; (ii) 15; (iii) 30; (iv) 45; (v) 60;
(vi) 75; (vii) 90. (a) D = 8« = 1600 nm; (b) D = « = 200 nm; (c) D = « = 1600 nm.

been noted (and explained) for the axial excitation of uniaxial TFHBM layers by
plane waves (Venugopal & Lakhtakia 1998).

A noticeable feature of  gure 1a; b is that µ
(r)
Á has an upper bound which varies

with Á. For instance, in  gure 1a, we see that µ(r)
Á < 2:049k0 for Á = 0¯, whereas

µ(r)
Á < 1:981k0 for Á = 90¯. The upper bound decreases monotonically as Á increases

from 0¯ to 90¯. From extensive numerical testing, we found that the upper bound
on µ

(r)
Á varies with À , Á, D and « for given ° a, ° b and ° c. Furthermore, the bound

k0
p

° a 6µ(r)
Á 6k0

p
° b emerged for all combinations of parameters tested. This bound

is reasonable because (i) ° a and ° b are the smallest and largest principal components,
respectively, of ° (z; !), and (ii) ° a > ° r.

(b) Guided wave mode shapes and power transmission pro¯les

The modal  elds and power transmission associated with each of the guided wave
modes identi ed in  gure 1a were studied next. To obtain the mode shapes, we
 rst calculated the value of [f(z; µ; Á)] = [ex; ey ; hx; hy ]T for all z 2 [ ¡ 1

2
D; 1

2
D] by

solving (2.10) at the N = 640 evenly spaced intervals, and then determined

ez =

¡ fµ(hy cos Á ¡ hx sin Á)

¡ 1
2
!° o( ° a ¡ ° b) sin(2À )[ex cos( º z=« ) + ey sin( º z=« )]g~° d

!° o ° a ° b

;

hz =
¡ µ(ex sin Á ¡ ey cos Á)

!· o
;

(3.1)
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for jzj 61
2
D. As the evaluation of [f(z; µ; Á)] requires knowledge of the leakage  eld

components given in (2.14), the coe¯ cients bs, bp, cs and cp have to be ascertained.
Satisfaction of the criterion for guided wave propagation, det[A] = 0, ensures that
by specifying the (numerical) value of any one of the leakage amplitudes (i.e. bs, bp,
cs and cp), we can solve for the remaining three.

The time-averaged power ®ow in the propagation direction is given by

P`(z) = 1
2
u` Re[e(z; µ; Á) £ h ¤ (z; µ; Á)]:

For any guided wave mode with wavenumber µ
(r)
Á , P`(z) provides the power trans-

mission distribution throughout the region jzj 61
2
D. All the presented results are

normalized so that

1

D

1
2 D

¡ 1
2 D

P`(z) dz = 1 W m¡2

for all guided wave modes.
For simplicity, we denote the electric and magnetic  elds along u` as the longitu-

dinal  eld components e` = e u` and h` = h u`, and the  elds in the direction u?
as e? = e u? and h? = h u?. We  rst present the  eld plots and the power trans-
mission distribution associated with modes propagating in the direction u` = ux

(i.e. Á = 0¯), and then for Á = 75¯. The relationships and patterns that appear in
these results are applicable to other propagation directions as well.

As a basis for comparison with the modes of propagation in the proposed TFHBM
interconnect, we considered an isotropic planar waveguide of thickness D = 1600 nm.
Numerical results for this comparison waveguide were obtained by our program by
setting ° a = ° b = ° c = ° is o = 3:8 and 1=« = 0. The modal guide wavenumbers
are denoted by µ

(r)
is o , which is not a function of Á. Odd values of r correspond to

transverse electric (TE) modes and even r correspond to transverse magnetic (TM)
modes. For all TE modes (Sodha & Ghatak 1977),

eis o
? /

cos k2
0 ° is o ¡ (µ(r)

is o )2z ; r = 1; 5; 9; : : : ;

sin k2
0 ° is o ¡ (µ

(r)
is o )2z ; r = 3; 7; 11; : : : ;

(3.2)

and likewise, for all TM modes,

his o
? /

cos k2
0 ° is o ¡ (µ

(r)
is o )2z ; r = 2; 6; 10; : : : ;

sin k2
0 ° is o ¡ (µ(r)

is o )2z ; r = 4; 8; 12; : : : ;

(3.3)

where jzj 61
2
D in all cases. We note here that the selection of the relative permit-

tivity ° is o = 3:8 is arbitrary and does not correspond in any way to the proposed
TFHBM interconnect with reference relative permittivities ° a = 3:0, ° b = 4:6 and
° c = 3:8.

In  gure 2, the mode shapes associated with the wavenumber µ(1)
Á = 0¯ º 2:049k0

(see  gure 1a) in the TFHBM interconnect are presented. The magnitudes of e?,
ez , e`, h?, hz and h` are plotted between the lower bimaterial interface z = ¡ 1

2
D

and the upper bimaterial interface z = 1
2
D. Outside of this domain, the  elds decay

exponentially, as delineated by (2.11) and (2.12). Components of both E and H
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Figure 2. Field magnitudes associated with the HE1 mode with guide wavenumber µ
(1)

Á = 0¯ =
2:049k0 , in the proposed TFHBM interconnect; see ¯gure 1a for parameter values. The dotted
lines indicate the ¯elds in the TE1 mode of the comparison waveguide (isotropic planar waveguide
with D = 1600 nm and ° i so = 3:8).

in the directions u?, u` and uz are all present, which exempli es the di¬erences
between the proposed dielectric TFHBM interconnects and the comparison waveg-
uides. Whereas e` = ez = 0 for TE modes and h` = hz = 0 for TM modes in an
isotropic planar waveguide, the modes in a TFHBM interconnect are instead hybrid
modes with  elds present in all three coordinate directions. Yet there are similarities
as well.

The electric  eld component eis o
? associated with the TE1 mode in an isotropic pla-

nar waveguide is symmetric with respect to z, as shown also in  gure 2. The variation
of e? with z for the mode in the TFHBM layer associated with µ(1)

Á = 0¯ º 2:049k0 is
quite similar, except for certain small ripples. For instance, there are eight half-turns
in the TFHBM layer and there are eight ripples in every  eld plot in  gure 2. These
ripples can be attributed to the periodicity of the TFHBM along the z-axis (Nagle &
Lakhtakia 1996), and are characteristic of periodic systems by virtue of the Floquet{
Lyapunov theorem (Hochstadt 1975). Preliminarily based on the similarity of the
modal  eld e? in the TFHBM interconnect to that of eis o

? for a TE1 mode in the
comparison waveguide, let us classify this mode as a hybrid electric mode, namely
HE1.
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Figure 3. Same as ¯gure 2, but for the HE2 mode with guide wavenumber µ
(2)
Á = 0¯ = 2:026k0 .

The dotted lines indicate the ¯elds in the TE2 mode of the comparison waveguide.

The next guided wave mode in the proposed TFHBM interconnect is associated
with µ

(2)
Á = 0¯ º 2:026k0 in  gure 1a. The mode shape is delineated by the  eld plots

shown in  gure 3. Again, all three components of e and h are present: the mode is a
hybrid one. Most importantly, the electric  eld e? appears to be virtually odd with
respect to z, in contrast to the HE1 mode depicted in  gure 2. Furthermore, e? quite
resembles eis o

? for the TE2 mode (with guide wavenumber µ
(3)
is o ) in the comparison

waveguide, also shown in  gure 3. Based on this similarity, the TFHBM mode is
classi ed as the second hybrid electric mode, HE2.

Additionally, the TFHBM waveguide supports modes of propagation which should
be classi ed as hybrid magnetic (HM) modes. In the propagation direction u` = ux,
the  rst of these, HM1, occurs at the wavenumber µ

(6)
Á = 0¯ º 1:772k0. The modal E

and H  elds are plotted in  gure 4. As with the HE modes, all  eld components are
present and the mode is again hybrid. This time, the modal  eld h? resembles his o

?
for the TM1 mode (with wavenumber µ(2)

is o ) in the comparison waveguide, as shown
also in  gure 4. The next HM mode occurs with wavenumber µ

(8)
Á = 0¯ º 1:747k0. Once

again, comparison with his o
? for the TM2 mode in the isotropic planar waveguide

suggests that the mode associated with µ(8)
Á = 0¯ º 1:747k0 in the TFHBM intercon-

nect should be classi ed as HM2. Let us note the eight ripples in the h? versus z
plots of  gures 4 and 5, similar to the ripples in the e? versus z plots of  gures 2
and 3.
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Figure 4. Same as ¯gure 2, but for the HM1 mode with guide wavenumber µ
(6 )

Á = 0¯ = 1:772k0 .
The dotted lines indicate the ¯elds in the TM1 mode of the comparison waveguide.

The power transmission pro les for the guided wave modes HE1, HE2, HM1 and
HM2 propagating along the x-axis are shown in  gure 6. The dashed lines represent
the power transmission pro les for the TE1, TE2, TM1 and TM2 modes in the
comparison waveguide. Clearly, the power transmission pro les for the HE and HM
modes do resemble those of the corresponding TE and TM modes in the comparison
waveguide, though the former again demonstrate rippling. For instance, the HE1

mode (with wavenumber µ
(1)
Á = 0 º 2:049k0) transports most of the power through the

core region of the interconnect, and its power distribution resembles that of the TE1

mode. The same is true of the HM1 mode (occurring at µ
(6)
Á = 0¯ º 1:772k0) for which

the power distribution resembles that of the TM1 mode. The HE2 and HM2 modes do
not transmit most of their power centrally. Within the domain jzj 61

2
D, the power

transmission pro les for the HE2 and HM2 mode are both similar to the TE2 and
TM2 mode, respectively. Thus the HE1, HE2, HM1 and HM2 modes in the TFHBM
interconnect along ux are, respectively, comparable with the TE1, TE2, TM1 and
TM2 modes in the isotropic planar waveguide.

While we do not present the obtained results in their entirety here (see Ertekin
2000), the classi cation of HE and HM modes is best achieved by considering the
power transmission pro les rather than the modal  eld plots for e? and h?. Com-
parison of the modal  eld plots for E? and H? with those of TE and TM modes
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Figure 5. Same as ¯gure 2, but for the HM2 mode with guide wavenumber µ
(8)
Á = 0¯ = 1:747k0 .

The dotted lines indicate the ¯elds in the TM2 mode of the comparison waveguide.

does not appear to be a valid mechanism for discriminating between HE and HM
modes. This is illustrated in  gures 7 and 8 for modes propagating in the direc-
tion given by Á = 75¯. The e? versus z plots for the  rst four HE modes (with
wavenumbers µ(r)

Á = 75¯ (r = 1; 2; 3; 4)) are shown in  gure 7. As with the modal  elds
for Á = 0¯, these  elds are strikingly similar to e? in TE1, TE2, TE3 and TE4 modes
in the comparison waveguide. The similarity of e? between the HEn and TEn modes
persists in any propagation direction u`. Further, for each successive HE mode, e?
is alternately even and odd with respect to z. However, while the correspondence of
e? in HE and TE modes is exhibited for all HE modes studied, the same relationship
is not preserved for the so-called HM modes.

In  gure 8 are given h? versus z plots for the  rst four HM modes for the propaga-
tion direction delineated by Á = 75¯. These modes correspond to the guide wavenum-
bers µ(r)

Á = 75¯ (r = 5; 6; 8; 9). The relationship between h? for HMn modes in the
TFHBM interconnect and TMn modes in the comparison waveguide exhibited for
u` = ux now breaks down. In general, h? in the HMn mode does not resemble his o

?
for the corresponding TMn mode. In fact, h? for none of the HM modes depicted
is either an even or odd function of z. For the propagation direction u` = ux, the
similarities exhibited between the h? versus z plots for HMn and TMn modes thus
appear to be exceptional. The relationship does not hold in general; in particular, it
does not hold for the other extreme case u` = uy (i.e. Á = 90¯).
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(6)
Á = 0 ¯ =

1:772k0 ) and (d) HM2 (µ
(8)
Á = 0 ¯ = 1:747k0 ) modes for Á = 0¯. Same parameter values as ¯gure 1a.

The dotted lines show P i so
` (z) for the TE1 , TE2 , TM1 and TM2 modes in the comparison

waveguide.
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Figure 7. Magnitude of e ? versus z for the ¯rst four HE propagation modes for Á = 75¯:
(a) HE1 , µ

(1)

Á = 7 5¯ = 1:988k0 ; (b) HE2 , µ
(2)

Á = 7 5¯ = 1:965k0 ; (c) HE3 , µ
(3)

Á = 75¯ = 1:926k0 ; (d) HE4 ,
µ

(4)
Á = 75¯ = 1:870k0 . Same parameter values as for ¯gure 1a. The dotted lines show eis o

? for the
¯rst four TE modes in the comparison waveguide.

The modal  eld characteristics exhibited in general by the HE modes, and not
exhibited in general by the HM modes, relate to the speci c constitutive proper-
ties of the chosen TFHBM layer. Whereas its dielectric properties are anisotropic
and rotationally non-homogeneous, its magnetic properties are isotropic and homo-
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Figure 8. Magnitude of h ? versus z in the ¯rst four HM propagation modes (normalized) for
Á = 75¯: (a) HM1 , µ

(5 )
Á = 75¯ = 1:834k0 ; (b) HM2 , µ

(6 )
Á = 75¯ = 1:810k0 ; (c) HM3 , µ

(8)
Á = 7 5¯ = 1:767k0 ;

(d) HM4 , µ
(9)

Á = 75¯ = 1:720k0 . Same parameter values as for ¯gure 1a. The dotted lines show his o
?

for the ¯rst four TM modes in the comparison waveguide.

geneous. On the other hand, the comparison waveguide has isotropic dielectric and
magnetic properties. We know that even in a homogeneous uniaxial crystal, the two
types of characteristic planewaves (ordinary and extraordinary (Chen 1993)) cannot
be transformed into one another. In contrast, in an isotropic dielectric material, that
transformation can be a¬ected very easily by virtue of duality. Still, power transmis-
sion pro les provide the means of classi cation of modes in the proposed TFHBM
interconnects.

In  gure 9, we show the power transmission pro les P`(z) for the HE1, HE2, HE3

and HE4 modes with wavenumbers µ
(r)
Á = 75¯ (r = 1; 2; 3; 4). In  gure 10, P`(z) curves

are provided for the HM1, HM2, HM3 and HM4 modes with wavenumbers µ
(r)
Á = 75¯

(r = 5; 6; 8; 9). In both  gures, the dashed lines correspond to the power distribu-
tions for the corresponding TE and TM modes in the comparison waveguide. Figure 9
illustrates that power transmission pro les for the HEn mode and the TEn mode are
similar. Likewise, power distributions for HMn modes and TMn modes are compa-
rable. These relationships exist for all modes in any propagation direction u`. The
power transmission pro les thus establish a consistent robust mechanism for modal
classi cation of all propagation modes supported by the TFHBM interconnects.

Our numerical studies uncovered other general characteristics of the modal  elds
in TFHBM interconnects as well. For any given mode except for those with very
smallest guide wavenumbers µ

(r)
Á (e.g. r > 10, plots for which are not depicted

here), the inequalities fe` ½ e?; ez g and fh` ½ h?; hzg hold. For r > 10, all  eld
components are comparable in magnitude. A notable di¬erence between a TFHBM
interconnect and an isotropic planar waveguide is that the modes µ

(1)
is o ; µ

(2)
is o ; µ

(3)
is o ; : : : ,

are alternately TE and TM in the latter, but this pattern does not hold in the former.
Indeed, there appears to be no discernible relationship in the ordering of HE and HM
modes in TFHBM interconnects. For instance, in the Á = 0¯ direction, the modes
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Figure 9. P` (z) for(a) HE1 , µ
(1)
Á = 75¯ = 1:988k0 , (b) HE2 , µ

(2)
Á = 75 ¯ = 1:965k0 , (c) HE3 , µ

(3)
Á = 75 ¯ =

1:926k0 , (d) HE4 , µ
(4)

Á = 75¯ = 1:870k0 modes for Á = 75¯. Same parameter values as for ¯gure 1a.
The dotted lines show P is o

` (z) for the TE1 , TE2 , TE3 and TE4 modes in the comparison wave-
guide.
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Figure 10. P` (z) for (a) HM1 , µ
(5)

Á = 75¯ = 1:834k0 , (b) HM2 , µ
(6)

Á = 75 ¯ = 1:810k0 , (c) HM3 ,
µ

(8)
Á = 75¯ = 1:767k0 , (d) HM4 , µ

(9)
Á = 75 ¯ = 1:720k0 modes for Á = 75¯. Same parameter values as

for ¯gure 1a. The dotted lines show P i so
` (z) for the TM1 , TM2 , TM3 and TM4 modes in the

comparison waveguide.

for µ
(r)
Á = 0¯ (r = 1; : : : ; 5; 7) are HE and those for µ

(r)
Á = 0¯ (r = 6; 8; 9; 10) are HM. On

the other hand, in the Á = 75¯ direction, the HE modes are associated with µ(r)
Á = 75¯

(r = 1; : : : ; 4; 7) and the HM modes with µ
(r)
Á = 75¯ (r = 5; 6; 8; 9).

A general lack of symmetry about the central plane z = 0 is obvious in  gures 2{10,
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Figure 12. Magnitudes of (a) e ? versus z for HE1 modes and (b) h ? versus z for HM1 modes,
in a TFHBM interconnect. Same parameter values as for ¯gure 1a.

being more pronounced in some plots than in others. This is because

° (z; !) 6= ° (¡ z; !) 8z 2 [ ¡ 1
2
D; 1

2
D];

which inequality follows from (2.2). In the limit « ! 1, the inequality changes to
an equality (i.e. ° (z; !) ! ° ( ¡ z; !) 8z 2 [ ¡ 1

2
D; 1

2
D]), which is the reason for the

occurrence of the even and the odd symmetries of the modal  elds with respect to z
in the comparison waveguide.

(c) Space-guide

Thus far, we have only hinted at the space-guide concept: the capacity of the
proposed TFHBM interconnect to simultaneously support propagation modes with
di¬erent phase velocities !=µ

(r)
Á in di¬erent directions. This feature, which can make

the proposed TFHBM interconnect an e¯ cient transport mechanism for signals, is
now established in detail.

The variation of µr
Á with Á for a given mode of order n 65 (i.e. HEn or HMn) is dis-

played in  gure 11 for a particular interconnect. The µ(r)
Á values for any HEn or HMn

mode are strongly dependent on Á. Let us take the HE1 mode, for instance. The guide
wavenumber decreases monotonically from 2:049k0 for Á = 0¯ to 1:982k0 for Á = 90¯.
In contrast, the guide wavenumber increases from 1:772k0 for Á = 0¯ to 1:842k0 for
Á = 90¯ for the HM1 mode. These variations hold for all the other modes in  gure 11
and re®ect the apparent randomness in the ordering of HE and HM modes with the
index r in any  xed propagation direction u`.

In  gure 12 are provided the e? versus z plots for the HE1 modes and the h?
versus z plots for the HM1 modes, for propagation directions speci ed by Á = 0, 30,
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Same parameter values as for ¯gure 1a.

60 and 90¯. While there are some di¬erences which arise from the anisotropy and the
non-homogeneity of the TFHBM, the variation of e? with respect to z is comparable
in all directions. Thus it appears that all HE1 modes propagating in any direction
u` in the transverse plane of the space-guide will have similar modal characteristics.
However, for the HM1 modes, the h? versus z plots for the various propagation
directions are distinctly dissimilar in  gure 12; and the dielectric anisotropy and
non-homogeneity of the space-guide impart more signi cant directional dependence
to the mode shape.

The power transmission pro les of the HE1 and HM1 modes are illustrated in
 gure 13 for Á = 0, 30, 60 and 90¯. These plots are quite similar to each other for
the HE1 mode, as also are the plots for the HM1 mode. Thus we can expect the
power transmission pro le for a given mode (HEn or HMn) to be relatively invariant
with respect to the propagation direction u` in the space-guide.

Clearly, the HEn mode launched in one direction will not interfere with the HEn

mode launched in some other direction, and the same holds true for any HMn mode,
at least for small values of n. Indeed, several HE and HM modes of low order can
be launched in di¬erent directions, while taking care that their guide wavenumbers
are all di¬erent. Obviously, hardware requirements will put a limit on the number of
channels a TFHBM space-guide can realistically support in actual circuitry.

Columnar thin  lms (CTFs) are obtained in the limit « ! 1. Being anisotropic
continuums, CTFs can also serve as space-guides. However, in that context two char-
acteristics of TFHBMs set them apart from CTFs. The  rst is that a  nite value of
« serves as an additional design parameter for choosing appropriately distinct modes
for communication. The second characteristic is mechanical. The stress in a CTF is
anisotropic in the substrate plane, being more along the x-axis than along the y-axis
(Knepper & Messier 2000). This can result in vertical cleavage and fracture, partic-
ularly, for À > 45¯. But the helicoidal microstructure of TFHBMs ought to resist
vertical cleavage and fracture, which expectation is borne out by microindentation
experiments (Seto et al . 1999).

4. Conclusion

We have demonstrated the potential feasibility of dielectric TFHBM layers as planar
interconnects in integrated optoelectronic circuitry. We have shown that a TFHBM
layer bounded by dielectric half-spaces supports guided wave propagation, with guide
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wavenumbers showing a strong dependence on the propagation direction delineated
by the angle Á. Thus, due to its anisotropic non-homogeneous nature, the TFHBM
interconnect behaves as a space-guide which can transport di¬erent signals in di¬er-
ent directions, thereby o¬ering e¯ cient use of semi-conductor real-estate.

We have suggested a classi cation scheme for the guided modes in the TFHBM
interconnect which, based primarily on the power transmission characteristics, groups
the modes into two distinct classes: hybrid electric (HE) and hybrid magnetic (HM).
The mode shapes and the power density pro les of these modes have been investi-
gated. While the modal  eld distributions for only the HE modes appear comparable
with those in isotropic planar waveguides, the power transmission pro les for both
HE and HM modes are qualitatively similar to those in isotropic planar waveguides.

We thank two anonymous reviewers for several constructive comments. This work was supported
in part by a US National Science Foundation Graduate Fellowship to E.E.
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elliptically polarized light

Ian Hodgkinson, Qi Hong Wu, Lakshman De Silva, and Matthew Arnold
Department of Physics, University of Otago, P.O. Box 56, Dunedin, New Zealand

Akhlesh Lakhtakia and Martin McCall
Department of Physics, Imperial College, Prince Consort Road, London SW7 2BZ, UK

Received April 26, 2005; revised manuscript received June 17, 2005; accepted June 20, 2005

The structure of an inorganic chiral medium represented as a stack of identical form-birefringent layers that
twist steadily with increasing thickness is perturbed by realigning a fraction of each layer to a fixed direc-
tion. Experimental results show that the resulting chiral–birefringent composite medium exhibits Bragg
resonance with elliptically polarized light, and simulations indicate that Bragg reflectors can be designed for
any polarization including linear. © 2005 Optical Society of America

OCIS codes: 160.1190, 260.1440, 310.1620, 310.1860.
A resurgence of interest in inorganic structurally chi-
ral media1,2 is in turn leading to refinement of depo-
sition techniques. A current focus is the development
of complex substrate motion algorithms for maintain-
ing the integrity of spiral nanostructures as they
grow in vacuum3 or for the direct synthesis of new
handed materials. In this Letter we report the depo-
sition of a chiral–birefringent composite material
that exhibits Bragg resonance with light of elliptical
polarization (EP). We show, via simulations, that the
Bragg resonance can be nanoengineered for any ellip-
tical polarization, including the special cases of circu-
lar polarization (CP) and linear polarization (LP).
Chiral–birefringent structures are common in
nature,4,5 and the work that we report here was in-
spired by our observations of overlapping chiral
structures in the New Zealand native manuka beetle.

In Fig. 1(a) one dielectric period of a standard chi-
ral material for CP light is shown schematically as a
stack of identical birefringent layers that twist
steadily with increasing thickness.2 Each layer has
physical thickness d, and the dielectric period, which
is the repeat distance for the dielectric properties,
has physical thickness �. The in-plane principal re-
fractive indices of the layer are n2 and n3. The fast
axis, which is parallel to axis 2, is marked on the in-
dividual layers of the chiral stack. The Bragg reso-
nant wavelength for CP light is �Br=2 nav�, where
nav= �n2+n3� /2 is the average of the in-plane refrac-
tive indices. In Fig. 1(b) the standard structure has
been perturbed by a realignment of part of each layer
to a fixed direction. In the new structure the sublayer
thicknesses are dA= fAd and dB= fBd, where fA is the
fraction of the chiral medium A and fB=1− fA is the
fraction of the birefringent material B. The new
structure (b) has the same average refractive index
and the same dielectric period as structure (a), and
hence the same Bragg wavelength. However,
whereas the layer axes of structure (a) are uniformly
twisted as is appropriate for resonance with CP light,
medium B imposes a pair of fixed axes upon struc-
ture (b). The intended optical effect is Bragg reso-

nance for EP light rather than CP light.

0146-9592/05/192629-3/$15.00 ©
The apparatus that we used for computer-
controlled serial bideposition2 of test layers of inor-
ganic chiral–birefringent composite material in
vacuum is shown schematically in Fig. 2. A form-
birefringent sublayer of material A, for example, is
grown by depositing thickness dA /2 at fixed vapor
angle �v and azimuthal angle � followed by the same
thickness at azimuthal angle �+�. Such a sublayer
has principal axis 1 perpendicular to the substrate,
axis 2 (the fast axis) in the deposition plane and par-
allel to the substrate, and axis 3 (the slow axis) per-
pendicular to the deposition plane. Composite chiral–
birefringent materials emulating the structure that
is illustrated in Fig. 1(b) were fabricated by engaging
the angular sequence for �,

0,�;0,�;��,�� + �;0,�;2��,2�� + �;0,�;…,

and depositing the appropriate thicknesses.
Figure 3 illustrates the fiber-optic reflectometer

that we used for measuring the copolarized reflec-
tance of chiral–birefringent composite coatings. The
fixed Fresnel rhomb provides a phase retardation of

Fig. 1. One dielectric period of (a) a standard chiral struc-
ture represented as a twisted stack of birefringent layers
and (b) a chiral–birefringent composite material with the
same Bragg wavelength. The bars and dots mark the fast

axes of the layers and sublayers, respectively.

2005 Optical Society of America
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� /2, independent of visible wavelength,6 between the
horizontal and vertical components of the incident
light transmitted by the linear polarizer. It follows
that the combination of the linear polarizer and the
Fresnel rhomb acts as an elliptical polarizer for the
incident light and as an analyzer set to the same el-
liptical state for the reflected light. By adjusting the
angle of the polarizer within the range −� /4��
�� /4 of auxiliary angle �, and the angle of the
sample within the range −� /2�	�� /2 of azimuthal
angle 	, we can determine the copolarized reflectance
experimentally for all independent polarizations.6

Note that (i) �= ±tan−1�b /a�, where a and b are the
major and minor axes of the polarization ellipse, re-
spectively, �=−� /4 corresponds to left-handed CP,
−� /4
�
0 to left-handed EP, �=0 to LP, 0
�

� /4 to right-handed EP, �=� /4 corresponds to the
right-handed CP state, and (ii) 	 specifies the orien-
tation of the polarization ellipse with respect to the
sample.

To illustrate the concept of a Bragg medium opti-
mized for elliptically polarized light we consider a
right-handed chiral–birefringent composite film that
we fabricated from titania using the following param-
eters: deposition rate 1 nm/s, substrate temperature
300°C, background pressure of oxygen 1.5
�10−4 Torr, �v=63° , ��=14.4° , fB=0.3, sublayer
thicknesses chosen to yield a visible Bragg reso-
nance, N=12 dielectric periods, cover refractive index
nC=1, and substrate refractive index nS=1.52. Copo-
larized spectra reflected from the sample, and ob-
served in real time as the polarizer and the sample
were rotated manually, revealed strong dependence
on �, �, and 	. At resonance the Bragg peak appeared
as a single peak with sidebands as shown in Fig. 4,

Fig. 2. Apparatus for depositing chiral–birefringent com-
posite materials.

Fig. 3. Apparatus for recording the copolarized reflectance
of chiral–birefringent composite coatings.
and the Bragg wavelength was estimated as
�Br= �577±3� nm, and the peak reflectance was esti-
mated as �0.3. Following these preliminary observa-
tions maps of copolarized reflectance covering all in-
dependent polarization states were recorded at the
Bragg wavelength (Fig. 5). From a set of eight
equivalent maps, recorded during a 2��2� scan of
the polarizer and the sample, we determined the po-
larization parameters of the EP Bragg resonance as
�Br= �16±3�° and 	Br= �1±3�°.

Further values relating to the structure were esti-
mated as follows. A stylus instrument was used to
measure the total thickness of the 12-period coating
with the result 1975 nm, and hence ��165 nm, dA
�9.2 nm, and dB�4.0 nm. Using the equation �Br
=2nav�, we obtained nav�1.75, and a simulation of
the optical properties, using Berreman 4�4 matrix
algebra,7 required n3−n2�0.07 to yield the experi-
mental value of the peak reflectance at the Bragg
resonance. A plot of normalized copolarized reflec-
tance versus � for wavelength �Br and with the azi-
muthal angle of the sample set at 	Br is shown for the
composite coating in Fig. 6(a). Such a characteristic
reflectance profile shows that the EP Bragg reso-
nance is twice as large as the corresponding reflec-
tance with CP light.

Fig. 4. Copolarized reflectance spectrum recorded for a
right-handed birefringent–chiral composite coating with
fabrication parameters �v=63°, ��=14.4°, fB=0.3, N=12,
nC=1, and nS=1.52.

Fig. 5. Copolarized reflectance map recorded for a right-
handed chiral–birefringent composite coating with fabrica-
tion parameters �v=63°, fB=0.3, N=12, and nC=1, nS

=1.52.
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Simulations show that the polarization and
strength of the Bragg resonance (from either struc-
ture in Fig. 1) may be influenced by spurious reflec-
tions associated with mismatch of the refractive indi-
ces of the cover, film, and substrate. Relevant to our
discussion here a simulation [Fig. 6(b)] with fB
=0, nav=1.75, n3−n2=0.07, nC=1, nS=1.52, N=12
yields �Br=27°, a value that is significantly larger
than the experimental value with fB=0.3. The per-
turbed structure in Fig. 1(b), in which the axes of the
sublayers of A and B are parallel at the start of the
dielectric period, is optimized for maximum peak re-
flectance and minimum ��Br� for a given fB. In prin-
ciple spurious reflections can be reduced to negligible
levels by index matching or with phase- and
amplitude-matched antireflection coatings.2,8 In a
range of simulations of right-handed composite struc-
tures with n3−n2=0.07, N=50, and with spurious re-
flections eliminated by index matching �nC=nav=nS
=1.52� we were able to position the Bragg resonance
anywhere within the range 0��Br�� /4 by choosing
fB from the range 0� fB�0.5. Characteristic reflec-
tance profiles simulated for the CP and LP cases are
shown in Figs. 6(c) and 6(d).

Additional insight into the perturbed chiral struc-
ture can be obtained by expressing it as a sequence of
twisted birefringent sublayers Aj and aligned bire-
fringent sublayers B, … BAj−1BAjBAj+1B …, and
then rearranging as a sequence of symmetric Herpin

Fig. 6. Normalized copolarized reflectance profiles re-
corded at �Br, 	Br for (a) the chiral–birefringent composite
coating fabricated with fB=0.3, N=12, air and glass bound-
ing media; (b) a simulation of a similar coating with fB
=0, N=12; (c) an index-matched simulation with fB=0, N
=50 that positions the Bragg resonance at �=� /4 (right-
handed CP); and (d) an index-matched simulation with fB
=0.5, N=50 that positions the Bragg resonance at �=0
(LP).
periods with general structure �B /2�Aj�B /2�. Each
Herpin period can be replaced by an equivalent sub-
layer Cj, with effective principal axes and effective
principal refractive indices.7 Application of the
method to the chiral–birefringent coating that we
have discussed in this Letter shows that the equiva-
lent medium C is basically right-handed but with
out-of-phase oscillations of approximate amplitude
0.01 on the in-plane effective refractive index values
and with an oscillation of approximate amplitude 15°
on the azimuthal angle of the effective fast axis.

In conclusion, we have described a structural per-
turbation that changes the polarization of Bragg
resonance of a chiral reflector from circular to ellipti-
cal. In principle any desired polarization, circular, el-
liptical, or linear, can be nanoengineered for the reso-
nance. The new materials may expand the scope of
existing and developing areas where handed materi-
als are employed, such as chiral fiber Bragg gratings9

and chiral photonic defect-mode lasers.10

Financial support for this project was received
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Abstract

The reflectances and transmittances of linearly polarized light are calculated using the piecewise homogeneity

approximation for a sculptured nematic thin film (SNTF) with a sinusoidally varying (local) columnar tilt angle. Empir-

ical data on TiO2, available in the literature, are used to realistically model the variation of the permittivity dyadic with

the tilt angle. Wave propagation is taken to occur in the morphologically significant plane of the SNTF. Several Bragg

peaks occur, with the fundamental peak making a tilt-modulated SNTF suitable for exploitation similarly to a rugate

filter. Additionally, the appearance of a spectral hole in the fundamental Bragg peak is demonstrated with the inclusion

of a central defect layer.

� 2005 Elsevier B.V. All rights reserved.

PACS: 77.55.+f; 78.20.Ek; 78.20.Fm; 78.66.�w

Keywords: Nanowire assemblies; Nematic morphology; Rugate filter; Spectral hole; Sculptured thin film
1. Introduction

The optical properties of sculptured thin films

(STFs) have been studied now for some time.
0030-4018/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.optcom.2005.02.075
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Many potential uses have been proposed and some

of them have been realized, as becomes clear from
three review chapters [1–3]. Most of the research

effort, however, has concentrated on chiral STFs,

which are assemblies of helical nanowires, and ex-

hibit the circular Bragg phenomenon [4,5]. In con-

trast, little theoretical work has been done on

sculptured nematic thin films (SNTFs) which are

assemblies of nanowires whose morphology
ed.
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mailto:axl4@psu.edu
mailto:axl4@psu.edu


Fig. 1. Tilt angle v and vapor incidence angle vv for a columnar

thin film.
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evolves during fabrication essentially in just two

dimensions, although such films have been grown

for more than a decade [6,7].
The nanowires of a STF grow when a highly

collimated vapor is directed at a substrate at suit-

able temperature and pressure [2]. As shown in

Fig. 1, when the substrate is stationary and the

average directionality of the vapor flux is fixed,

the nanowires grow at an angle with respect to

the substrate plane [8–10]. A thin film comprising

parallel straight nanowires is called a columnar
thin film (CTF). The tilt angle v of the straight

nanowires, in general, is larger than the vapor inci-

dence angle vv. By changing vv during deposition,

the nanowires can be shaped to a wide variety of

two-dimensional curves in order to produce

SNTFs [7].2

Some of the SNTF morphologies already pro-

duced include chevrons and S-shaped nanowires
[6,7,11]. If the dielectric properties in a SNTF vary

periodically along the z-axis (i.e., normal to the

substrate plane), then this film should exhibit the

linear Bragg phenomenon when interrogated by

a normally incident plane wave [10,12]. In particu-

lar, SNTFs are natural candidates for making ru-

gate filters [13,14] using thin-film technology, as

has been shown theoretically for canonical SNTFs
[15,16] and experimentally for other types of

SNTFs [11,17,18]. Generally, the variation of a

pertinent refractive index with respect to z is sinu-

soidal in rugate filters [11,13,14].

To our knowledge, most theoretical analyses

either modeled the SNTFs as being isotropic with

only a periodically changing refractive index
2 Chiral STFs require a rotation of the substrate about an axis

perpendicular to the substrate.
[17,18] or ignored the complications arising in

the anisotropic permittivity tensor owing to con-

tinuous changes in vv [15,16]. The sole exception

is a short communication from McPhun et al.

[11], wherein a reasonable attempt was made to
accommodate the structural and dielectric proper-

ties of real SNTFs. However, the treatments in all

foregoing references were confined to normally

incident plane waves.

Attention is focused in this paper on the re-

sponses of SNTFs to linearly polarized plane

waves propagating in the morphologically signifi-

cant plane (i.e., the xz plane). The chosen STFs
are supposed to be fabricated by varying the vapor

incidence angle sinusoidally as a function of film

thickness during deposition, i.e., vv is a sinusoidal

function of z. We use an experimentally deduced

relationship between vv and the permittivity dyadic

of the SNTF to capture the optical consequences

of the resultant morphology of the nanowires

[19], and we determine the reflectances and trans-
mittances of the film using the piecewise homoge-

neity approximation technique [1,4]. Although

our calculations were carried out for TiO2 SNTFs,

using empirical relations for TiO2 CTFs developed

by Hodgkinson et al. [19], qualitatively similar

conclusions should hold for similar SNTFs made

of other materials.

After establishing the planewave response char-
acteristics of the sinusoidally tilt-modulated

SNTFs, we turn our attention to the effects of

introducing a defect in the middle of the film. As

has been demonstrated with isotropic periodic thin

films [20,21], cholesteric liquid crystals [22], chiral

STFs [23,24], and slanted chiral STFs [25], suitable

defects can produce narrow spectral reflection

holes in Bragg regimes. We explore the character-
istics of the spectral hole in terms of various depo-

sition and geometric parameters.

The remainder of this paper is organized as fol-

lows: in Section 2, the matrix differential equation

for wave propagation in the morphologically sig-

nificant plane (the xz plane) of a SNTF is devel-

oped. The details of the tilt-modulation are

presented in Section 3 along with the related vari-
ations in the permittivity dyadic of the SNTF. Cal-

culated spectrums of the reflectances are presented

in Section 4 for a range of parameters. Section 5
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contains an explication of the effects of introduc-

ing a defect layer in the middle of the SNTF and

characterizes its effect for various situations. Con-

cluding remarks are made in Section 6.
2. Matrix ordinary differential equation

With varying vv and the assumption of purely

linear and dielectric response properties, the con-

stitutive relations of a SNTF are

DðrÞ ¼ �ðzÞ � EðrÞ ¼ �0Sy
� �0

ref
� S�1

y
� EðrÞ; ð1Þ

BðrÞ ¼ l0HðrÞ; ð2Þ

where �0 and l0 are the permittivity and permeabil-

ity of free space. The unitary dyadic Sy describing

the nanowire tilt as a function of z is written as

S
y
¼ ðuxux þ uzuzÞ cos vþ ðuzux � uxuzÞ sin vþ uyuy ;

ð3Þ

where v ” v(z), and ux, uy and uz are the Cartesian

unit vectors. The permittivity dyadic of any STF is

locally orthorhombic [1]; hence,

�0
ref

¼ �auzuz þ �buxux þ �cuyuy : ð4Þ

As �0
ref

is a function of vv [7,19], it is also a function

of z. Furthermore, �0
ref

depends on the angular

frequency x of the incident electromagnetic field.

In order to determine the planewave response of

a SNTF of thickness L, the constitutive relations
(1) and (2) are substituted into the frequency-do-

main Maxwell curl postulates

r� EðrÞ ¼ ixl0HðrÞ
r � HðrÞ ¼ �ix�ðzÞ � EðrÞ

)
; 0 < z < L; ð5Þ

where an exp(�ixt) time-dependence is implicit.

Consistently with the assumption of the incident

planewave propagating in the xz plane, the fields

inside the SNTF are expressed in terms of their

Fourier amplitudes, relative to variation in the x

direction, as

EðrÞ ¼ ½exðz; kÞux þ eyðz; kÞuy þ ezðz; kÞuz� expðikxÞ;
ð6Þ
H 0ðrÞ ¼ ½hxðz; kÞux þ hyðz; kÞuy þ hzðz; kÞuz� expðikxÞ;
ð7Þ

where k is the transverse wavenumber determined

by the incidence conditions.

Eqs. (5) then separate into two algebraic equa-

tions and four ordinary differential equations

(ODEs). The two algebraic equations are

ezðzÞ ¼ ð�a��bÞ
2�as

sin 2v exðzÞ � k
x�0�as

hyðzÞ;
hzðzÞ ¼ k

xl0
eyðzÞ;

ð8Þ

where

s ¼ cos2vþ �b
�a
sin2v: ð9Þ

The four coupled ODEs can be represented

compactly as the matrix ODE [15,16,26,27]

d

df
f ðfÞ
h i

¼ iX
p

P ðfÞ
h i

� f ðfÞ
h i

: ð10Þ

In anticipation of the periodicity to be imposed in

Section 3, the matrix ODE (10) has been written in
terms of the normalized coordinate

f ¼ pz=X; ð11Þ

where X is the half-period of the sinusoidal varia-

tion of vv(z). The x- and y-directed components of

the electromagnetic field phasors are arranged in

the column vector

f ðfÞ
h i

¼

exðfÞ
eyðfÞ
hxðfÞ
hyðfÞ

2
6664

3
7775: ð12Þ

The 4 · 4 kernel matrix on the right side of (10) is

PðfÞ
h i

¼

�~A sin2v 0 0 xl0 � ~B

0 0 �xl0 0

0 ~C � ~F 3 0 0

~F 2 � ~F 1sin
22v 0 0 �~A sin2v

2
6664

3
7775;

where
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~A ¼ kð�b � �aÞ
2�as

; ~B ¼ k2

x�0�as
;

~C ¼ k2

xl0

; ~F 1 ¼
x�0ð�b � �aÞ2

4�as
;

~F 2 ¼ x�0�b~s; ~F 3 ¼ x�0�c; ~s ¼ cos2vþ �a
�b
sin2v:

ð13Þ

In order to solve the boundary value problem

necessary to determine the reflectances and the

transmittances, it is convenient to recast the for-
mulation in terms of a 4 · 4 matrix [M(f)] (called
the matrizant), such that [4,28]

f ðfÞ
h i

¼ MðfÞ
h i

� f ð0Þ
h i

: ð14Þ

It then follows that:

d

df
MðfÞ
h i

¼ iX
p

PðfÞ
h i

� MðfÞ
h i

; ð15Þ

subject to the boundary condition

Mð0Þ
h i

¼ I
h i

; ð16Þ

where [I] is the identity matrix. Eqs. (15) and (16)

constitute an initial value problem. The matrizant

can be calculated by exploiting the piecewise

homogeneity approximation technique [1,4], fol-

lowing which the reflectances and the transmit-

tances for s- and p-polarized planewaves can be
calculated for incident planewaves using standard

techniques.
3. Modeling of tilt variation

Sinusoidal variation in vv with respect to z can

be described by

vvðzÞ ¼ ~vv þ dv sinðpz=XÞ; ð17Þ
where ~vv represents the average vapor incidence

angle, whereas dv is the amplitude and 2 X is the

period of oscillation. When dv = 0, the SNTF is

macroscopically homogeneous and Bragg phe-

nomenons cannot occur.
In order to investigate wave propagation

through a SNTF, vv must be related to two resul-

tant properties of the film: the tilt angle v and the

local permittivity dyadic �0
ref
. Empirical relation-
ships have been determined for TiO2 CTFs by

Hodgkinson et al. [19] as follows:

�a ¼ 1:0443þ 2:7394
vv
p=2

� �
� 1:3697

vv
p=2

� �2
" #2

;

ð18Þ

�b ¼ 1:6765þ 1:5649
vv
p=2

� �
� 0:7825

vv
p=2

� �2
" #2

;

ð19Þ

�c ¼ 1:3586þ 2:1109
vv
p=2

� �
� 1:0554

vv
p=2

� �2
" #2

;

ð20Þ

tan v ¼ 2:8818 tan vv; ð21Þ

where vv and v are in radian. From the experimen-

tal data underlying the foregoing equations, non-

polynomial expressions describing the permittivity

can also be obtained [29], but the quadratic expres-

sions sufficed for our present purpose. As stated in

the introductory section, in the absence of actual
data for SNTFs, we decided to apply the foregoing

relations for CTFs for SNTFs as well.

Two comments must be made at this stage:

(i) When growing a columnar thin film, it is

commonplace to consider the vapor as being

directed from the first quadrant of the xz

plane, as shown in Fig. 1; then, vv 2 (0, p/2]
and v 2 (0, p/2] such that v P vv. However,

(17) clearly accommodates vv 2 [p/2, p),
which should be interpreted as the vapor

being directed from the second quadrant of

the xz plane. Since, (18)–(21) are symmetric

about vv = p/2 they remain valid in the sec-

ond quadrant, correctly yielding v 2 [p/2, p)
such that v 6 vv; furthermore, �a, b, c remain
invariant when vv = (p/2) � #v is replaced

by vv = (p/2) + #v such that #v 2 [0, p/2). In
summary, (18)–(21) are adequate for

vv 2 (0, p).
(ii) The scalars �a, b, c are held to be independent

of vv for canonical SNTFs [1,2]. The fab-

rication of a canonical SNTF requires



14 J.A. Polo Jr., A. Lakhtakia / Optics Communications 251 (2005) 10–22
manipulation not only of the substrate orien-

tation but also of the vapor flux and the

deposition rate, in order to modulate

the incremental porosity and density of the

growing thin film. Only then can �a, b, c be
kept invariant with respect to the changing

vapor incidence angle. Canonical SNTFs

are not the focus of this paper.
4. Planewave response of tilt-modulated SNTF

For all calculations presented in this section, we

chose X = 75 nm. This choice places one of the

dominant features of the remittance spectrums

near the free-space wavelength k0 = 630 nm, the

same wavelength at which Hodgkinson et al. [19]

performed their experiments to arrive at (18)–

(21). Dispersion and dissipation are neglected here,

as the required data is unavailable, but that should
not seriously impair the qualitative conclusions

arrived at by us. Furthermore, we set L = 60 X,
unless otherwise noted, so that the Bragg phenom-

enon is well-developed.

Closed-form solutions of (15) are not known to

exist under the conditions being studied here.

Numerical solutions of that equation were ob-

tained using the piecewise homogeneity approxi-
mation technique [1,4]. In this technique, the

STF is partitioned into a multitude of optically

thin slices parallel to the plane z = 0. Each slice

is treated as if it has a uniform permittivity dyadic

which is the same as that of the STF at the mid-

point of the slice. The efficient application of this

method to chiral STFs has been described else-

where [28], and was applied by us for the chosen
SNTFs. The accuracy depends on the slice thick-

ness; based on experience, we set the slice thickness

at 0.1 nm.

Using an algorithm to determine [M(f)] subject
to the constraint (16), we were able to solve the

boundary value problem for determining the

planewave remittances (reflectances and transmit-

tances) [30]. The eight remittances are as follows:
Rss, Rsp, Rps, Rpp, Tss, Tsp, Tps and Tpp. Here,

for instance, Rps is the fraction of the incident

power density reflected as a p-polarized planewave
when the incident planewave is s-polarized. We

note that uy Æ E = 0 (resp. uy Æ H = 0) for p-polar-

ized (resp. s-polarized) planewaves in free space.

The symmetries of [P(f)] enjoin that cross-polar-

ized remittances (Rsp, ps and Tsp, ps) are identically
zero [15,16].

4.1. Normal incidence

Let the angle h denote the angle of planewave

incidence with respect to the z-axis; then

k ¼ ð2p=k0Þ sin h; ð22Þ

where k0 is the free-space wavelength. We com-

mence our discussion of reflectance spectrums

when the normal-incidence conditions prevail,

i.e., h = 0.

4.1.1. ~vv ¼ 30�

Calculated reflectances as functions of k0 are
shown in Fig. 2 for both s- and p-polarizations

when ~vv ¼ 30� and dv = 10�. The corresponding

transmittances are not shown because

Tpp = 1 � Rpp and Tss = 1 � Rss due to dissipation

having been ignored in (18)–(21). Dispersion hav-

ing been ignored as well, we confined ourselves

to wavelengths not very far from k0 = 630 nm,

the wavelength for which (18)–(21) are strictly
valid.

The spectrums of the reflectances for both

polarizations look very similar. Both exhibit prom-

inent Bragg peaks near k0 = 570 nm with maxi-

mum reflectances close to unity. The Bragg

regimes differ by approximately 11 nm with the

peaks at roughly k0 = 563 nm and k0 = 582 nm

for Rpp and Rss, respectively. A shorter and much
narrower 2nd harmonic peak at half the wave-

length of the large peak can be seen in the spec-

trum of Rss at k0 = 289 nm; and a 2nd harmonic

peak is also visible in the Rpp-spectrum at

k0 = 279 nm, although it is much weaker and

barely visible above the background oscillations.

We caution that the spectral location of harmonics

shall be affected by dispersion, which is ignored
here.

Outside the fundamental Bragg regimes (near

570-nm wavelength), both reflectance spectrums

exhibit oscillations with roughly constant



(a) (b)

Fig. 2. Reflectance spectrums of a tilt-modulated SNTF made of TiO2 with ~vv ¼ 30�, dv = 10�, X = 75 nm and L = 60 X. The incident
planewave is normally directed, i.e., h = 0: (a) Rpp; (b) Rss.
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amplitude over the entire range of wavelengths dis-

played. One exception occurs in the wavelength-re-

gime just above the 2nd harmonic Bragg peaks.

Here, the amplitude of oscillation in the spectrum

goes to zero.
Fig. 3 shows the effects of increasing the tilt-

modulation amplitude to dv = 20�. Several changes
can be noted. The fundamental Bragg regimes for

both polarizations broaden significantly. The
(a) (b

Fig. 3. Same as Fig. 2, e
reflectances saturate to a value of unity over a

wavelength-regime with sharp roll-offs, the Bragg

regimes thus having ‘‘top-hat’’ profiles. The funda-

mental Bragg regime for Rpp extends from roughly

541 to 598 nm, while that for Rss from 538 to
618 nm.

The 2nd harmonic peak in the spectrum of Rss

also strengthens to the maximum possible, and

broadens as well, in comparison with Fig. 2, but
)

xcept that dv = 20�.



(b)(a)

Fig. 4. Same as Fig. 2, except that dv = 30�.

3 The spectrum of Rss can be used equivalently, to the same

effect.
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the 2nd harmonic peak in the Rpp-spectrum dimin-
ishes in contrast. However, extremely narrow 3rd

and 4th harmonic peaks appear in the Rpp-spec-

trum at k0 = 190 nm and k0 = 142 nm, respectively.

A 3rd harmonic peak is visible in the Rss-spectrum,

as well, at k0 = 191 nm. Oscillations outside the

Bragg regimes also change with the increase in

modulation amplitude.

The results for maximum possible modulation
(i.e., dv = 30�) are shown in Fig. 4. With the excep-

tion of the growth of the 2nd harmonic Bragg peak

in the spectrum of Rpp, all of the trends noted

when dv was increased from 10� to 20� continue

with the further increase of dv to 30�.
A careful examination of results for all three

levels of modulation show that the width of the

fundamental Bragg regime in the Rpp-spectrum
grows primarily on the long-wavelength side as

the modulation amplitude is increased. The funda-

mental peak width in the Rss spectrum, however,

grows more symmetrically with the short-wave-

length side growing slightly more than the long-

wavelength side. Thus there is a slight red-shift in

the fundamental Bragg regime of the Rpp-spec-

trum, and a blue-shift in the same regime of the
Rss-spectrum. Similar results hold for all

vv 2 (0, p/2); and we therefore conclude that tilt

modulation provides an attractive route for

increasing the bandwidth of SNTF rugate filters.
4.1.2. ~vv ¼ 90�

When ~vv ¼ 90�, we have a special case. Because

the elements of the matrix [P] are symmetric with

variation of vv about 90�, the period of [P] is

halved. Hence, the fundamental Bragg regime

must appear at about k0 = 285 nm. Indeed that is

true, as exemplified by Fig. 5. Other numerical re-

sults, not presented here, confirm that an increase

of the ratio dv=~vv increases the bandwidth of the
fundamental Bragg regime even for ~vv ¼ 90�.

4.1.3. Full modulation ðdv ¼ ~vvÞ
At full modulation the film becomes highly

reflective. Fig. 6(a) shows the spectrum of Rpp
3

for L = 20 X and ~vv ¼ dv ¼ 90�. Even at this small

thickness (L = 20 X), the fundamental Bragg peak

is not only well-defined, but has saturated over a
substantial wavelength range with rapid roll-off

at both edges. The 2nd and 3rd harmonic peaks

are also quite strong with heights greater than

0.95. Although not shown, even for 10 X-thickness
the fundamental Bragg peak very nearly reaches

unit height.

Full modulation at other values of ~vv show sim-

ilarly strong fundamental Bragg peaks, although
not to the degree exhibited when ~vv ¼ 90�. For



(a) (b)

Fig. 5. Same as Fig. 2, except that ~vv ¼ 90� and dv = 60�.

(a) (b)

Fig. 6. Rpp-spectrums of a tilt-modulated SNTF made of TiO2 with X = 75 nm and L = 20 X: (a) ~vv ¼ dv ¼ 90�; (b) ~vv ¼ dv ¼ 30�.
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comparison, Fig. 6(b) shows the results for
~vv ¼ 30�. The peak does not quite reach a height

of unity, but is still very strong for such a thin film.

Unlike the spectrum for ~vv ¼ 90�, harmonic peaks
are relatively weak.

4.2. Oblique incidence

Planewave remittances were also calculated

at several different angles of incidence for vari-

ous sets of SNTF parameters. Figs. 7 and 8

show the results for h = 60� and h = 80�, respec-
tively, when ~vv ¼ dv ¼ 30� and L = 60 X. Several
trends become apparent on comparing Figs. 4,

7, and 8.

As with chiral STFs [31], the Bragg regimes
blue-shift as the angle of incidence is increased.

The central wavelengths kmid of the peaks were

estimated for several other angles of incidence. It

was found that kmid is linearly related to cos2h,
as illustrated in Fig. 9 with a plot of kmid vs. cos

2h
when ~vv ¼ dv ¼ 30�, for the fundamental Rpp

peak. All harmonic peaks for both polarizations

behave similarly.



(a) (b)

Fig. 7. Reflectance spectrums for h = 60� of a tilt-modulated SNTF made of TiO2 with ~vv ¼ dv ¼ 30�, X = 75 nm and L = 60 X:
(a) Rpp; (b) Rss.

(a) (b)

Fig. 8. Same as Fig. 7, except that h = 80�: (a) Rpp; (b) Rss.
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The most obvious polarization-dependent effect

involves the oscillations in the reflectance spec-

trums. The Rpp-spectrums show a reduction of

the oscillations at h = 60� and then a return to

strong oscillations at h = 80�. On the other hand,

calculations at both angles show a monotonic in-

crease in oscillations in the Rss-spectrums as h is in-
creased. Additional calculations not shown
indicate that a minimum oscillation amplitude
for Rpp occurs near h = 67�: the oscillations mono-

tonically decrease in amplitude as h is increased

until about h = 67�, and thereafter monotonically

increase in amplitude as h is increased.

The radically different behavior for the two lin-

ear polarizations with a minimum for the p-polar-

ization is reminiscent of the Brewster effect [32,

Section. 1.5.3]. If the values of three individual
components of the permittivity dyadic at the
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Fig. 10. Rpp-spectrums for h = 0� of a tilt-modulated SNTF

with a central defect layer, as described in Section 5.
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Fig. 9. kmid vs. cos2 h for the fundamental Bragg peak in the

spectrum of Rpp when ~vv ¼ dv ¼ 30� and L = 60 X. The straight
line is a least-squared-error fit to the discrete data points.
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surface of the film are used to calculate the Brew-

ster angle for an isotropic, homogeneous dielectric

material, the angle ranges between 67� and 68�.
Thus, outside the Bragg regimes, the polariza-

tion-sensitivity of the SNTF appears to be similar
to an isotropic material�s.

The other polarization-dependent phenomenon

is the change in spectral profiles of the Bragg re-

gimes. In the Rpp-spectrum, the fundamental

Bragg regime becomes narrower and shorter as

h approaches 67�. All of the other regimes (at

shorter wavelengths) do the opposite: they become

broader and taller. In contrast, all of the Bragg re-
gimes in the Rss-spectrum broaden as h increases.

Although the results shown here are only for

vv = 30� and dv = 30�, calculations using other

values of both angles yield similar conclusions

for oblique incidence. In some cases, however,

the harmonic peaks in the Rpp-spectrum may also

become shorter and narrower as the Brewster an-

gle is approached rather than taller and wider as
noted earlier in this section for vv = dv = 30�.
5. Tilt-modulated SNTF with a central defect

It is well known that introducing a defect in the

middle of a periodic system can produce a spectral

hole in the Bragg regime [20,21]. The spectral hole
is a dip in the Bragg regime over a very narrow

range of the spectrum where the reflectance goes

to zero. We attempted to create the same phenom-

enon in the tilt-modulated SNTF by including a

thin, homogeneous layer in the middle of the film

as the defect.

The effect of the defect was investigated for a

TiO2 SNTF with ~vv ¼ 90�, dv = 60� and
X = 150 nm. The value of X was chosen so as to

shift the fundamental Bragg peak closer to

k0 = 630 nm, the wavelength at which the permit-

tivity parameters were measured. The thickness of

the SNTF sections above and below the defect

layer was set atN1/22X, whereN1/2 > 0 is an integer.

The defect layer was chosen to be 65-nm thick

with ~vv ¼ 90� and dv = 0�. Then, ux Æ � Æ ux =
uy Æ � Æ uy = 5.8274�0, and the wavelength for an

electromagnetic wave without x- and y-depen-

dences is 261 nm in the defect layer when
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k0 = 630 nm. The central defect layer is thus a

quarter-wavelength thick.

The normal-incidence spectrums of Rpp in the

vicinity of the fundamental Bragg peak are

shown in Fig. 10 for N1/2 = 4 and N1/2 = 8. As
the SNTF sections become thicker, this figures

indicates that the spectral hole narrows and red-

shifts. Parenthetically, the spectrums of Rpp were

chosen to illustrate the point, but the Rss-spec-
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(a)

Fig. 11. khole vs. N1/2 when h = 0�, ~vv ¼ 90�, dv = 60� and X = 1

(b) s-polarization.
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Fig. 12. khole vs. cos
2 h for ~vv ¼ 90�, dv = 60�, X = 150 nm and N1/2 =

squared-error fits to the discrete data points: (a) p-polarization; (b) s
trums could equally well have been used; indeed,

except for slightly wider holes and different posi-

tions, the spectrums of Rss look very similar to

those of Rpp.

The red-shift of the spectral hole, as the thick-
ness of the SNTF sections is increased, slows with

increasing thickness. The wavelength of the hole

minimum, denoted by khole, appears to approach

an asymptotic value. Fig. 11 shows khole as a
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15. See Section 5 for other details. The straight lines are least-

-polarization.
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Fig. 13. khole vs. defect thickness for ~vv ¼ 90�, dv = 60�, X = 150 nm and N1/2 = 8. See Section 5 for other details. The straight lines are

least-squared-error fits to the discrete data points: (a) p-polarization; (b) s-polarization.
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function of N1/2 for both linear polarizations.

Although the values of khole for the two polariza-
tions are different, they exhibit very similar spec-

tral shifts as functions of film thickness. As N1/2

is increased from 4 to 12, khole changes by approx-

imately 2 and 3 nm for Rpp and Rss, respectively.

The effect of the angle of incidence h on khole
was also investigated. As was the case for kmid

describing the position of the Bragg peaks, khole
appears to be linearly related to cos2 h. Fig. 12
shows plots of khole vs. cos2 h for both polariza-

tions, when ~vv ¼ 90�, dv = 60� and N1/2 = 15. The

calculations were performed every 2.5� in the

range 0� 6 h 6 20�. As can be seen in the figure,

a linear fit is extremely good. Although the most

likely applications of the SNTFs would be for nor-

mal-incidence conditions, the calculations were ex-

tended to h = 80� and indicate that the relation is
valid over a much wider range. Although not illus-

trated here, we observed that the hole width is also

affect by the angle of incidence, and decreases as h
increases.

Finally, khole was calculated as a function of the

defect layer thickness at normal incidence, for both

s- and p-polarizations. Results are shown in Fig. 13

for a range of change in defect thickness of ±50% of
the quarter-wavelength value when ~vv ¼ 90�,

dv = 60� and N1/2 = 8. The relationship between

khole and defect thickness is very nearly linear.
6. Conclusion

A realistic model of a tilt-modulated SNTF has

been developed using available empirical data for

columnar thin films. It has been demonstrated that

such films are functionally similar to rugate filters

for linearly polarized light. Reflection and trans-

mission spectrums show Bragg peaks, depending

on the average tilt angle ~vv of the nanowires and

the amplitude dv of the modulation. The locations
of the Bragg peaks for p-polarization are in gen-

eral different from the locations of the Bragg peaks

for s-polarization. The bandwidths of the Bragg

peaks depend on the level of modulation, with

higher modulation leading to broader peaks. The

peaks blue-shift as the angle of incidence is

increased with a linear relationship between the

central wavelength and cos2 h.
Outside of the Bragg regimes the spectrums ex-

hibit significant oscillation. The oscillations in the

spectrums for p-polarization decease in amplitude

to near zero as the angle of incidence is increased

toward the Brewster angle for a comparable iso-

tropic material. The oscillations in the spectrums

for s-polarization, on the other hand, grow in

amplitude monotonically as the angle of incidence
is increased.

A spectral hole can be introduced in the funda-

mental Bragg peak with the inclusion of a defect in
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the middle of the film, consisting of a layer close to

a quarter-wavelength thick with constant tilt an-

gle. The width of the hole becomes narrower as

thickness of the film is increased. There is also a

slight dependance of the spectral position of the
hole on the modulated film thickness. However,

the position of the hole changes very little for total

thickness beyond 30 cycles of modulation. The po-

sition of the spectral hole varies linearly with

cos2 h. To a good approximation, the spectral po-

sition of the hole depends linearly on the thickness

of the defect layer.

The tilt-modulated SNTF offers many design
possibilities for optical filters to be used with lin-

early polarized light. Fundamental Bragg peaks

can be exploited as broadband filters. For nar-

rowband filters, a central defect layer can be in-

cluded, the bandwidth depending on the

thicknesses of the SNTF sections as well as of

the defect layer. Fine tuning can be conveniently

achieved by varying the angle of incidence. The
tilt-modulated SNTF thus offers yet another op-

tion in the growing number of useful structures

made with STF technology [33,34]. As with chiral

STFs [1–3], both passive optical devices as well

as sensor devices based on tilt-modulated SNTFs

can be envisioned.
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Abstract

The reflectances and transmittances of light incident normally on a chiral sculptured thin film with a periodically

modulated tilt angle are calculated using the piecewise homogeneity approximation method. The necessary concurrent

modulation of the local permittivity dyadic are accounted for by using empirically determined parameters. For mod-

ulation lengths equal to half the unmodulated structural period of the film, the circular Bragg phenomenon displayed

by unmodulated chiral STFs is destroyed. It is demonstrated that the chosen nanomaterial then acts as a conventional

dielectric mirror.

� 2004 Elsevier B.V. All rights reserved.
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Keywords: Dielectric mirror; Physical vapor deposition; Quarter-wave stack; Sculptured thin film; Structural chirality
1. Introduction

Light incident normally on a stack of dielectric

layers of alternating high and low permittivity is

strongly reflected, when the free-space wavelength
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lies within the so-called Bragg regime. If the stack

is designed so that each layer thickness is a quarter

of the light wavelength within the layer, the reflect-

ance is maximized. With enough layers, the quar-

ter-wave stack acts as a dielectric mirror. The

bandwidth of the Bragg regime is determined by

the difference in the relative permittivities of the
two materials. The layers being made of isotropic

materials, the polarization state of the incident

light does not matter [1]. If, however, the layers

are constructed of orthorhombic materials (whose
ed.
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dielectric response properties are described by a

relative permittivity dyadic rather than a relative

permittivity scalar), the Bragg regime depends on

the polarization state of the incident light [2].

Chiral sculptured thin films (STFs) consist of
helical nanowires oriented perpendicular to the

surface of the film. The nanowires have noncircu-

lar cross-sections resulting in the chiral STF pos-

sessing a locally anisotropic permittivity dyadic

which varies helicoidally in a direction normal to

the substrate. Within the Bragg regime, circularly

polarized light of handedness matching the struc-

tural handedness of the chiral STF is strongly re-
flected, while light of the opposite handedness is

not. This effect is known as the circular Bragg phe-

nomenon (CBP). Unlike reflection from an iso-

tropic dielectric mirror (for which the circular

polarization state is reversed upon reflection),

reflection (if it occurs) by a sufficiently thick chiral

STF does not reverse the circular polarization

state [3,4]. Thus, a single chiral STF cannot func-
tion as a conventional dielectric mirror.

One way to realize a circular-polarization-inde-

pendent mirror with chiral STFs is to make a cas-

cade of two chiral STFs which are identical except

that their structural handednesses are opposite [5].

However, that way doubles the device thickness in

exchange for independence of the circular polari-

zation state of the incident light. More disturb-
ingly, dissipation inside the chiral STFs can

vitiate the desired independence quite seriously

[6]. We report here an alternative that does not suf-

fer from the two foregoing problems.

The tilt angle (i.e., the angle of rise) of the heli-

coidal nanowires can be easily modulated during

the physical vapor deposition of a chiral STF by

changing the vapor incidence angle. Experience
with columnar thin films [7] indicates that the local

permittivity dyadic of a chiral STF must also be

modulated by continuously changing the tilt angle

[8]. We studied the optical responses of tilt-modu-

lated chiral STFs to normally incident plane waves,

using the data collected by Hodgkinson et al. on

TiO2 columnar thin films [7]. The piecewise homo-

geneity approximation method [9] was applied in
order to determine the remittances of tilt-modu-

lated chiral STFs. We determined that when the va-

por incidence angle is sinusoidally modulated with
a period equal to half of the helicoidal pitch, the

CBP displayed by a unmodulated chiral STF is re-

placed by Bragg reflection similar to that from a

quarter-wave stack. Thus, STF technology can be

used for realizing conventional dielectric mirrors.
The outline of this paper is as follows. The ma-

trix ordinary differential equation describing prop-

agation in chiral STFs is presented in Section 2.

Section 3 contains a description of the tilt-modula-

tion. Calculated optical remittances for both circu-

larly and linearly polarized light are presented in

Section 4. The effect of changing the amplitude

of the modulation of the vapor incidence angle is
explored and the crucial role of the changing local

permittivity dyadic is elucidated.
2. Matrix ordinary differential equation

The frequency-domain constitutive relations of

an unmodulated chiral STF can be written as [3]

DðrÞ ¼ �0Sz
ðzÞ � S

y
ðvÞ � �0

ref
� S�1

y
ðvÞ � S�1

z
ðzÞ � EðrÞ

¼ �ðzÞ � EðrÞ; ð1Þ

BðrÞ ¼ l0HðrÞ; ð2Þ
where E and B represent the primitive electric and

magnetic fields, respectively; D and H represent

the induction electric and magnetic fields, respec-
tively; and �0 and l0 are the permittivity and the

permeability, respectively, of free space. As chiral

STFs are locally biaxial, the reference relative per-

mittivity dyadic is given by

�0
ref

¼ �auzuz þ �buxux þ �cuyuy ; ð3Þ

where ux, uy and uz are the Cartesian unit vectors.

The locally aciculate morphology of chiral STF is

described by the dyadic

S
y
ðvÞ ¼ ðuxux þ uzuzÞ cos v

þ ðuzux � uxuzÞ sin vþ uyuy ; ð4Þ

where v 2 (0, p/2] is the tilt angle relative to the xy

plane. The dyadic function

S
z
ðzÞ ¼ ðuxux þ uyuyÞ cosðpz=XÞ

þ ðuyux � uxuyÞ sinðpz=XÞ þ uzuz ð5Þ
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describes the helicoidal rotation of the permittivity

dyadic �(z), with 2X as the structural period along

the z-axis. As stated, Eq. (1) describes a structur-

ally right-handed chiral STF.

Tilt-modulation means that v is not constant
but varies as a function of depth into the film

(along the z-axis). In addition, �0
ref

also becomes

a function of z. The variation of v with z prevents

the exploitation of the Oseen transformation

which has been used to great advantage for
½P ðfÞ� ¼

0 0 0 xl0

0 0 �xl0 0
1
2
F 1sin

22v� F 2 þ F 3

� �
sin 2f F 1sin

22v� F 2

� �
sin2f� F 3cos

2f 0 0

�F 1sin
22vþ F 2

� �
cos2fþ F 3sin

2f 1
2
�F 1sin

22vþ F 2 � F 3

� �
sin 2f 0 0

2
66664

3
77775;
unmodulated chiral STFs [3,10]. As we are inter-

ested in normally incident light, all electromag-

netic fields are independent of x and y; therefore,

E(r) ” E(z) and H(r) ” H(z). The frequency-do-

main Maxwell curl postulates

r� EðrÞ ¼ ixl0HðrÞ
r � HðrÞ ¼ �ix�ðzÞ � EðrÞ

)
; ð6Þ

where x is the angular frequency, then separate

into two algebraic equations and four ordinary dif-

ferential equations (ODEs). The two algebraic

equations are

EzðfÞ ¼ � �zx
�zz
ExðfÞ � �zy

�zz
EyðfÞ

HzðfÞ ¼ 0

�
; ð7Þ

where

f ¼ pz
X

�zx ¼ �0
2
ð�b � �aÞ sinð2vÞ cos f

�zy ¼ �0
2
ð�b � �aÞ sinð2vÞ sin f

�zz ¼ �0�as

s ¼ cos2vþ �b
�a
sin2v

9>>>>>>=
>>>>>>;
: ð8Þ

The four coupled ODEs can be represented com-

pactly as the matrix ODE [11,12]

d

df
½f ðfÞ� ¼ iX

p
½PðfÞ� � ½f ðfÞ�; ð9Þ
where the x- and y-directed components of the

electromagnetic field phasors are arranged in the

column vector

½f ðfÞ� ¼

ExðfÞ
EyðfÞ
HxðfÞ
HyðfÞ

2
6664

3
7775: ð10Þ

The 4 · 4 kernel matrix in (9) is
where

F 1 ¼
x�0ð�b � �aÞ2

4�as
; F 2 ¼ x�0�bs

0;

F 3 ¼ x�0�c; s0 ¼ cos2vþ �a
�b
sin2v:

ð11Þ

In order to solve the boundary value problem
necessary to determine the reflectances and the

transmittances, it is convenient to recast the for-

mulation in terms of a 4 · 4 matrix [M(f)] (called
the matrizant), such that [9,13]

½f ðfÞ� ¼ ½MðfÞ�½f ð0Þ�: ð12Þ

It then follows that

d

df
½MðfÞ� ¼ iX

p
½PðfÞ� � ½MðfÞ�; ½Mð0Þ� ¼ ½I �;

ð13Þ
where [I] is the identity matrix. The matrizant can

be calculated after exploiting the piecewise homo-

geneity approximation [9], following which the

reflectances and the transmittances can be calcu-

lated for normally incident plane waves.
3. Tilt-modulated chiral STF

Suppose that the tilt angle v is modulated about

a constant value with an integer number of cycles
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Fig. 1. Tilt angle v and vapor incidence angle vv for a columnar

thin film.
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over a distance of one structural period. In order
to accomplish this, the vapor incidence angle vv
must be modulated during physical vapor deposi-

tion of the film. The relationship between v and

vv for a columnar thin film is depicted in Fig. 1.

For TiO2 columnar thin films, Hodgkinson et al.

[7] obtained the relationships

�a ¼ 1:0443þ 2:7394
vv
p=2

� �
� 1:3697

vv
p=2

� �2
" #2

;

ð14Þ

�b ¼ 1:6765þ 1:5649
vv
p=2

� �
� 0:7825

vv
p=2

� �2
" #2

;

ð15Þ

�c ¼ 1:3586þ 2:1109
vv
p=2

� �
� 1:0554

vv
p=2

� �2
" #2

;

ð16Þ
and

tan v ¼ 2:8818 tan vv; ð17Þ
where vv is in radian. From the experimental data

underlying the foregoing equations, non-polyno-

mial expressions can also be obtained [14], but
the quadratic expressions sufficed for our present

purpose.

The sinusoidal modulation of the vapor inci-

dence angle may be expressed as

vv ¼ ~vv þ dv sinð2NmodfÞ; ð18Þ
where ~vv is the average value of vv, dv is the mod-
ulation amplitude, and Nmod is the number of

oscillations over a structural half-period of the

STF, which may be either integer or half-integer.
For all calculations presented here, we chose

X = 200 nm and ~vv ¼ 35�, while the thickness of

the chiral STF is L = 60X.
4. Optical response of v modulated chiral STF

With the dielectric properties of the chosen STF

defined, (13) can be solved numerically using the

piecewise homogeneity approximation. In this

approximation, the material is divided into a series

of slices perpendicular to the helical axis. Each

slice is then treated as if it has a uniform permittiv-
ity dyadic, with the value taken to be that of the

STF at the center of the slice. The efficient applica-

tion of this method to unmodulated chiral STFs

has been described elsewhere [13]. The precision

of the approximation depends on the slice thick-

ness. Based on previous calculations, the slice

thickness was chosen to be 0.1 nm. Once the mat-

rizant [M(L)] has been determined, the optical
remittances of the film can be determined by solv-

ing a boundary value problem. It is known that the

values of the remittances saturate as L is increased.

For this reason, the remittances were calculated

for a film thickness of 60X.
In the following subsections, linear reflectances

and transmittances are denoted by Rss, Rsp, Rps,

Rpp, Tss, Tsp, Tps and Tpp. Here, for instance Rps

is the fraction of the incident power density re-

flected as a p-polarized plane wave when the inci-

dent plane wave is s-polarized. Circular

reflectances and transmittances are denoted by

RRR, RRL, RLR, RLL, TRR, TRL, TLR and TLL,

where RLR is the fraction of the incident power

density reflected as a left circularly polarized

(LCP) plane wave when the incident plane wave
is right circularly polarized (RCP).

4.1. Unmodulated chiral STF

The circular remittances of an unmodulated

chiral STF are shown in Fig. 2 as functions of

the free-space wavelength k0. As can be seen in

Fig. 2(a), a RCP plane wave is strongly reflected
for a range of wavelengths 780 nm [ k0 [ 810

nm, which is the Bragg regime for normal inci-

dence, while an incident LCP plane wave is largely
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Fig. 2. Circular remittance spectrums of a chiral STF made of titanium dioxide with dv = 0, ~vv ¼ 35�, X = 200 nm and L = 60X.
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Fig. 3. Same as Fig. 2, except that linear remittance spectrums are shown.
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transmitted in the same regime. The large values of

RRR within the Bragg regime indicate that RCP
light is nearly completely reflected and maintains

its circular polarization state upon reflection.

Fig. 3 shows the spectrums of the linear remit-

tances of the chosen thin film. Unlike the circular

polarization case, the large cross-polarized remit-

tances show that the linear polarization state is

not conserved on Bragg reflection due to an

unmodulated chiral STF.
4.2. Tilt-modulated chiral STF

The high value of RRR is the hallmark of the

CBP. Fig. 4 shows the calculated values RRR vs.

k0 for various values of the tilt-modulation ampli-

tude dv, when the modulation period is equal to X
(i.e., Nmod = 1). This figure clearly shows a sup-

pression of the CBP as dv is increased. As dv in-

creases to �10�, all indications of the circular

Bragg phenomenon steadily diminish to the
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vanishing point. The effect of interest in this paper

occurs with the annihilation of the CBP.

A complete picture of the effect of tilt-modula-
tion is provided by Fig. 5 which contains spec-

trums of all eight circular remittances when

dv = 10� and Nmod = 1. Fig. 5(a) shows that, over

a range of wavelengths which is slightly bigger
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Fig. 5. Circular remittance spectrums of a tilt-modulated chiral STF

X = 200 nm and L = 60X.
than the Bragg regime of the unmodulated chiral

STF, the cross-polarized circular reflectances are

virtually unity. Furthermore, Fig. 5(b) shows that

all transmittances are virtually null-valued over

the same range of wavelengths. This behavior is
suggestive of reflection from a conventional dielec-

tric mirror which reverses the handedness of circu-

lar polarization. In order to verify that the chosen

STF is acting as a conventional dielectric mirror

over this new regime, the linear remittances were

also calculated. Fig. 6 shows the results. The mir-

ror-like behavior of the tilt-modulated chiral

STF is clearly demonstrated with nearly unity
co-polarized linear reflectances; the spectrums of

Rss and Rpp appear as one curve over the mirror

regime.

Transition to conventional mirror reflection

was not observed for any other period of the mod-

ulation, although various modulation periods, for

which there are an integer number in a distance

2X, were tried.
Fig. 7 illustrates, with a plot of RLR vs. k0 for

various values of dv, the effect of varying dv to val-

ues larger than required to obtain the conventional

mirror effect. Although the spectrums of RLR are

shown in this figure, the spectrums of RRL,Rss,

and Rpp could have been shown just as well, all
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made of titanium dioxide with Nmod = 1, dv = 10�, ~vv ¼ 35�,
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Fig. 6. Same as Fig. 5, except that linear remittance spectrums are shown.
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leading to the same conclusions. The width of the

reflection regime increases with increasing ampli-

tudes of modulation. The change in regime width

is nearly linearly dependent on the modulation
amplitude until dv = 25�, at which point the spec-

trums begins to level off. We must note here that

the maximum value of dv cannot exceed ~vv.
4.3. Source of the mirror effect

Modulation of the vapor incidence angle vv not
only modulates the tilt angle v, but the compo-

nents of the reference relative permittivity dyadic

(i.e., �a, �b and �c) as well. To determine which

modulations are responsible for the mirror effect,
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each factor was modulated separately. Fig. 8

shows the spectrum of RRR when the variation

of �0
ref

is suppressed. This leaves only a modulation

in v and the resultant modulation of the permittiv-

ity dyadic of the STF due solely to the helicoidal
structure. Comparison with Fig. 4 shows that the

CBP is still present although perturbed somewhat.
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At the lower edge of the regime, the peak height

has grown in Fig. 8 from a value close to 0.8 to

nearly 1.0. At the upper edge of the regime, the

peak is sloped rather than flat.

For computing the spectrum shown in Fig. 9,
�0
ref

was modulated as vv was modulated, but the

tilt angle v describing the conformation of the hel-
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ical nanowires was held fixed. It can be seen that

the CBP has been destroyed and replaced by the

conventional mirror effect. To further isolate the

cause of the conventional mirror effect, each of

the three components of �0
ref

was modulated sepa-
rately while the other two were held fixed at the

unmodulated values. Only a simultaneous modula-

tion of �a and �b was found to produce the conven-

tional mirror response. The results are shown in

Fig. 10. Within the mirror regime, the results are

nearly identical to those obtained for full modula-

tion of all components of �0
ref

and v, as comparison

with Fig. 5(a) shows.
5. Concluding remarks

We have thus demonstrated that, by modulat-

ing the vapor incidence angle appropriately, chiral

STFs can be grown to function as conventional

dielectric mirrors over a range of wavelengths for
normally incident plane waves – instead of as cir-

cular polarization mirrors that (unmodulated) chi-

ral STFs are known well for. Although our

calculations made use of data available for colum-

nar thin films of TiO2, we suspect that our conclu-

sions are generally robust.

As a conventional dielectric mirror, a tilt-mod-

ulated chiral STF has at least two advantages over
the quarter-wave stack. First, the latter requires

the deposition of two different materials in order

to create a permittivity contrast between adjacent

layers, but the former requires only a single mate-

rial. Second, the range of wavelengths over which

the quarter-wave stack acts as a reflector is gov-

erned by the difference in the permittivity of the

two materials, and a change in the bandwidth of
the reflective regime will entail changing layer

thicknesses and/or the selection of different materi-
als. With tilt-modulated chiral STFs, however, the

bandwidth of the mirror regime can be altered sim-

ply by adjusting the amplitude of tilt-modulation.

The mirror effect of the tilt-modulated chiral

STF will extend the already large number of pro-
posed and actual applications [3,4] of STFs, and

offers the convenience of creating a wide variety

of devices with a single manufacturing process.

As with the unmodulated chiral STFs which dis-

play the CBP, the tilt-modulated chiral STF—be-

cause of its porosity – may prove useful as a

sensor as well as a passive optical element.
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The square matrixes
[
Ye

]∗ and
[
Yh

]∗ in equation (43) of the subject paper [1] should correctly read as

[
Ye

]∗ =

[
diag[ξ∗n] diag[ξn]

diag[ζn] diag[ζ∗n]

]
,

[
Yh

]∗ = i

[
diag[ξn] − diag[ξ∗n]

diag[ζ∗n] − diag[ζn]

]
, (1)

where diag[ξn] is a diagonal matrix containing ξn, etc., and

ξ∗n =
1√
2

(
kxnkzn

k0kxyn
+ i

ky0

kxyn

)
, (2)

ζ∗n =
1√
2

(
ky0kzn

k0kxyn
+ i

kxn

kxyn

)
. (3)

The presented numerical results are not affected. Any inconvenience is regretted.
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Abstract

A theoretical investigation of lateral shifts of circularly polarized beams on reflection by a slanted chiral sculptured

thin film (STF) is presented. First, the response of the slanted chiral STF to an obliquely incident plane wave is obtained

by rigorous coupled-wave analysis; then, the angular-spectrum representation of beams is exploited for beam diffrac-

tion. Two types of lateral shifts of Gaussian beams are studied in detail. One is the lateral shift of a 2D co-handed beam

that is mostly reflected due to the circular Bragg phenomenon. This lateral shift can be either forward or backward,

depending on the angle of incidence. The other type of lateral shift is the Goos–H€anchen shift that occurs when a beam

is totally reflected. The Goos–H€anchen shift comprises components both in and normal to the plane of incidence, when

the incident beam is 3D Gaussian. The Goos–H€anchen shift is affected by both the structural handedness and the

slantedness of the slanted chiral STF in nanotechnologically significant ways.

� 2004 Elsevier B.V. All rights reserved.

PACS: 42.70.-a; 78.20.-e; 78.66.-w; 78.67,-n; 81.07.-b

Keywords: Beam shift; Gaussian beam; Goos–H€anchen shift; Nanomaterials; Sculptured thin film; Structural handedness
1. Introduction

Lateral shifts suffered by optical beams on refraction at planar bimedium interfaces are fairly easy to
envision, but not always the shifts suffered on reflection. Yet shifts on reflection do happen [1], with the

Goos–H€anchen shifts being known quite well [2]. Typically, such shifts are no more than a small fraction of

the free-space wavelength, and are often ignored unless a multiplicity of reflection events (as in waveguides)

intensifies the effect [1]. The advent of nanomaterials, however, makes even small shifts significant because

the morphological scales of these materials are also small fractions of the free-space wavelength [3].
* Corresponding author. Tel.: +1-814-863-4319; fax: +1-814-865-9974.
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The magnitude of a reflection shift is highly influenced by the morphology of the refracting nanomaterial

[3], which strongly indicates that beam shifts facilitated by emerging classes of materials be investigated.

Sculptured thin films (STFs) are a class of nanomaterials grown by physical vapor deposition [4,5]. Mi-

croscopically, STFs are porous assemblies of nanowires of 10–300 nm diameter. The interstitial voids

among the nanowires can be controlled to exhibit specific shapes and sizes [5,6]. Macroscopically, STFs are

unidirectionally nonhomogeneous, anisotropic continuums.
The constituent nanowires of a chiral STF are shaped like helixes [7]. From the macroscopic point of

view, these chiral STFs are classified as a subset of helicoidal bianisotropic mediums (HBMs) – which are

rotationally nonhomogeneous continuums [8]. Indeed, the hallmark of the optical responses of HBMs on

excitation by plane waves is the circular Bragg phenomenon, which has been intensively investigated in

both frequency- and time-domains and has been exploited for several types of optical devices [5,9–12].

Briefly, a circularly polarized plane wave of the same handedness as the helical nanowires of a chiral STF is

substantially reflected in a wavelength regime called the Bragg regime, while that of the other handedness is

not.
The helical nanowires of a chiral STF grow upright on a substrate. Recently, slanted chiral STFs

were introduced as straightforward extensions thereof [14]. The helical nanowires of a slanted chiral

STF are supposed to grow at an angle a 6¼ 0 with respect to the normal to the substrate [4,13].

Macroscopically, a slanted chiral STF is therefore helicoidally nonhomogeneous about an axis that is

not perpendicular to the substrate plane. In view of the effective periodicity of the constitutive pa-

rameters both parallel and normal to the substrate plane, a slanted chiral STF couples the circular

Bragg phenomenon which is purely specular to nonspecular diffraction (and Rayleigh–Wood anomalies

[15]) associated with diffraction gratings [16]. The slant angle a totally controls the interaction of these
two optical phenomenons [14,17].

Due to the interaction between specular and nonspecular phenomenons, practical applications of slanted

chiral STFs are likely to involve optical beams which are either continuous-wave or pulsed. Therefore, it

seems necessary to understand the diffraction of optical beams by these nanomaterials. Our focus here is on

the lateral shifts of beams due to reflection by slanted chiral STFs.

The plan of this paper is as follows. Section 2 is devoted to theoretical analysis. It provides the fre-

quency-domain constitutive relations of a slanted chiral STF as well as its planewave response, in order to

formulate the angular-spectrum representation of 2D and 3D optical beams on diffraction. The thin film is
assumed to lie between two identical, homogeneous, nondissipative, dielectric half-spaces, in order to study

two different types of problems. A rigorous coupled-wave analysis (RCWA) is stably implemented for the

accurate computation of planewave diffraction [18–20]. The optical beams, which are reflected and trans-

mitted in discrete harmonic orders, are then formulated by recombining the whole contribution of

the angular-spectrum of plane waves on diffraction. Section 3 is devoted to numerical results. First, the

planewave response of a slanted chiral STF is briefly presented for oblique incidence, focusing on the

circular Bragg phenomenon as well as total reflection. Then, the lateral shifts, including the Goos–H€anchen
shifts, of both 2D and 3D circularly polarized beams are presented for varying angles of incidence. An
expð�ixtÞ time-dependent is implicit, with x as the angular frequency and t as time. A Cartesian coordinate

system ðx; y; zÞ is used, with the substrate normal being parallel to the z axis.
2. Theoretical analysis

2.1. Constitutive relations

Let the region 0 < z < d be occupied by a slanted chiral STF, as shown in Fig. 1. The half-spaces z6 0

and zP d are filled with a homogeneous, isotropic, dielectric medium of refractive index nhs.
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Fig. 1. Schematic of the boundary value problem involving a slanted chiral STF of thickness d illuminated by an obliquely incident

plane wave. The lower and the upper half-spaces are filled by a homogeneous, nondissipative, dielectric medium of refractive index nhs.
Both specular ðn ¼ 0Þ and nonspecular ðn 6¼ 0Þ reflections and transmissions occur when a 6¼ 0, but all nonspecular reflections/

transmissions fold into the specular reflection/transmission when a ¼ 0.
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The relative permittivity dyadic of the slanted chiral STF is factorable as

�ðr; k0Þ ¼ S
y
ð�aÞ � S

z
ðrÞ � S

y
ðvsÞ � �refðk0Þ � S

T

y
ðvsÞ � ST

z
ðrÞ � ST

y
ð�aÞ; 0 < z < d; ð1Þ

where the position vector r ¼ xux þ yuy þ zuz, k0 is the free-space wavelength, and the superscript T denotes

the transpose. As most STFs are locally orthorhombic [21,22], the reference relative permittivity dyadic is

given by [7]

�
ref
ðk0Þ ¼ �aðk0Þuzuz þ �bðk0Þuxux þ �cðk0Þuyuy : ð2Þ

The wavelength-dependences of the scalars �a;b;c are assumed in Section 3 to emerge from a single-resonance

Lorentzian model [23,24] as

�a;b;cðk0Þ ¼ 1þ pa;b;c
½1þ ðN�1

a;b;c � ika;b;ck
�1
0 Þ2�

; ð3Þ

where pa;b;c are the oscillator strengths. The parameters ka;b;c and Na;b;c determine the resonance wavelengths
and absorption linewidths.

The rotational nonhomogeneity of the chosen thin film is captured by the rotation dyadic

S
z
ðrÞ ¼ uxux

�
þ uyuy

�
cos

p
X

r � u‘ð Þ
h i

þ h uyux
�

� uxuy
�
sin

p
X

r � u‘ð Þ
h i

þ uzuz; ð4Þ

the helical axis being parallel to the unit vector u‘ ¼ ux sin aþ uz cos a. The structural period along the

helical axis is denoted by 2X. The parameter h ¼ 1 for structural right-handedness, while h ¼ �1 for

structural left-handedness. The dyadic

S
y
ðrÞ ¼ uxuxð þ uzuzÞ cos rþ uxuzð � uzuxÞ sin rþ uyuy ð5Þ

serves two different roles: whereas S
y
ðvsÞ delineates the role of the growth process with ðp=2Þ – vs being the

angle of declination from the helical axis, S
y
ð�aÞ represents the slanted orientation of that axis. The slant

angle a is restricted to the range ð�vs; vsÞ due to the fact that the helical nanowires of a slanted chiral STF

must be pointed upwards in relation to the substrate plane [14]. When a ¼ 0, the slant is absent and the
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usual chiral STFs are represented by �ðr; k0Þ � �ðz; k0Þ. From here onwards, the dependences of various

quantities on k0 are implicit.
2.2. Rigorous coupled-wave analysis for planewave incidence

The next step is to formulate the response of a slanted chiral STF to an obliquely incident plane wave.

Let the incident plane wave propagate with the wavevector kð0Þ
þ ¼ kð0Þx ux þ kð0Þy uy þ kð0Þz uz from the lower

half-space z6 0. The incident, the reflected and transmitted electromagnetic field phasors are expressed in a

set of Floquet harmonics, respectively, as follows:

Ei ¼
X
n2Z

LðnÞ
þ aðnÞL

�
þ RðnÞ

þ aðnÞR

�
exp ikðnÞ

þ � r
� �

; z6 0; ð6Þ

Hi ¼
�inhs
g0

X
n2Z

LðnÞ
þ aðnÞL

�
� RðnÞ

þ aðnÞR

�
exp ikðnÞ

þ � r
� �

; z6 0; ð7Þ

Er ¼
X
n2Z

LðnÞ
� rðnÞL

�
þ RðnÞ

� rðnÞR

�
exp ikðnÞ

� � r
� �

; z6 0; ð8Þ

Hr ¼
�inhs
g0

X
n2Z

LðnÞ
� rðnÞL

�
� RðnÞ

� rðnÞR

�
exp ikðnÞ

� � r
� �

; z6 0; ð9Þ

Et ¼
X
n2Z

LðnÞ
þ tðnÞL

�
þ RðnÞ

þ tðnÞR

�
exp ikðnÞ

þ � ~r
� �

; zP d; ð10Þ

Ht ¼
�inhs
g0

X
n2Z

LðnÞ
þ tðnÞL

�
� RðnÞ

þ tðnÞR

�
exp ikðnÞ

þ � ~r
� �

; zP d: ð11Þ

In (6)–(11) and hereafter, g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
is the intrinsic impedance of free space; while faðnÞL ; aðnÞR g, frðnÞL ; rðnÞR g

and ftðnÞL ; tðnÞR g, respectively, are complex-valued amplitudes of the left- and right-circularly polarized (LCP

and RCP) components of the nth-order harmonic constituent of the incident, reflected and transmitted

fields. The symbol Z represents the set f0;�1;�2; . . .g of all integers, and ~r ¼ r� duz.
The wavevectors k

ðnÞ
� as well as the circular polarization vectors L

ðnÞ
� and R

ðnÞ
� of the nth-order harmonics

are compatible with the phase-matching and the Floquet conditions; thus,

k
ðnÞ
� ¼ kðnÞx ux þ kð0Þy uy � kðnÞz uz; ð12Þ

L
ðnÞ
� ¼ � isðnÞ

�
� p

ðnÞ
�

�
=
ffiffiffi
2

p
; ð13Þ

R
ðnÞ
� ¼ � isðnÞ

�
þ p

ðnÞ
�

�
=
ffiffiffi
2

p
: ð14Þ

In these expressions, the vectors

sðnÞ ¼ �kð0Þy

kðnÞxy
ux þ kðnÞx

kðnÞxy
uy

p
ðnÞ
� ¼ � kðnÞz

k0nhs

kðnÞx

kðnÞxy
ux þ

kð0Þy

kðnÞxy
uy

� �
þ kðnÞxy

k0nhs
uz

9>=
>; ð15Þ

help denote linearly polarized planar fields of s- and p-types, in electromagnetics literature [16,25], with

respect to the wavevector k
ðnÞ
� . The scalars
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jx ¼ ðp=XÞj sin aj
kðnÞx ¼ kð0Þx þ njx

kðnÞz ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20n

2
hs � ðkðnÞxy Þ2

q
kðnÞxy ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkðnÞx Þ2 þ ðkð0Þy Þ2

q

9>>>>=
>>>>;

ð16Þ

depend on the out-of-plane period Kx ¼ 2X=j sin aj of the slanted chiral STF along the x axis. The free-space
wavenumber is denoted by k0 ¼ x

ffiffiffiffiffiffiffiffiffi
l0�0

p ¼ 2p=k0.
The incident plane wave is the Floquet harmonic of order 0; hence, aðnÞL ¼ aðnÞR ¼ 0 8n 6¼ 0. Since

faðnÞL ; aðnÞR g are supposed to be known, the amplitude pairs frðnÞL ; rðnÞR g and ftðnÞL ; tðnÞR g need to be determined for

all n. The RCWA, which is widely used for 1D and 2D grating diffraction problems, permits us to delineate

the spectral characteristics of planewave diffraction by a slanted chiral STF.

The spatially periodic variation of �ðrÞ of (1) is represented by the Fourier series expansion

�ðrÞ ¼
X
n2Z

�ðnÞ exp in jxxð½ þ jzzÞ�; 0 < z < d; ð17Þ

where

�ðnÞ ¼
X
r;r0

�
ðnÞ
rr0urur0 ; r; r0 ¼ x; y; z; ð18Þ

are constant-value dyadics; and jz ¼ ðp=XÞ cos a is in accord with the period Kz ¼ 2X= cos a of the slanted

chiral STF normal to the substrate plane (i.e., along the z axis). Wave propagation occurs inside the thin-

film material such that the electromagnetic field phasors therein can be decomposed as

EðrÞ ¼
X
n2Z

EðnÞ
x ðzÞux

h
þ EðnÞ

y ðzÞuy þ EðnÞ
z ðzÞuz

i
exp i kðnÞx x

�h
þ kð0Þy y

�i
ð19Þ

and

HðrÞ ¼
X
n2Z

H ðnÞ
x ðzÞux

h
þ H ðnÞ

y ðzÞuy þ H ðnÞ
z ðzÞuz

i
exp i kðnÞx x

�h
þ kð0Þy y

�i
; ð20Þ

where EðnÞ
x;y;z and H ðnÞ

x;y;z are unknown functions of z 2 ð0; dÞ. Following Chateau and Hugonin [20], we also

define

~EðnÞ
r ðzÞ ¼ EðnÞ

r ðzÞ expð�injzzÞ
~H ðnÞ
r ðzÞ ¼ H ðnÞ

r ðzÞ expð�injzzÞ

)
; r ¼ x; y; z: ð21Þ

On substituting (17)–(21) in the the frequency-domain Maxwell curl postulates

r� EðrÞ ¼ ixl0HðrÞ
r �HðrÞ ¼ �ix�0�ðrÞ � EðrÞ

�
; 0 < z < d; ð22Þ

and exploiting the orthogonalities of the functions expðikðnÞ
� � rÞ across any plane z ¼ constant, we derive the

following set of coupled-wave equations for z 2 ð0; dÞ:

d

dz
~EðnÞ
x ðzÞ þ injz

~EðnÞ
x ðzÞ � ikðnÞx

~EðnÞ
z ðzÞ ¼ ik0g0 ~H

ðnÞ
y ðzÞ; ð23Þ

d

dz
~EðnÞ
y ðzÞ þ injz

~EðnÞ
y ðzÞ � ikð0Þy

~EðnÞ
z ðzÞ ¼ �ik0g0 ~H

ðnÞ
x ðzÞ; ð24Þ

kð0Þy
~EðnÞ
x ðzÞ � kðnÞx

~EðnÞ
y ðzÞ ¼ �k0g0 ~H

ðnÞ
z ðzÞ; ð25Þ
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d

dz
~H ðnÞ
x ðzÞ þ injz

~H ðnÞ
x ðzÞ � ikðnÞx

~H ðnÞ
z ðzÞ ¼ � ik0

g0

X
n02Z

�ðn�n0Þ
yx

~Eðn0Þ
x ðzÞ

	
þ �ðn�n0Þ

yy
~Eðn0Þ
y ðzÞ þ �ðn�n0Þ

yz
~Eðn0Þ
z ðzÞ



; ð26Þ

d

dz
~H ðnÞ
y ðzÞ þ injz

~H ðnÞ
y ðzÞ � ikð0Þy

~H ðnÞ
z ðzÞ ¼ ik0

g0

X
n02Z

�ðn�n0Þ
xx

~Eðn0Þ
x ðzÞ

	
þ �ðn�n0Þ

xy
~Eðn0Þ
y ðzÞ þ �ðn�n0Þ

xz
~Eðn0Þ
z ðzÞ



; ð27Þ

kð0Þy
~H ðnÞ
x ðzÞ � kðnÞx

~H ðnÞ
y ðzÞ ¼ k0

g0

X
n02Z

�ðn�n0Þ
zx

~Eðn0Þ
x ðzÞ

	
þ �ðn�n0Þ

zy
~Eðn0Þ
y ðzÞ þ �ðn�n0Þ

zz
~Eðn0Þ
z ðzÞ



: ð28Þ

Eqs. (23)–(28) hold for all n 2 Z, and are thus an infinite system of first-order ordinary differential

equations (ODEs). For numerical solution, we first restrict the summations on their right sides to jnj6Nt,

and then define the four column vectors

~ErðzÞ
h i

¼ ~EðnÞ
r ðzÞ

h i
;

~HrðzÞ
h i

¼ ~H ðnÞ
r ðzÞ

h i
;

ErðzÞ½ � ¼ EðnÞ
r ðzÞ

� �
HrðzÞ½ � ¼ H ðnÞ

r ðzÞ
� �

9=
;; r ¼ x; y; z; n 2 ½�Nt;Nt� ð29Þ

of size ð2Nt þ 1Þ. Likewise, we define the diagonal ð2Nt þ 1Þ � ð2Nt þ 1Þ matrixes

½K
x
� ¼ kðnÞx dn;n0

h i
½j

z
� ¼ jz ndn;n0

h i
9=
;; n; n0 2 ½�Nt;Nt�; ð30Þ

where dn;n0 is the Kronecker delta, and the Toeplitz matrixes

�
rr0

h i
¼ �

ðn�n0Þ
rr0

h i
; r ¼ x; y; z; n; n0 2 ½�Nt;Nt�: ð31Þ

Substituting (25) and (28) into (23), (24), (26) and (27) thereafter, in order to eliminate the normal

electromagnetic fields components (i.e., ~EðnÞ
z and ~H ðnÞ

z ), and performing some algebraic manipulations, we

derive the shift-invariant matrix ODE

d

dz
~fðzÞ
h i

¼ i ~P
h i

~fðzÞ
h i

; 0 < z < d: ð32Þ

The column vector

~fðzÞ
h i

¼ ~ExðzÞ
h iT

; ~EyðzÞ
h iT

; g0 ~HxðzÞ
h iT

; g0 ~HyðzÞ
h iT	 
T

ð33Þ

contains 4ð2Nt þ 1Þ components, and the z-independent matrix ½~P� is given in the Appendix.

The matrix ODE (32) has the solution [26]

~fðz2Þ
h i

¼ ~G
h i

exp iðz2
n

� z1Þ½~D�
o

~G
h i�1

~fðz1Þ
h i

; ð34Þ

where the columns of the square matrix ½~G� are the successive eigenvectors of ½~P�, and the diagonal matrix

½~D� contains the corresponding eigenvalues of ½~P�. The assumption here is that ½~P� is diagonalizable, i.e., it
has 4ð2Nt þ 1Þ linearly independent eigenvectors.

In order to solve the boundary value problem, we have to determine the column vector

fðzÞ
h i

¼ ExðzÞ½ �T; EyðzÞ
� �T

; g0 HxðzÞ½ �T; g0 HyðzÞ
� �Th iT

ð35Þ

instead of ½~fðzÞ�. The two column vectors are simply related to each other as
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½fðzÞ� ¼ ½CðzÞ� ~fðzÞ
h i

; ð36Þ

where the diagonal matrix

½CðzÞ� ¼ ½expði~njzzÞdn;n0 �; n; n0 2 1; 4ð2Nt½ þ 1Þ�; ð37Þ

~n ¼ Mod½n� 1; 2Nt þ 1� � Nt; and Mod½n; n0� denotes the remainder when n is divided by n0, with n and n0

being positive integers. According to (34) and (36), we obtain the relation

½fðz2Þ� ¼ ½Gðz2Þ� exp iðz2
n

� z1Þ½~D�
o
½Gðz1Þ��1½fðz1Þ�; ð38Þ

where the matrix

½GðzÞ� ¼ ½CðzÞ�½~G� ð39Þ

is a periodic function of z; hence,

½fðdÞ� ¼ ½GðdÞ� exp id ~D
h in o

½Gð0Þ��1½fð0Þ�: ð40Þ

The continuity of the tangential components of the electric and magnetic field phasors across the two

boundaries z ¼ 0 and z ¼ d must be enforced with respect to the Floquet harmonic of any order n.
Therefore, we get

fð0Þ
h i

¼
Y þ

e

h i
Y �

e

h i
Y þ

h

h i
Y �

h

h i
2
4

3
5 A½ �

R½ �

	 

; fðdÞ
h i

¼
Y þ

e

h i
0
h i

Y þ
h

h i
0
h i

2
4

3
5 T½ �

0½ �

	 

; ð41Þ

where the column vectors

½A� ¼ aðnÞL

aðnÞR

" #
; ½R� ¼ rðnÞL

rðnÞR

" #
; ½T� ¼ tðnÞL

tðnÞR

" #
ð42Þ

are of size 4Nt þ 2. The square matrixes ½Y �
e
� and ½Y �

h
� of size ð4Nt þ 2Þ � ð4Nt þ 2Þ are quite sparse; and

their nonzero entries are calculated as follows:

Y �
e

h i
nn0

¼ � i=nhsð Þ Y �
h

h i
nn0

¼ L
ðnÞ
� � ux if n ¼ n0 2 ½1; ð2Nt þ 1Þ�

Y �
e

h i
nn0

¼ � i=nhsð Þ Y �
h

h i
nn0

¼ L
ðnÞ
� � uy if n ¼ n0 þ 2Nt þ 1

Y �
e

h i
nn0

¼ i=nhsð Þ Y �
h

h i
nn0

¼ R
ðnÞ
� � ux if n ¼ n0 � 2Nt � 1

Y �
e

h i
nn0

¼ i=nhsð Þ Y �
h

h i
nn0

¼ R
ðnÞ
� � uy if n ¼ n0 2 ½ð2Nt þ 2Þ; ð4Nt þ 2Þ�

9>>>>>>>=
>>>>>>>;
: ð43Þ

Finally, substituting (41) into (40), we get

U
T

h i
V

T

h i
2
4

3
5½T� þ e

id ~D
1

h i
½0�

½0� e
id ~D

2

h i
2
64

3
75 U

R

h i
V

R

h i
2
4

3
5½R� ¼ e

id ~D
1

h i
½0�

½0� e
id ~D

2

h i
2
64

3
75 U

A

h i
V

A

h i
2
4

3
5 A½ �; ð44Þ

where ½ ~D
1
� and ½ ~D

2
� are the upper and lower diagonal submatrixes of ½~D�, respectively, and the following

three rectangular matrixes have been used for notational brevity:
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U
T

h i
V

T

h i
2
4

3
5 ¼ GðdÞ

h i�1 Y þ
e

h i
Y þ

h

h i
2
4

3
5; ð45Þ

U
R

h i
V

R

h i
2
4

3
5 ¼ � Gð0Þ

h i�1 Y �
e

h i
Y �

h

h i
2
4

3
5; ð46Þ

U
A

h i
V

A

h i
2
4

3
5 ¼ Gð0Þ

h i�1 Y þ
e

h i
Y þ

h

h i
2
4

3
5: ð47Þ

For calculating the unknown ½R� and ½T�, the R-matrix propagating algorithm [20,27] – which is based on

the rearrangement of the positions of the eigenvalues of ½~P� in the diagonal matrix ½~D� – should be utilized in

order to avoid numerical instabilities, especially when Nt is large [18,19]. Therefore, the entries on the di-

agonal of ½~D� (thus ½ ~D
1
� and ½ ~D

2
� also) are rearranged in increasing order of the imaginary part, and the

columns of ½~G� are rearranged accordingly [28]. The final algebraic equation

e
�id ~D

1

h i
U

T

h i
U

R

h i
V

T

h i
e
id ~D

2

h i
V

R

h i
2
6664

3
7775 T½ �

R½ �

	 

¼

U
A

h i
e
id ~D

2

h i
V

A

h i
2
64

3
75 A½ �; ð48Þ

yielded by (44) for the determination of ½R� and ½T� is algorithmically stable due to the fact that the ex-
ponential terms e

id½ ~D
1
�
and e

id½ ~D
2
�
will never become overwhelming in magnitude because of the rearrange-

ment of the eigenvalues. The matrix inverse operation required to solve (48) for ½R� and ½T� is then easily

accomplished, using standard techniques [29], for arbitrary d and Nt.

Once frðnÞL ; rðnÞR g and ftðnÞL ; tðnÞR g for all n have been determined using the RCWA, the nth-order reflection
and transmission coefficients

r
ðnÞ
IJ ¼ rðnÞI

að0ÞJ

; t
ðnÞ
IJ ¼ tðnÞI

að0ÞJ

; I ; J ¼ L;R ð49Þ

can be computed as functions of the wavevector kð0Þ
þ of the incident plane wave. Reflectances (R

ðnÞ
LL, etc.) and

transmittances (T
ðnÞ
LL, etc.) of order n can be additionally calculated as

R
ðnÞ
IJ ¼ Re½kðnÞz �

Re½kð0Þz �
jrðnÞIJ j

2
; T

ðnÞ
IJ ¼ Re½kðnÞz �

Re½kð0Þz �
jtðnÞIJ j

2
; I ; J ¼ L;R: ð50Þ

Co-polarized reflection/transmission coefficients and remittances – i.e., reflectances and transmission

coefficients – subscripted RR (LL) are labeled as co-handed and those subscripted LL (RR) are labeled as

cross-handed, when the chiral STF is structurally right(left)-handed.

Parenthetically, we note the special case when a ¼ 0. Then, all nonspecular reflection and transmission
coefficients fold into the specular coefficients

r
ð0Þ
IJ (

X
jnj6Nt

r
ðnÞ
IJ ; t

ð0Þ
IJ (

X
jnj6Nt

t
ðnÞ
IJ ; I ; J ¼ L;R: ð51Þ

Accordingly, the reflectances and transmittances for a ¼ 0 can only be specular; hence,

R
ð0Þ
IJ ¼ jrð0ÞIJ j

2
; T

ð0Þ
IJ ¼ jtð0ÞIJ j

2
; I ; J ¼ L;R: ð52Þ
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2.3. Angular-spectrum representation of 3D optical beams

Having formulated the diffraction of a plane wave by a slanted chiral STF, we move on the diffraction of

a 3D optical beam. Let hi 2 ð�p=2; p=2Þ and wi 2 ð�p; p�, respectively, be the mean angles of beam inci-

dence with respect to the z axis and the x axis in the xy plane. We introduce the coordinate system ð�x; �y;�zÞ,
where

�x ¼ x cos hi coswi þ y cos hi sinwi � z sin hi
�y ¼ �x sinwi þ y coswi

�z ¼ x sin hi coswi þ y sin hi sinwi þ z cos hi � h0= cos hi

9=
;; ð53Þ

as shown in Fig. 2, with u�x, u�y and u�z being the basis vectors. The z�z plane is the plane of incidence; while the
�x and �y axes are parallel and perpendicular to the plane of incidence, respectively. The z coordinate of the
origin of the ð�x; �y;�zÞ coordinate system is h0 in the ðx; y; zÞ coordinate system.

The incident beam can be decomposed into an angular spectrum of plane waves [30]. The planewave

angular spectrum can then be multiplied by the reflection or transmission coefficients and recombined to

produce the reflected or the transmitted beams [31,32].

In the half-space z6 0, the electromagnetic field phasors of the 3D incident beam are written in the

ð�x; �y;�zÞ coordinate system as

Eið�x; �y;�zÞ ¼
Z 1

�1

Z 1

�1
Wð#x; #yÞeið#x; #yÞ � exp½ik0nhsð#x�xþ #y�y þ #z�zÞ� d#x d#y ð54Þ

and

Hið�x; �y;�zÞ ¼
Z 1

�1

Z 1

�1
Wð#x; #yÞhið#x; #yÞ � exp½ik0nhsð#x�xþ #y�y þ #z�zÞ� d#x d#y : ð55Þ

In (54) and (55), the real-valued #x and #y together define the angular spectrum of plane waves, while

#z ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #2

x � #2
y

q
is either real-valued or complex-valued. The unit vectors eið#x; #yÞ and hið#x; #yÞ,
Z = 0

(-1)
(-2)

(+1)

(0)

reflected beams

X

(-2)

Z = d

(-1)
(0)

(+1)

transmitted beams
Z

O

O
-

X
-

Y
-

Z
-

θ

iψ

i

h

incident

beam

0

slanted chiral STF

nhs

nhs

Fig. 2. Coordinate system ð�x; �y;�zÞ for a 3D optical beam incident on a slanted chiral STF. The diffracted optical beams are associated

with both specular ðn ¼ 0Þ and nonspecular ðn 6¼ 0Þ modes of reflection and transmission when a 6¼ 0, but all nonspecular beams fold

into the specular ones when a ¼ 0.



116 F. Wang, A. Lakhtakia / Optics Communications 235 (2004) 107–132
respectively, represent the electric and magnetic fields of a plane wave specified by ð#x; #yÞ; while the an-

gular-spectrum function Wð#x; #yÞ defines the profile of the incident beam.

Substituting (53) into (54) and (55), we obtain the more useful representation

Eiðx; y; zÞ ¼
R1
�1
R1
�1 Wð#x; #yÞeið#x; #yÞ exp½iðkð0Þ

þ � rþ u0Þ� d#x d#y

Hiðx; y; zÞ ¼
R1
�1
R1
�1 Wð#x; #yÞhið#x; #yÞ exp½iðkð0Þ

þ � rþ u0Þ� d#x d#y

)
; z < 0; ð56Þ

where u0 ¼ �#zh0= cos hi. The quantity kð0Þ
þ � kð0Þ

þ ð#x; #yÞ in these two equations symbolizes the wavevector

of each planewave contributor of the incident beam; thus,

kð0Þ
þ ¼ kð0Þx ux þ kð0Þy uy þ kð0Þz uz; ð57Þ

where

kð0Þx ¼ k0nhsð#x cos hi coswi � #y sinwi þ #z sin hi coswiÞ; ð58Þ
kð0Þy ¼ k0nhsð#x cos hi sinwi þ #y coswi þ #z sin hi sinwiÞ; ð59Þ

and

kð0Þz ¼ k0nhsð�#x sin hi þ #z cos hiÞ: ð60Þ

In order to evaluate eið#x; #yÞ and hið#x; #yÞ, it is assumed that each of the contributing plane waves of

the incident beam locally has an identical polarization state that is characterized by a constant-valued pair
fað0ÞL ; að0ÞR g. As a matter of fact, the incident beam’s local planewave polarization state can be defined in a

variety of ways [31,33]. However, the polarization states of finite-extent beams are not the same as the local

polarization states of their planewave components [34]. Following [33] as well, we think it is reasonable to

consider beams whose polarization states are approximately circular.

Hence, approximately LCP beams are simulated by setting að0ÞR ¼ 0, and approximately RCP beams by

að0ÞL ¼ 0. In analogy with (6) and (7), ei and hi for each planewave component ð#x; #yÞ are written in terms of

fað0ÞL ; að0ÞR g as

ei ¼ Lð0Þ
þ að0ÞL þ Rð0Þ

þ að0ÞR ; hi ¼
�inhs
g0

Lð0Þ
þ að0ÞL

h
� Rð0Þ

þ að0ÞR

i
; ð61Þ

where Lð0Þ
þ and Rð0Þ

þ are defined in (13) and (14), respectively, to vary with kð0Þ
þ (and thus with #x and #y).

The reflected and the transmitted optical beams are to be calculated by combining the contributions of

every incident planewave component. Therefore, the electromagnetic field phasors of the nth-order reflected
and transmitted beams are written as follows:

EðnÞ
r ðx; y; zÞ ¼

Z 1

�1

Z 1

�1
Wð#x; #yÞeðnÞr ð#x; #yÞ � exp½iðkðnÞ

� � rþ u0Þ� d#x d#y ; z < 0; ð62Þ

HðnÞ
r ðx; y; zÞ ¼

Z 1

�1

Z 1

�1
Wð#x; #yÞhðnÞr ð#x; #yÞ � exp½iðkðnÞ

� � rþ u0Þ� d#x d#y ; z < 0; ð63Þ

E
ðnÞ
t ðx; y; zÞ ¼

Z 1

�1

Z 1

�1
Wð#x; #yÞeðnÞt ð#x; #yÞ � exp½iðkðnÞ

þ � ~rþ u0Þ� d#x d#y ; z > d; ð64Þ

H
ðnÞ
t ðx; y; zÞ ¼

Z 1

�1

Z 1

�1
Wð#x; #yÞeðnÞt ð#x; #yÞ � exp½iðkðnÞ

þ � ~rþ u0Þ� d#x d#y ; z > d: ð65Þ

In these expressions, the electric and magnetic fields vectors eðnÞr , hðnÞr , e
ðnÞ
t and h

ðnÞ
t are calculated in the

similar way as ei and hi of (61), thus,



F. Wang, A. Lakhtakia / Optics Communications 235 (2004) 107–132 117
eðnÞr ¼ LðnÞ
� rðnÞL þ RðnÞ

� rðnÞR ; hðnÞr ¼ �inhs
g0

LðnÞ
� rðnÞL

h
� RðnÞ

� rðnÞR

i
; ð66Þ

and

e
ðnÞ
t ¼ LðnÞ

þ tðnÞL þ RðnÞ
þ tðnÞR ; h

ðnÞ
t ¼ �inhs

g0
LðnÞ

þ tðnÞL

h
� RðnÞ

þ tðnÞR

i
: ð67Þ

For (66) and (67), L
ðnÞ
� and R

ðnÞ
� are defined in (13) and (14), respectively; while the amplitude pairs

frðnÞL ; rðnÞR g and ftðnÞL ; tðnÞR g, which are functions of #x and #y , need to be determined by means of the RCWA

formulated in Section 2.2 for each of the planewave component of the incident beam. The electromagnetic

fields of the reflected and transmitted beams are thereafter obtained from (62) to (65).

Additionally, similar definitions as (51) are needed for the electromagnetic field phasors of diffracted

beams when a ¼ 0; i.e.,

Eð0Þ
r ðx; y; zÞ (

X
jnj6Nt

EðnÞ
r ðx; y; zÞ; Hð0Þ

r ðx; y; zÞ (
X
jnj6Nt

HðnÞ
r ðx; y; zÞ ð68Þ

and

E
ð0Þ
t ðx; y; zÞ (

X
jnj6Nt

E
ðnÞ
t ðx; y; zÞ; H

ð0Þ
t ðx; y; zÞ (

X
jnj6Nt

H
ðnÞ
t ðx; y; zÞ; ð69Þ

because all nonspecular field phasors fold into the specular ones [32].

2.4. Lateral shifts on reflection

The foregoing theoretical formulation is suitable for the computation of lateral shifts of reflected optical

beams in the following two problems:

• Problem A: The half-spaces of reflection and transmission are vacuous (i.e., nhs ¼ 1).

• Problem B: The half-spaces of reflection and transmission are occupied by a mediums that is optically

denser than the slanted chiral STF.

Our focus in Problem A lay on the circular Bragg phenomenon [14], but on the total reflection phe-

nomenon in Problem B [2,36].

Both 2D and 3D Gaussian optical beams were considered, with the former being a special case of, but
simpler than, the latter. The angular-spectrum function of the 3D incident beam is [31,37]

Wð#x; #yÞ ¼
q2
0

2p
exp

	
� 1

2
q2
0 #2

x

�
þ #2

y

�

; ð70Þ

where q0 ¼ k0nhsw0 and w0 is the width of the beam waist. The incident 2D Gaussian beam is represented

through the angular-spectrum function

Wð#x; #yÞ ¼
q0ffiffiffiffiffiffi
2p

p exp

�
� 1

2
q2
0#

2
x

�
dð#yÞ; ð71Þ

where dð�Þ is the Dirac delta function.

The reflected beam of order n shifts by dðnÞ in the xy plane relative to the incident beam. This shift is

represented by the relative difference between the first moments of the energy densities of the electric fields

EiðrÞ and EðnÞ
r ðrÞ, respectively, evaluated on the interface plane z ¼ 0. Thus,

dðnÞ ¼ DðnÞ
r � Di; ð72Þ

where
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Di ¼
Z 1

�1

Z 1

�1
ðxux

�
þ yuyÞjEij2dx dy

� Z 1

�1

Z 1

�1
jEij2 dx dy

� ��1

ð73Þ

and

DðnÞ
r ¼

Z 1

�1

Z 1

�1
ðxux

�
þ yuyÞjEðnÞ

r j2 dx dy
� Z 1

�1

Z 1

�1
jEðnÞ

r j2 dx dy
� ��1

: ð74Þ

A lateral shift is always in the plane of incidence (i.e., the �zz plane) for incident 2D beams, but may

comprise components both in and normal to the �zz plane for incident 3D beams.

Let d
ðnÞ
L and d

ðnÞ
R denote the nth-order lateral shifts by LCP and RCP incident beams, respectively. It is

convenient to represent d
ðnÞ
L and d

ðnÞ
R in the form

d
ðnÞ
L ¼ dðnÞk

L uk þ dðnÞ?
L u?

d
ðnÞ
R ¼ dðnÞk

R uk þ dðnÞ?
R u?

)
; ð75Þ

where the unit vectors uk ¼ u�y � uz and u? ¼ u�y are parallel and perpendicular to the �zz plane, respectively.
Clearly, dðnÞk

L and dðnÞk
R represent the in-plane shifts; while dðnÞ?

L and dðnÞ?
R represent the out-of-plane shifts

[33].
3. Numerical results and discussion

3.1. Preliminaries

Calculations were made with the following constitutive and geometric parameters for the slanted chiral

STF: pa ¼ 2:0, pb ¼ 2:6, pc ¼ 2:1; ka ¼ kc ¼ 140 nm, kc ¼ 150 nm; Na ¼ Nb ¼ Nc ¼ 1000; X ¼ 200 nm;

d ¼ 60 X; vs ¼ 30�; and h ¼ 1. The chosen value of the ratio d=X is large enough for the circular Bragg

phenomenon to be fully developed [7,14]. For simplicity, we set h0 ¼ 0. Several appropriate values of a were
used.

When a plane wave is incident on a slanted chiral STF, the center-wavelength kBr0 of the Bragg regime is

to be estimated by solving the equation [14,35,36]

kBr0 � X cos a cos1=2 ~hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cðkBr0 Þ

q	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�dðkBr0 Þ

q 

¼ 0; ð76Þ

where ~hi is the angle of incidence with respect to the z axis and

~�dðk0Þ ¼
�aðk0Þ�bðk0Þ

�aðk0Þ cos2 vs þ �bðk0Þ sin2 vs
: ð77Þ

Numerical investigation shows that the estimate of kBr0 afforded by (76) is reliable when cos ~hi 2 ½
ffiffi
3

p

2
; 1�.

For the chosen thin-film properties, we estimate that kBr0 ¼ 727 nm when ~hi ¼ a ¼ 0.

For Problem A, nhs ¼ 1 and we confined our investigations to the wavelength k0 ¼ kBr0 j~hi¼0, i.e., in the

center of the Bragg wavelength-regime for normal incidence. Total reflection of an incident beam is im-
possible under these conditions.

For Problem B, we set nhs ¼ 4 so that the chosen thin film is optically rarer than the ambient medium at

k0 ¼ 727 nm. Total reflection of the incident beam must occur when jhij exceeds a critical value hic. The
circular Bragg phenomenon still exists at sub-critical angles of incidence, but in a highly telescoped fashion

[36]; and we mostly investigated Goos–H€anchen shifts [2,36,40].
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The 3D Gaussian beam profile was uniformly discretized to a 80� 80 mesh in the spectral domain

fð#x; #yÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2
x þ #2

y

q
6 4=q0g, which was sufficient to calculate the approximate value of jEij2 of (54) with less

than 0:01% inaccuracy. Accordingly, 80� 80 ¼ 6400 plane waves corresponding to different values of the

pair ð#x; #yÞ were generated to span the entire angular spectrum of the diffracted beams. The maximum

order of the Floquet harmonics was fixed at Nt ¼ 9 for the chosen wavelength-regime, after ensuring that

every planewave reflectance and transmittance greater than 10�4 in magnitude converged to 0:1% accuracy.

All propagating harmonics and some evanescent harmonics were thereby covered. Computed values of d
ðnÞ
L

and d
ðnÞ
R for varying sin hi and wi 2 ð�p; p� are presented in Figs. 5,7,10–12, 15 and 16; while the remaining

figures are reserved for the discussion of planewave responses.
3.2. Problem A: slanted chiral STF in vacuum

3.2.1. Planewave incidence

Let us commence by considering the response of a slanted chiral STF to a plane wave whose wavevector

makes the angles (i) ~hi to the z axis and (ii) ~wi to the x axis in the xy plane. Parenthetically, the plane wave

response has been studied elsewhere for normal incidence [14].

The most prominent feature of the planewave responses of both unslanted and slanted chiral STFs is due

to the circular Bragg phenomenon, which is circular-polarization-selective reflection in the Bragg regime
[7,14]. The circular Bragg phenomenon is indicated by a high co-handed reflectance in the Bragg regime.

Although this reflectance is purely specular for a ¼ 0, it is nonspecular for a 6¼ 0 as it then occurs in the

n ¼ �2signðaÞ harmonic component of the reflected field, regardless of the structural handedness of the

film.

Figs. 3 and 4 present key planewave remittances for arbitrary incidence in either the xz plane (i.e.,
~wi ¼ 0�) or the yz plane (i.e., ~wi ¼ 90�) for both a ¼ 0� and a ¼ 10�, when nhs ¼ 1 and k0 ¼ kBr0 j~hi¼0. The

circular Bragg phenomenon is clearly identifiable as a broad ridge in the plots of R
ð�2Þ
RR (for a ¼ 10�) and

R
ð0Þ
RR (for a ¼ 0�) in Fig. 4, as well as in the plots of T

ð0Þ
LL in Fig. 3, because the chosen STF is structurally

right-handed. The angular spread of the Bragg regime – quantitated as the ~hi-span of the broad ridge in a

co-handed reflectance plot at a fixed wavelength – becomes asymmetric and sensitive to ~wi when a 6¼ 0

(Figs. 4(c) and (d)), presenting a striking contrast to the almost symmetric pattern of the Bragg regime for

a ¼ 0 (Figs. 4(a) and (b)). In fact, because of the effect of the Rayleigh–Wood anomalies of order n ¼ �2

which occur at

kRW
0�2

¼ nhsX
j sin aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin ~hi sin ~wi

� �2r 
� sin ~hi cos ~wisignðaÞ

!
; ð78Þ

the circular Bragg phenomenon for a 6¼ 0 is forced to shift its angular position, and is even subverted either

in part or totally when jaj is large [14].
3.2.2. Lateral shift of Gaussian beam on Bragg reflection

In general, lateral shifts on reflection are expected because every planewave component of an incident

beam experiences different phase and magnitude changes on reflection. A co-handed incident beam would

be mostly reflected, and thus shifted with little distortion in profile, when its angular spectrum lies totally

within the angular spread of the Bragg regime (if possible at that wavelength). Fig. 5 shows the in-plane

shift of a 2D RCP Gaussian beam, with parameters chosen such that it is mostly reflected by either an

unslanted chiral STF (a ¼ 0�) or a slanted chiral STF (a ¼ 10�), when nhs ¼ 1. The in-plane shift presented

in this figure was calculated as
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LL (dotted lines), calculated for an unslanted chiral STF

of a ¼ 0�; and (c, d)
P

jnj6Nt
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LL þR
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RLÞ (solid lines) and T

ð0Þ
LL (dotted lines), calculated for a slanted chiral STF of a ¼ 10�. The

following parameters were used for calculations: pa ¼ 2:0, pb ¼ 2:6, pc ¼ 2:1; ka ¼ kc ¼ 140 nm, kc ¼ 150 nm; Na ¼ Nb ¼ Nc ¼ 1000;

X ¼ 200 nm, d ¼ 60 X, vs ¼ 30�, and nhs ¼ 1. The chosen wavelength k0 ¼ kBr0 j~hi¼0 so that (a, b) k0 ¼ 727 nm and (c, d) k0 ¼ 716 nm.
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is 2D RCP Gaussian, k0 ¼ kBr0 j~hi¼0, w0 ¼ 4k0, and h0 ¼ 0. (a) wi ¼ 0�, and (b) wi ¼ 90�. The values of hi chosen lie squarely within the
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dk
Br ¼

dð0Þk
R ; a ¼ 0;

dð�2Þk
R ; a?0;

(
ð79Þ

with the out-of-plane shift d?
Br � 0. Clearly, the in-plane shift is always forward (i.e., dk

Br sin hi P 0) and

almost symmetric with respect to hi when a ¼ 0. However, when a 6¼ 0, the in-plane shift could be either

forward or backward (i.e., dk
Br sin hi 6 0), depending on hi. For example, Fig. 5(a) shows negative dk

Br for

sin hi 2 ð0; 0:31Þ when wi ¼ 0� and a ¼ 10�. The reason for occurrence of a backward shift is simply because

reflection occurs mostly in the order n ¼ �2signðaÞ. Incidentally, negative shifts do not violate causality

[38,39].

Analogously to the Goos–H€anchen shift [2,40], the in-plane shift of a co-handed beam on Bragg re-
flection can be estimated by

dk
Br �

� ou r
ð0Þ
RRð Þ

o~j 1þ O R
ð0Þ
LR=R

ð0Þ
RR

� �h i
; a ¼ 0;

� ou r
ð�2Þ
RRð Þ
o~j 1þ O R

ð�2Þ
LR =R

ð�2Þ
RR

� �h i
; a?0;

8><
>: ð80Þ

where uðrÞ is the phase u of the planewave reflection coefficient r computed by setting ~hi ¼ hi, and
~j ¼ k0nhs sin ~hi. This simple formula is adequate because the reflection coefficient does not change signifi-

cantly in magnitude when ~hi lies squarely within the angular spread of the Bragg regime and the thin film is

sufficiently thick; see Figs. 3 and 4. In addition, because R
ð0Þ
LR << R

ð0Þ
RR (for a ¼ 0) and R

ð�2Þ
LR << R

ð�2Þ
RR (for

a?0) in the Bragg regime, the minute items OðRð0Þ
LR=R

ð0Þ
RRÞ and OðRð�2Þ

LR =R
ð�2Þ
RR Þ on the right side of (80) can be

omitted.
The phases of the reflection coefficients r

ð0Þ
RR (for a ¼ 0�) and r

ð�2Þ
RR (for a ¼ 10�) are presented in Fig. 6 as

functions of ~hi and ~wi. In fact, the phases in Fig. 6 appear to be approximately second-order polynomials of

sin ~hi that are defined piecewise. Correspondingly, dk
Br should be approximately linearly proportional to

sin hi, which is predicted by (80) and basically confirmed by the plots of Fig. 5. In addition, the plot of



Fig. 6. Phases of the planewave reflection coefficients r
ð0Þ
RR (dotted lines) for a ¼ 0�, and r

ð�2Þ
RR (solid lines) for a ¼ 10�. (a) ~wi ¼ 0�, and

(b) ~wi ¼ 90�. Other parameters are the same as for Fig. 3.
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uðrð�2Þ
RR Þ in Fig. 6(a) is symmetric about sin ~hi ¼ 0:31, but not about sin ~hi ¼ 0, which explains the backward

shifts in Fig. 5(a) for the slanted chiral STF.

3.2.3. Secondary lateral shift on Bragg reflection

When a 6¼ 0, the reflected field comprises beams of different orders n. The evanescent planewave com-

ponents of different reflected beams would die away from the interface z ¼ 0, but the propagating com-
ponents would not. Thus, lateral shifts of different orders are possible, as indicated by (75).

Our focus in this section lies on the circular Bragg phenomenon for a 6¼ 0. The dominant Bragg re-

flection of a co-handed incident beam, which occurs in the order n ¼ �2signðaÞ, is always accompanied by a

weak reflection in the order n ¼ 0 (i.e., 0:01 < jEð0Þ
r j2=jEij2 < 0:1). Certainly, the reflected beam of order

n ¼ 0 will laterally shift away from the incident beam. Fig. 7 shows the in-plane shift dð0Þk
R of a 2D RCP

Gaussian beam, when k0 ¼ kBr0 j~hi¼0 and a ¼ 10�. The shift dð0Þk
R oscillates with hi about the zero value, in-

dicating that the specularly reflected beam can shift in the forward as well as the backward directions.
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Fig. 7. Normalized in-plane shift dð0Þjj
R =k0 as a function of sin hi, calculated for wi ¼ 0� (solid line) and wi ¼ 90� (dotted line), when

a ¼ 10�. The incident beam is 2D RCP Gaussian, and the values of hi chosen lie squarely within the angular spread of the Bragg

regime. A shift is shown only if jEð0Þ
r j2=jEij2 > 0:01. Other parameters are the same as for Fig. 5.
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A comparison of Figs. 5 and 7 indicates a distinction between dð0Þk
R and dk

Br when a 6¼ 0, implying the fact

that the lateral shifts of different orders are different. The circular Bragg phenomenon being the chief at-

tractive feature of chiral STFs, secondary lateral shifts are of incidental importance.

3.3. Problem B: slanted chiral STF in an optically denser medium

3.3.1. Planewave incidence

Experience with unslanted chiral STFs indicates that the circular Bragg phenomenon must be affected by

the value of nhs [36]. Typically, when the half-spaces z6 0 and zP d are not vacuous, but filled with a

homogeneous medium that is optically denser than the slanted chiral STF, the angular spread of the Bragg

regime is restricted by the occurrence of total reflection. Figs. 8 and 9 present the planewave reflectances for

arbitrary incidences when nhs ¼ 4 and k0 ¼ 727 nm. The circular Bragg phenomenon still exists but its

angular spread is highly restrained, as seen from comparing Figs. 4 and 9 even for a ¼ 0. Instead, total

reflection into the half-space of incidence occurs when j~hij reaches the critical value ~hic � sin�1 0:47 for both
LCP and RCP plane waves, as may be concluded from the plots of R

ð0Þ
LL þR

ð0Þ
RL (Fig. 8) and the plots of

R
ð0Þ
LR þR

ð0Þ
RR (Fig. 9).

Total reflection is purely specular whether a ¼ 0 or not, in contrast to the circular Bragg phenomenon

which is not specular when a 6¼ 0. Indeed, the reflectance plots in Figs. 8 and 9 look independent of a in the

total-reflection regime j sin ~hij 2 0:47; 1½ Þ, thereby implying the insensitivity of the total-reflection phe-

nomenon to either the structural handedness or the slantedness of the chosen thin film.

3.3.2. Total reflection of a Gaussian beam

As an incident plane wave is totally reflected in the n ¼ 0 order, so does an optical beam. The lateral shift

of the reflected beam under the total-reflection condition is called the Goos–H€anchen shift [2]
ψi = 0o

α=0o

α=15o

ψi = 90o

re
m

itt
an

ce

re
m

itt
an

ce

re
m

itt
an

ce

(a) (b)

(c) (d)

sin θi
~

re
m

itt
an

ce

sin θi
~

sin θi
~ sin θi

~

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

~ ~

Fig. 8. Spectrums of planewave reflectances R
ð0Þ
LL (solid lines) and R

ð0Þ
LL þR

ð0Þ
RL (dotted lines), calculated for (a, b) a ¼ 0� and (c, d)

a ¼ 15�. Same parameters as for Fig. 3, except nhs ¼ 4 and k0 ¼ 727 nm.
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Fig. 9. Same as Fig. 8, except the reflectances plotted are R
ð0Þ
RR (solid lines), R

ð0Þ
LR þR

ð0Þ
RR (dotted lines) and R

ð�2Þ
RR (dashed-dotted lines).

The plots of R
ð�2Þ
RR are only for a ¼ 15�.

Table 1

Values of hic for various w0 as estimated by (82) and from actual computation

w0 Estimated from (82) Computed for 2D beam Computed for 3D beam

2khs 37:2� 39:3� 39:9�
3khs 34:1� 35:1� 35:6�
4khs 32:6� 32:9� 32:9�
6khs 31:1� 31:3� 31:3�
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dGH ¼ dð0Þ ð81Þ

for arbitrary a. Two different Goos–H€anchen shifts are possible, one for LCP beams and the other for RCP
beams [36]. The shifts are denoted by dGH

L and dGH
R , respectively.

Since a beam is an angular continuum of plane waves, the critical angle hic for a beam is certainly

different from its planewave counterpart ~hic. Table 1 shows the approximate values of hic obtained from

actual computation as well as from a simple estimation procedure. The value of hic was actually computed

by ascertaining that jEð0Þ
r j2 rises to 0:995jEij2 as jhij increases to hic. The simple estimate

hic � ~hic þ sin�1 ð2=q0Þ ð82Þ

is based on the assumption that all planewave components in the domain fð#x; #yÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2
x þ #2

y

q
6 2=q0g of an

incident beam should be totally reflected. As is clear from Table 1, (82) is a good predictor of hic, especially
when w0 P 3khs, where khs ¼ k0=nhs is the wavelength in the medium filling the half-space of incidence and

reflection. Numerous computational results showed that hic is largely unaffected by wi. The computed

values of hic are employed for all the plots presented in Figs. 10, 12 and 15.
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3.3.3. Goos–H€anchen shifts of 2D Gaussian beams

Fig. 10 shows the Goos–H€anchen shiftsdGHk
L and dGHk

R as functions of sin hi 2 ½sin hic; 1Þ when the inci-

dent beam is 2D. Similarly, Fig. 11 presents dGHk
L and dGHk

R plotted against wi 2 ð�180�; 180�� when

hi ¼ 37:5� > hic. It is clear from Fig. 10 that a affects the Goos–H€anchen shift at low angles of incidence for

total reflection.

A distinction between dGHk
L and dGHk

R is unambiguously evident at low values of jhij > hic when a ¼ 0

(Fig. 11). However, that distinction diminishes for all post-critical hi when a 6¼ 0, as illustrated by the plots
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Fig. 11. Same as Fig. 10, except dGHk
L =khs and dGHk

R =khs are plotted against wi 2 ð�180�; 180��, for a fixed post-critical hi ¼ 37:5�.
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in Fig. 11 for a ¼ 15�. Similarly, the variations of dGHk
L and dGHk

R with wi are less pronounced for a 6¼ 0 than

for a ¼ 0.

Although the foregoing effects of a may be considered small in conventional optics practice, as they

amount to small fractions of the wavelength, their nanotechnological significance cannot be denied [3].

That becomes evident on noting that quantum dots are 1–2 nm in diameter, globular proteins are of 6 nm

diameter, while gate oxide films have been shrunk to about 2 nm in thickness [41]. In comparison, 1% of the
typical k0 in the visible regime is between 4 and 7 nm.

Fig. 12 shows the effect of the beam waist width w0 on the Goos–H€anchen shift when a ¼ 15�.
Enhancement of the beam waist decreases the critical angle hic, as shown by Table 1 also. Furthermore,

both dGHk
L and dGHk

R decrease (increase) with increasing beam waist when the post-critical jhij is low

(high).

The Goos–H€anchen shift of a 2D Gaussian beam can be estimated by
dGHjj
L � �R

ð0Þ
LL

ou r
ð0Þ
LLð Þ

o~j �R
ð0Þ
RL

ou r
ð0Þ
RLð Þ

o~j

dGHjj
R � �R

ð0Þ
LR

ou r
ð0Þ
LRð Þ

o~j �R
ð0Þ
RR

ou r
ð0Þ
RRð Þ

o~j

9>=
>;; ð83Þ
in analogy with (80). Figs. 13 and 14 contain the plots of u of different reflection coefficients, for both

a ¼ 0� and a ¼ 15�. Although uðrð0ÞLLÞ and uðrð0ÞRRÞ are little affected by a (Fig. 13(b)), uðrð0ÞRLÞ and uðrð0ÞLRÞ are
absolutely under its influence at low values of j~hijP ~hic (Fig. 13(a)). According to (83), the Goos–H€anchen
shift dGHjj

L and dGHjj
R should be affected by a at low values of jhijP hic, by noting the fact that R

ð0Þ
RL=R

ð0Þ
LL and

R
ð0Þ
LR=R

ð0Þ
RR are not trivial at low values of j~hijP ~hic (Figs. 8 and 9). Similarly, because uðrð0ÞLLÞ � uðrð0ÞRRÞ and

uðrð0ÞRLÞ 6¼ uðrð0ÞLRÞ for a ¼ 0 (Fig. 14(a)), a distinction between dGHk
L and dGHk

R is undoubtedly evident when

a ¼ 0 (Fig. 11). However, that distinction reduces when a 6¼ 0, because uðrð0ÞLLÞ � uðrð0ÞRRÞ and the difference

between uðrð0ÞLRÞ and uðrð0ÞRLÞ is minute then (Fig. 14(b)).
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Fig. 14. Phases of the planewave reflection coefficients r
ð0Þ
LR (solid lines) and r

ð0Þ
RL (dotted lines) as functions of sin ~hi 2 ½sin ~hic; 1Þ, cal-

culated for (a) a ¼ 0� and (b) a ¼ 15�, when ~wi ¼ 120�. Other parameters are the same as for Fig. 8.
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lines), when hi ¼ 37:5� > hic. Other parameters are the same as for Fig. 15.
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3.3.4. Goos–H€anchen shifts of 3D Gaussian beams

Fig. 15 presents the plots of dGH
L and dGH

R against sin hi 2 ½sin hic; 1Þ for a ¼ 0� and a ¼ 15�, when the

beam is 3D. The most prominent feature of the Goos–H€anchen phenomenon for 3D circularly po-

larized beams is that both in-plane (d
GHk
L and d

GHk
R ) and out-of-plane (dGH?

L and dGH?
R ) shifts are not

zero. In fact, the out-of-plane Goos–H€anchen shift increases in amplitude as the post-critical jhij
decreases.

Furthermore, because dGH?
L < 0 and dGH?

R > 0 for any jhijP hic, the direction of the out-of-plane Goos–

H€anchen shift depends on the handedness of the incident beam in relation to the structural handedness of

the thin film. In contrast, the in-plane Goos–H€anchen shift is always directed forward and exhibits char-

acteristics similar to that of a 2D beam. Specifically, dGHk
L 6¼ dGHk

R at low values of jhijP hic when a ¼ 0

(Fig. 15(a)), but that distinction diminishes for all post-critical hi when a 6¼ 0 (Fig. 15(b)).

The effect of wi on the Goos–H€anchen shift of a 3D beam is illustrated in Fig. 16, wherein

hi ¼ 37:5� > hic. Both in-plane and out-of-plane Goos–H€anchen shifts are less affected by wi for a 6¼ 0 than
for a ¼ 0. In addition, it is clear from Fig. 16(b) that jdGH?

L j � jdGH?
R j for a 6¼ 0, but not for a ¼ 0, thereby

implying that the magnitude of out-of-plane Goos–H€anchen shift is not affected by the structural hand-

edness of the slanted chiral STF with a 6¼ 0.

Finally, it needs to be mentioned that the occurrence of out-of-plane Goos–H€anchen shift depends on

the ellipticity of the polarization state of the 3D incident beam. For example, when the incident 3D beam is

approximately linearly polarized (i.e., either s- or p-polarized), no out-of-plane shift would occur on total

reflection.
4. Concluding remarks

In this paper, we considered lateral shifts of circularly polarized beams on reflection by slanted

chiral sculptured thin films. Slanted chiral STFs constitute a class of thin-film materials with great

promise for many optoelectronic applications. In general, these thin films are anisotropic and rota-

tionally nonhomogeneous along an axis that is slanted at an angle a to the normal of the substrate

plane.
The frequency-domain electromagnetic responses of a slanted chiral STF to both plane waves and 3D

optical beams were formulated for arbitrary incidence. A rigorous coupled-wave analysis was implemented

with a stable algorithm to describe the planewave response of the slanted chiral STF, and the angular-

spectrum representation of beams was exploited for beam diffraction. Both 2D and 3D Gaussian beams of

approximately circular polarization states were considered.

Two types of lateral shifts of beams were calculated and discussed. One is the lateral shift of a co-handed

optical beam that is mostly reflected due to the circular Bragg phenomenon. The other is the Goos–

H€anchen shift that occurs when the beam is incident on the thin film from an optically denser medium and
then totally reflected. Although the circular Bragg phenomenon is not precisely specular when a 6¼ 0, the

total-reflection phenomenon is purely specular for any a.
Several important results were obtained concerning the two types of lateral shifts of beams. They are

listed as follows:

• The lateral shift of a co-handed beam on Bragg reflection could be either forward or backward when

a 6¼ 0, depending on the angle of incidence.

• The Goos–H€anchen shift is affected by a at low angles of incidence for total reflection. This effect is

nanotechnologically significant.
• The in-plane Goos–H€anchen shift is affected by the structural handedness of the slanted chiral STF, es-

pecially for a ¼ 0, when the post-critical angle of incidence is low.
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• When the incident beam is 3D, both in-plane and out-of-plane Goos–H€anchen shifts occur on total re-

flection. In particular, the out-of-plane Goos–H€anchen shift increases in amplitude as the angle of inci-

dence decreases, and it can be either forward or backward.

The shifts at low-ultraviolet and longer wavelengths are large enough in magnitude to be significant for

nanotechnology.
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Appendix A

The 4ð2Nt þ 1Þ � 4ð2Nt þ 1Þ kernel matrix ½~P� is given as

~P
h i

¼

~P
11

h i
~P
12

h i
~P
13

h i
~P
14

h i
~P
21

h i
~P
22

h i
½P

23
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24

h i
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7777775
; ðA:1Þ

wherein the sixteen ð2Nt þ 1Þ � ð2Nt þ 1Þ submatrixes are defined as follows:
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~P
41

h i
¼ � kð0Þyð Þ2
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The ð2Nt þ 1Þ � ð2Nt þ 1Þ identity matrix is denoted by ½I �.
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Response of Chiral Sculptured Thin Films to Dipolar Sources

Akhlesh Lakhtakia and Martin W. McCall

Abstract: Dyadic Green functions (DGFs) are formulated, for
a chiral sculptured thin film (STF) sandwiched between two vacu-
ous half-spaces, as angular spectrums of propagating and evanes-
cent plane waves. Asymptotic evaluation of the DGFs is carried
out to obtain simple far-field expressions. The radiation patterns
of dipolar sources held close to the chiral STF are computed and
discussed, in relation to the circular Bragg phenomenon that the
chosen nanomaterials are known to display on illumination by cir-
cularly polarized plane waves.
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1. Introduction

Sculptured thin films (STFs) are a new class of nano-
materials [1, 2] that emerged during the 1990s from the
widely used columnar thin films (CTFs) [3, 4]. The mi-
crostructure of CTFs consists of almost identical, straight
and parallel columns with elliptical cross-sections. The
columns in a STF are not straight, but have been engi-
neered to grow as curves that veer away from the sub-
strate. The column diameters range from 10 to 300 nm,
and a wide variety of two- and three-dimensional as well
as sectionwise cascaded morphologies can be nano en-
gineered [5, 6]. STFs are therefore porous materials, the
shapes and volume fractions of whose void regions can
also be produced for specific optical and other applica-
tions [2].

Chiral STFs comprise parallel helical columns. These
films can be regarded as unidirectionally and rotation-
ally nonhomogeneous, dielectric continuums in the op-
tical regime [1]. Special interest has been garnered in
optics by chiral STFs – which exemplify the so-called he-
licoidal bianisotropic mediums [7] – as the circular Bragg
phenomenon [8–10] exhibited by them upon plane wave
excitation parallel to their axis of nonhomogeneity can be
harnessed for a variety of optical filtering and fluid sens-
ing applications [11]. When the wavelength of normally
incident radiation is approximately equal to the optical
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period of the nonhomogeneity the helicoidal morphology
acts as a mirror for circularly polarized plane waves of
one handedness, but not for the other handedness. Dis-
crimination of circularly polarized plane waves, based on
handedness, is also evinced for oblique incidence condi-
tions [12–14].

Although plane wave excitation is the norm in optics,
recent developments in near-field microscopy [15] neces-
sitate consideration of other types of excitation – e.g., with
evanescent waves [16] and point dipoles [17]. Evanes-
cent waves are essential constituents of beams, which are
known to experience shifts on reflection. Therefore, re-
cently Goos-Hänchen shifts displayable by chiral STFs
were theoretically analyzed [18]. Dipolar sources are use-
ful in modeling nanoprobes (and even single-molecule
probes) commonly employed in scanning near-field mi-
croscopy [15], for examining surfaces as well as for
lithography in the optoelectronics area [19, 20]. As dis-
cussed elsewhere [11, 21, 22], STFs hold considerable
promise for optoelectronic applications. Furthermore,
chiral STFs could be useful in patterning the surfaces
of biosubstrates for enhanced absorption of desirable
enantiomers of biochemicals [23, 24]. Also, STFs could
roughen surfaces for enhancing Raman scattering, which
is the basis of a commonly used spectroscopic technique
[25]. These possibilities motivated the research communi-
cated here.

Accordingly, in Section 2, we present the frequency-
domain constitutive relations of a chiral STF as well as
its planewave response in order to formulate dyadic Green
functions (DGFs) for a chiral STF sandwiched between
two vacuous half-spaces. The DGFs are formulated as
angular spectrums of propagating and evanescent plane
waves. Asymptotic evaluation of the DGFs to obtain sim-
ple far-field expressions is then accomplished. Section 3 is
devoted to the illustration of far-field radiation patterns of
dipolar sources held close to a chiral STF.

The notation used is as follows: Vectors are in bold-
face, while dyadics are double-underlined. The position
vector is denoted by r = xux + yuy + zuz , where ux , uy
and uz are the cartesian unit vectors. An exp(−iωt) time-
dependence is implicit, with ω as the angular frequency
and t as time.

2. Theory

2.1 Constitutive relations

Suppose the slab region 0 < z < L is occupied by a chiral
STF, while the lower half-space z < 0 and the upper half-
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space z > L are vacuous. The constitutive relations of free
space or vacuum are written as

D(r) = ε0 E(r)

B(r) = µ0 H(r)

}
, z < 0 or z > L , (1)

where ε0 = 8.854×10−12 F/m and µ0 = 4π ×10−7 H/m.
The chiral STF is periodically nonhomogeneous along

the z axis, and its frequency-domain constitutive relations
are best stated as [12]

D(r) = ε0 S
z
(z) • S

y
(χ) •

[
εa uzuz + εb uxux

+ εc uyuy

]
• S−1

y
(χ) • S−1

z
(z) • E(r)

B(r) = µ0H(r)




,

0 < z < L . (2)

Here, εa, εb and εc are three frequency-dependent scalars;
the tilt dyadic

S
y
(χ) = uyuy + (uxux +uzuz) cos χ

+(uzux −uxuz) sin χ (3)

is a function of the angle χ ∈ (0◦, 90◦]; and the rotation
dyadic

S
z
(z) = uzuz + (

uxux +uyuy
)

cos
(πz

Ω

)
+ h

(
uyux −uxuy

)
sin

(πz

Ω

)
(4)

involves 2 Ω as the structural period. The parameter
h = +1 for structural right-handedness, and h = −1 for
structural left-handedness.

2.2 Planewave response

An essential ingredient of our formulation is the compu-
tation of the reflection and transmission coefficients of
a chiral STF excited by an obliquely incident plane wave.

Suppose that a plane wave is obliquely incident on the
chiral STF from the lower half-space, with [12]

Einc(r) = [
aL L+(κx, κy)+aR R+(κx, κy)

]
× exp(ik+ • r) , z ≤ 0 , (5)

as the associated electric field phasor. Here and hereafter,
aL and aR are known complex-valued amplitudes; k0 =
ω(ε0µ0)

1/2 is the free space wavenumber and λ0 = 2π/k0
is the free space wavelength; κx and κy are the trans-
verse wavenumbers defined by the direction of the inci-
dent radiation, but identical for all subsequently generated
beams through the satisfaction of phase-matching condi-

tions across the planes z = 0 and z = L; while

L±(κx, κy) = ±(is−p±)/
√

2

R±(κx, κy) = ∓(is+p±)/
√

2

s(κx, κy) = −(1/κ)
(
κyux −κxuy

)
p±(κx, κy) = ∓(α/κk0)

(
κxux +κyuy

)
+(κ/k0)uz

k±(κx, κy) = κxux +κyuy ±αuz = k0 s×p±

κ(κx, κy) = + (
κ2

x +κ2
y

)1/2

α(κx, κy) = + (
k2

0 −κ2
)1/2




. (6)

The resultant geometry is schematically depicted in Fig-
ure 1.

The vector functions L± and R± assist in representing
left- and right-circularly polarized (LCP and RCP) plane
waves. A plane wave is classified as evanescent if α is
purely imaginary, and as propagating if α is real-valued.

The electric field phasors associated with the reflected
and the transmitted plane waves are stated as

Ere f (r) = [
rL L−(κx, κy)+ rR R−(κx, κy)

]
× exp(ik− • r) , z ≤ 0 , (7)

and

Etr(r) = [
tL L+(κx, κy)+ tR R+(κx, κy)

]
× exp [i (k+ • r−αL)] , z ≥ L , (8)

Fig. 1. Schematic for the excitation of a chiral STF by the plane
wave described by (5). The chiral STF occupies the space be-
tween the planes z = 0 and z = L. Note that the vector s lies in the
xy plane; and that the three vectors k+, s and p+ are mutually
orthogonal.
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respectively, with rL,R and tL,R as unknown complex-
valued amplitudes. Their determination can be easily
computed following the piecewise constant approxima-
tion described elsewhere [14]. More recently, the numer-
ical implementation of a matrix polynomial expansion
technique [26] has also been reported [27, 28]. For our
present purposes, it suffices to state that the doubly sub-
scripted reflection and transmission coefficients appearing
in the relations[

rL
rR

]
=

[
rL L rL R
rRL rRR

] [
aL
aR

]
(9)

and [
tL
tR

]
=

[
tL L tL R
tRL tRR

] [
aL
aR

]
(10)

can be easily computed as functions of κx and κy [14, 27].

2.3 Dyadic Green functions

Let us now obtain expressions for dyadic Green functions
for a chiral STF sandwiched between two vacuous half-
spaces. Suppose, initially, that the chiral STF is absent and
all space is vacuous. Then, the electric field phasor every-
where can be derived as follows [29, 30]:

E(r) = iωµ0

∫∫∫ [
G

0
(r; r′) • J(r′)

]
d3r′

−∇ ×
∫∫∫ [

G
0
(r; r′) • K(r′)

]
d3r′ . (11)

Here, r is the field point, r′ is the source point, J(r′) and
K(r′) are the source electric and magnetic current densi-
ties, respectively; while

G
0
(r; r′) =

(
I +∇∇/k2

0

) [
exp(ik0 R)/4πR

]
(12)

is the infinite-medium DGF for free space, with I as the
identity dyadic, R = r− r′ and R = |R|.

For our present purposes, sources of circularly polar-
ized plane waves are preferred. Therefore, we define two
Beltrami source densities, being appropriate linear combi-
nations of electric and magnetic currents, as follows [31]:

WL = J − (k0/iωµ0) K

WR = J + (k0/iωµ0) K


 . (13)

These canonical sources of circularly polarized radiation
can be conceived of as co-located pairs of electric and
magnetic dipoles that are either parallel or anti-parallel.
Accordingly, (11) is rewritten as

E(r) = iωµ0

2

∫∫∫ [
G

L0
(r; r′) • WL(r′)

+ G
R0

(r; r′) • WR(r′)
]

d3r′ , (14)

where

G
L0

(r; r′) =
[

I + (1/k0)∇ × I
]

• G
0
(r; r′) (15)

and

G
R0

(r; r′) =
[

I − (1/k0)∇ × I
]

• G
0
(r; r′) . (16)

Next, let the chiral STF be present and – in conso-
nance with Section 2.2 – let the sources lie exclusively in
the lower half-space. Then the electric field in either of the
two half-spaces must be given by

E(r) = iωµ0

2

∫∫∫ [
G

L
(r; r′) • WL(r′)

+ G
R
(r; r′) • WR(r′)

]
d3r′ ,

z′ < 0, z < 0 or z > L , (17)

where the DGFs G
L
(r; r′) and G

R
(r; r′) take the pres-

ence of the chiral STF into account. Synthesis of these two
DGFs is accomplished through the decompositions

G
L
(r; r′) ={

G
L0

(r; r′)+ G
Lρ

(r; r′) , z < 0 , z′ < 0

G
Lτ

(r; r′) , z > L , z′ < 0
(18)

and

G
R
(r; r′) ={

G
R0

(r; r′)+ G
Rρ

(r; r′) , z < 0 , z′ < 0

G
Rτ

(r; r′) , z > L , z′ < 0
. (19)

As the planewave response of a chiral STF can be cal-
culated, the remaining four dyadic functions on the right
sides of (18) and (19) may be derived therefrom. For
this purpose, we begin with a spectral representation of
G

0
(r; r′) as [32, 33]

G
0
(r; r′) = −uzuzk

−2
0 δ(R)+

∞∫
−∞

∞∫
−∞

i

4π2α

× (ss+p±p±) exp (ik± • R) dκx dκy ,{
z > z′
z < z′ , (20)

where δ(R) is the Dirac delta function. Clearly, G
0
(r; r′)

is an angular spectrum of both propagating and evanescent
plane waves. Therefore, all other DGFs possess analogous
structures. In (20), the upper signs apply for z > z′, and the
lower signs for z < z′.
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From (15), (16) and (20), we obtain the representations

G
L0

(r; r′) = −uzuzk
−2
0 δ(R)+

∞∫
−∞

∞∫
−∞

i

4π2α

× L±R± exp (ik± • R) dκx dκy ,{
z > z′
z < z′ , (21)

and

G
R0

(r; r′) = −uzuzk−2
0 δ(R)+

∞∫
−∞

∞∫
−∞

i

4π2α

× R±L± exp (ik± • R) dκx dκy ,{
z > z′
z < z′ . (22)

Then, in strict analogy with the reflected and transmitted
plane waves in Section 2.2, we are able to devise the ex-
pressions

G
Lρ

(r; r′) =
∞∫

−∞

∞∫
−∞

i

4π2α
ρ

L
(κx, κy)

× exp
[
i
(
k− • r−k+ • r′)] dκx dκy ,

z < 0 , z′ < 0 , (23)

G
Rρ

(r; r′) =
∞∫

−∞

∞∫
−∞

i

4π2α
ρ

R
(κx, κy)

× exp
[
i
(
k− • r−k+ • r′)] dκx dκy ,

z < 0 , z′ < 0 , (24)

G
Lτ

(r; r′) =
∞∫

−∞

∞∫
−∞

i

4π2α
τ

L
(κx, κy)

× exp
[
i
(
k+ • r−αL −k+ • r′)] dκx dκy ,

z > L , z′ < 0 , (25)

and

G
Rτ

(r; r′) =
∞∫

−∞

∞∫
−∞

i

4π2α
τ

R
(κx, κy)

× exp
[
i
(
k+ • r−αL −k+ • r′)] dκx dκy ,

z > L , z′ < 0 (26)

for the remaining dyadic functions on the right sides of
(18) and (19). The reflection and the transmission dyadics
entering the four previous expressions are specified as fol-
lows:

ρ
L
(κx, κy) = rL L L−R+ + rRL R−R+

ρ
R
(κx, κy) = rL R L−L+ + rRR R−L+

τ
L
(κx, κy) = tL L L+R+ + tRL R+R+

τ
R
(κx, κy) = tL R L+L+ + tRR R+L+




. (27)

2.4 Asymptotic evaluation

Even if exact analytical expressions for rL L , etc., were
somehow miraculously found, the integrations on the right
sides of (23)–(26) would have to be performed numer-
ically. However, in many applications, only the asymptotic
expressions in the limit k0 R → ∞ are needed.

The method of stationary phase is applied for this
purpose [34, 35]. Correct to order (1/k0 R), in the limit
k0 R → ∞, we get

G
Lρ,Rρ

(r; r′) → 2ρ
L,R

(
k0(x − x ′)

dρ

,
k0(y − y′)

dρ

)

× exp(ik0dρ)

4πdρ

, z � 0 , z′ < 0 , (28)

and

G
Lτ,Rτ

(r; r′) → 2τ
L,R

(
k0(x − x ′)

dτ

,
k0(y − y′)

dτ

)

× exp(ik0dτ)

4πdτ

, z � L , z′ < 0 , (29)

where the distances

dρ = + [
(x − x ′)2 + (y − y′)2 + (z + z′)2

]1/2

dτ = + [
(x − x ′)2 + (y − y′)2 + (z − L − z′)2

]1/2


 .

(30)

3. Numerical results and discussion

3.1 Dipolar sources

We investigated the response of a chiral STF to sources
comprising electric and magnetic dipoles. As any chiral
STF discriminates between LCP and RCP plane waves
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strongly in the Bragg regimes, we chose two different Bel-
trami source configurations:
(a) J (r) = −iω(p/2) us δ(r−duz) and

K(r) = −(iωµ0/k0) J(r),

and

(b) J (r) = −iω(p/2) us δ(r−duz) and

K(r) = (iωµ0/k0) J(r).

Both canonical source configurations nominally comprise
a pair of oscillating parallel electric and magnetic dipoles
co-located at r = duz, (d < 0), with Re

[
pe−iωt

]
being the

oscillating electric dipole moment. Obviously, an electric
or a magnetic dipolar source is simply a linear combina-
tion of the two canonical source configurations.

The two Beltrami source configurations are of the left-
handed and the right-handed types, respectively, and ra-
diate left-handed and right-handed electromagnetic fields
which have been decomposed in the previous section as
angular spectrums of LCP and RCP plane waves. In the
far zone, the radiation emitted by the two sources in the
broadside directions is either a LCP or a RCP plane wave
(when all space is matter-free); therefore, as k0|d| → ∞,
the radiation intercepted by the chiral STF is virtually
a circularly polarized plane wave.

The unit vector us = (ux cos φs + uy sin φs) sin θs +
uz cos θs represents the orientation of the dipolar sources
as shown in Figure 2.

When θs = 0 and |k0d| is sufficiently large, the radi-
ation intercepted by the chiral STF is likely to be of low
significance [36]. On the other hand, the radiation inci-
dent on the chiral STF must be substantially in the form
of a normally incident beam for θs = π/2 and sufficiently
large |k0d|.

Fig. 2. Geometry for the far-field calculations relating to (28)–(31).
The chiral STF (not shown) resides between the planes z = 0 and
z = L as in Figure 1.

For either of the two configurations of dipolar sources,
an expression for the electric field applicable at locations
far away from the sources as well as the chiral STF can be
obtained from (17) as

E(r, θ, φ) →
[
ω2µ0 p

exp(ik0r)

4πr

]
e(θ, φ) . (31)

Here, ur(θ, φ) • e(θ, φ) = 0, ur(θ, φ) = (ux cos φ + uy
sin φ) sin θ +uz cos θ is the unit radial vector in the spher-
ical coordinate system, and r = |r|.

3.2 Selected parameters

Calculations of e(θ, φ) were made for the following con-
stitutive and geometric parameters: h = 1, εa = 2.7, εb =
3.0, εc = 2.72, χ = 30◦, L = 60 Ω, Ω = 200 nm, d =
−10λ0, and r = 105λ0. Dissipation and dispersion in the
chosen chiral STFs were ignored for these illustrative
calculations in the λ0 ∈ [550, 750] nm regime, which is
supposed to lie far away from the absorption resonances
of εa,b,c. The ratio L/Ω is large enough so that circular
Bragg phenomenon is fully developed [8, 14]. The appear-
ance of the Bragg regime in the electromagnetic spectrum
depends on εa,b,c, χ and Ω; if any of these constitutive
parameters is changed (or if the angle of planewave in-
cidence is altered), the center-wavelength and the band-
width of the Bragg regime change in a largely predictable
fashion [8, 12, 14].

The Bragg regime is roughly λ0 ∈ [659, 684] nm for
normally incident plane waves [10, 37], while a grad-
ual blue-shift of the Bragg regime occurs for increas-
ingly oblique incidence [12], for the chosen param-
eters. All graphs reproduced in this communication
were drawn for λ0 = 600, 672, or 744 nm. Before con-
tinuing, we must caution the reader that plots of |e|2
are expected to function as the radiation patterns only
at distances far from the chiral STF and the dipolar
source; in particular, values of |e(θ, φ)|2 in the vicinity
of θ = π/2 do not possess physical significance because
the asymptotic evaluation is invalid close to the chiral
STF.

Computed values of |e(θ, φ)|2 in the xz and the
yz planes, for various types of dipolar sources, are shown
in Figures 3–9. The source configuration is left-handed
for the top plots, and right-handed for the bottom plots, in
each figure. These plots yield the radiation patterns only
at locations far away from the chiral STF (if present) and
the source. The dashed circles of indicated radius provide
the scale.

3.3 Vertically directed dipolar sources

Let us begin with vertically directed dipolar sources, for
which us = uz . Figure 3 shows plots of |e(θ, φ)|2 com-
puted in the xz and the yz planes after setting εa = εb =
εc = 1 in the foregoing equations. In the absence of any
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Fig. 3. Computed values of |e(θ, φ)|2 in the xz and the yz planes,
for z-directed Beltrami dipolar sources radiating at λ0 = 600, 672
or 744 nm. The source configuration is left-handed for the top plots,
and right-handed for the bottom plots. The chiral STF is absent
(i.e., εa = εb = εc = 1). See Section (3.2) for all other parameters.
The dashed circles of indicated radius provide the scale.

matter, the radiation patterns must possess circular sym-
metry in the horizontal (i.e., xy) plane and appear as
figures-of-eight in any vertical plane [38], to which the
plots in Figure 3 attest. Clearly, |e|2 is independent of the
handedness of the Beltrami source configurations, as it
must.

The effects of the presence of the chosen right-handed
STF are evident in the plots presented in Figures 4–6.
These plots contain several Fabry-Perot rings in the lower
(i.e., reflection) half-space which arise due to thickness
resonances inside the film. Fabry-Perot rings (see e.g. [34]
Fig. 7.60) are also present in the upper, or the transmis-
sion, half-space, but are considerably muted.

All three figures demonstrate a slight disturbance of
the circular symmetry in the horizontal plane by the chi-
ral STF. As witness thereof, the plots of |e|2 in the xz and
the yz planes are somewhat different, in contrast with Fig-
ure 3. This asymmetric feature can be attributed to the fact
that the helicoidal symmetry of a chiral STF is not circu-
lar: whereas the former is expressed in three-dimensional
space, the latter requires only a two-dimensional space.
In the context of the planewave response of a chiral STF,
a similar dependence of reflection and transmission on
the projection Einc(r) • S

z
(z) • S

y
(χ) • ux on the illumi-

nated side of the chiral STF has already been noted [39].
The same dependence must underlie the radiation pat-
terns presented here, because the DGFs of Section 2.3 are
constructed from continuous angular spectrums of plane
waves.

Fig. 4. Computed values of |e(θ, φ)|2 in the xz and the yz planes,
for z-directed Beltrami dipolar sources radiating at λ0 = 600 nm.
The source configuration is left-handed for the top plots, and right-
handed for the bottom plots. The following parameters were used
for calculations: h = 1, εa = 2.7, εb = 3.0, εc = 2.72, χ = 30◦,
L = 60 Ω, Ω = 200 nm, d = −10λ0, and r = 105λ0.

Fig. 5. Same as Figure 4, but for λ0 = 672 nm.

Evidence of the circular Bragg phenomenon is pro-
vided by a comparison of Figures 4 and 5 with Figure 6.
The radiation patterns in the first two figures clearly de-
pend on the handedness of the source configuration, but
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Fig. 6. Same as Figure 4, but for λ0 = 744 nm.

not (at least, perceptibly) in the third figure. This depen-
dence can be attributed to the circular Bragg phenomenon
excited by obliquely incident plane waves [12, 14]. For
normally incident plane waves, the center-wavelength of
the Bragg regime is 672 nm, and it blue-shifts for oblique
incidence. That is the reason for the radiation patterns to
be different for the two different Beltrami source config-
urations radiating at λ = 600 and 672 nm, but not when
λ0 = 744 nm.

Far-field radiation from the z-directed dipolar sources
is virtually absent for θ in the vicinity of 0 and π, in Fig-
ures 4–6. This is not surprising, because either the electric
field or the magnetic field is null-valued along the dipole
axis [36, 38]. As dipole radiation is broadside, not end-
fire – which is evident from Figure 3 – the chiral STF is
not axially excited; therefore, it does not reradiate in di-
rections close to the z axis.

3.4 Horizontally directed dipolar sources

The situation changes dramatically when θs = π/2, so
that the dipolar sources are directed in the xy plane. For
definiteness, we chose us = ux . Figure 7 shows plots of
|e(θ, φ)|2 computed in the xz and the yz planes, when the
chiral STF is not present. As the main lobes of the ra-
diation lie along the z axis in the absence of matter, the
chiral STF is definitely excited along its axis of nonhomo-
geneity.

Figures 8, 9 and 10, respectively, show the radiation
patterns in the presence of the chosen chiral STF, when
λ0 = 600, 672 and 744 nm. In all three figures, circular
symmetry in the horizontal plane is conspicuously absent.
On the one hand, this merely follows the radiation patterns
of horizontally directed dipolar sources in the absence of

Fig. 7. Computed values of |e(θ, φ)|2 in the xz and the yz planes,
for x-directed Beltrami dipolar sources radiating at λ0 = 600, 672
or 744 nm. The source configuration is left-handed for the top plots,
and right-handed for the bottom plots. The chiral STF is absent
(i.e., εa = εb = εc = 1). See Section (3.2) for all other parameters.

matter, as depicted in Figure 7. On the other hand, some
lack of circular symmetry in the xy plane is also due to the
noncircular (but helicoidal) symmetry of chiral STFs.

Just as for the vertically directed sources of Sec-
tion 3.4, the radiation patterns in Figures 8–10 contain
very prominent Fabry-Perot rings in the reflection half-
space. However, unlike the plots in Figures 4–6, the
Fabry-Perot rings in the transmission half-space are not
insubstantial.

But the most prominent features of the radiation pat-
terns in Figures 8–10 are due to the circular Bragg phe-
nomenon. For normally incident plane waves, the center-
wavelength of the Bragg regime is 672 nm, and it blue-
shifts for oblique incidence [14]. This is clearly indi-
cated in Figure 9 by the presence of the wedge located
at θ = 0 – in the transmission half-space – for the right-
handed Beltrami source configuration. The wavelength for
Figure 8 is lower than for Figure 9, so that the wedge in
the transmission half-space lies around θ = π/4 for the
right-handed Beltrami source configuration. The wedge
is absent in Figures 8 and 9 for the left-handed Beltrami
source configuration, but a double-fang feature appears
in the reflection half-space located at θ = π, such that
|e(0, φ)|2 ∼ |e(π, φ)|2. The diversity with respect to the
handedness of the source configuration is virtually absent
in Figure 10, as the circular Bragg phenomenon is not ex-
cited at λ0 = 744 nm.

The wedge and the double-fang feature for the right-
handed source configuration in Figures 8 and 9 are the
cumulative expressions of the circular Bragg phenomenon
known for normally and obliquely incident plane waves.
As the fields radiated by a source configuration can be
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Fig. 8. Computed values of |e(θ, φ)|2 in the xz and the yz planes,
for x-directed Beltrami dipolar sources radiating at λ0 = 600 nm.
The source configuration is left-handed for the top plots, and right-
handed for the bottom plots. The following parameters were used
for calculations: h = 1, εa = 2.7, εb = 3.0, εc = 2.72, χ = 30◦,
L = 60 Ω, Ω = 200 nm, d = −10λ0, and r = 105λ0.

Fig. 9. Same as Figure 8, but for λ0 = 672 nm.

decomposed into an angular continuum of circularly po-
larized plane waves, the characteristic features of the
Bragg phenomenon – if displayed by a segment of that
continuum – coalesce to create either the wedge or the
double-fang feature in the radiation pattern.

Fig. 10. Same as Figure 8, but for λ0 = 744 nm.

3.5 Dependence on source location

The final issue worth mentioning here is the virtual
independence of the radiation pattern in the transmis-
sion half-space on the location of the dipolar sources.
This can be explained as follows: The electric field
illuminating the face of the chiral STF, proportional
to the sum of G

L0
(x, y, 0; 0, 0, d) • WL(0, 0, d) and

G
R0

(x, y, 0; 0, 0, d) • WR(0, 0, d), contains both propa-
gating and evanescent plane waves. The evanescent com-
ponents do not contribute to far-zone transmitted intensity.
The propagating components affect the phases but not
the amplitudes of G

Lτ
(x, y, z; 0, 0, d) • WL(0, 0, d) and

G
Rτ

(x, y, z; 0, 0, d) • WR(0, 0, d) in the far zone.
On the other hand, far away from the chiral STF in the

reflection half-space, the total field comprises two parts:
(i) the direct radiation from the source configuration, and
(ii) the field reflected by the chiral STF. The two parts
must interfere, with their relative phase depending on d;
hence the radiation pattern in the reflection half-space
must depend on the source location.

Confirmation of the foregoing conclusions is provided
by comparison of Figure 9 (d = −10λ0) with Figures 11
(d = −λ0) and 12 (d = −100λ0). All other parameters for
these three figures are identical.

4. Concluding remarks

In the previous sections, we presented dyadic Green func-
tions for reflection and transmission by a chiral sculptured
thin film. As the DGFs were synthesized in the form
of angular spectrums of left- and right-circularly polar-
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Fig. 11. Same as Figure 9, but for d = −λ0.

Fig. 12. Same as Figure 9, but for d = −100λ0.

ized plane waves, the DGFs were naturally formulated
in order to take advantage of the Beltrami represen-
tation of source current densities. The circular Bragg
phenomenon displayed by chiral STFs on planewave ex-
citation was shown to underlie the discriminatory treat-
ment of left- and right-handed source configurations.
We expect the understanding gleaned from this work
to be useful in near-field microscopy of sculptured thin
films, other nanostructured materials, and nanotextured
surfaces.
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Abstract

A theoretical investigation of the electromagnetic response of a slanted chiral sculptured thin film (STF) to dipolar

sources is presented. Dyadic Green functions (DGFs) for a slanted chiral STF sandwiched between two vacuous

half-spaces are formulated as planewave angular spectrums. First, the response of the slanted chiral STF to obliquely

incident plane waves is obtained by rigorous coupled-wave analysis implemented with a stable algorithm; then,

asymptotic evaluation of the DGFs is carried in the far-field limit. The radiation patterns of Beltrami source config-

urations close to a slanted chiral STF are computed and discussed. In particular, certain characteristic features – which

are closely related to the circular Bragg phenomenon – in the radiation patterns are found to be spatially asymmetric,

because of the effective transverse periodicity of the chosen thin film.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Sculptured thin films (STFs) are a class of

nanomaterials that emerged during the 1990s from

the widely used columnar thin films [1,2], and are

grown by physical vapor deposition [3,4]. The
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nanostructure of a STF comprises clusters of 3–5

nm diameter that form parallel nanowires and are
bent in some fanciful forms. The nanowire diam-

eters range from 10 to 300 nm, and a wide variety

of two- and three-dimensional as well as section-

wise cascaded morphologies can be engineered

[3,5]. STFs are therefore porous materials, the

shapes and volume fractions of whose void regions

can also be tailored for specific optical and other

applications [2,4].
The nanowires of a chiral STF are helixes.

These films can be regarded as unidirectionally

and rotationally nonhomogeneous continuums
ed.

mail to: FUW101@psu.edu
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with direction-dependent properties at visible and

infrared wavelengths. Specific interest has been

garnered in optics by their display of the circular

Bragg phenomenon [6]: a circularly polarized

plane wave of the same handedness as the helical

nanowires of a chiral STF is substantially reflected
in a certain wavelength regime, while that of the

other handedness is not. Grating theory provides

an explanation – the co-handed circularly polar-

ized plane wave effectively encounters a Bragg

grating, while the cross-handed plane wave merely

propagates across a homogeneous slab [7].

Normally, the helical nanowires of a chiral STF

grow upright by rotating the substrate at a con-
stant angular velocity during physical vapor de-

position. However, the nanowires may be slanted

at an angle a to the normal to the substrate plane.

One way of achieving this morphology is by ro-

tating the substrate with a variable angular ve-

locity [3,9]. Ideally, a slanted chiral STF thus is

helicoidally nonhomogeneous about an axis that is

neither tangential nor perpendicular to the sub-
strate plane. In view of the equivalent periodicity

both parallel and normal to the substrate plane,

the slanted chiral STF couples the circular Bragg

phenomenon (which is purely specular) to non-

specular diffraction (and Rayleigh–Wood anoma-

lies) associated with diffraction gratings [8]. The

angle a totally controls the coupling of these two

optical phenomenons [10,11].
In addition to the traditional planewave excita-

tion, recent developments in near-field microscopy

necessitate the consideration of other types of ex-

citations – e.g., by evanescent waves and point di-

poles [12,13]. Evanescent waves are essential

constituents of beams, which are known to experi-

ence lateral shifts on reflection [14]. Dipolar sources

are useful in modeling nanoprobes in the technique
of scanning near-field microscopy for examining

surfaces as well as for lithography [15,16]. Chiral

STFs are promising candidates for these optoelec-

tronic applications as well as bio-nanotechnologi-

cal ones [17,18]. In order to further the foregoing

and other applications, it is our objective here to

characterize the optical responses of slanted chiral

STFs to excitation by dipolar sources.
The plan of this paper is as follows. Section 2

is devoted to theoretical analysis. It provides the
frequency-domain constitutive relations of a slan-

ted chiral STF as well as its planewave response, in

order to formulate the dyadic Green functions

(DGFs) of a slanted chiral STF sandwiched be-

tween two vacuous half-spaces. A rigorous cou-

pled-wave analysis (RCWA) [19–21] is stably
implemented for the accurate computation of

planewave diffraction. The DGFs are formulated in

terms of angular spectrums of propagating and

evanescent plane waves. Asymptotic evaluation of

these DGFs to obtain simple expressions in the far-

field limit is then performed. Section 3 is devoted to

numerical results. First, the planewave response of

a slanted chiral STF is studied for oblique incidence
for the first time, focusing on the circular Bragg

phenomenon as affected by the angle of incidence.

Then, the far-field radiation patterns of dipolar

sources held close to a slanted chiral STF are pre-

sented. An expð�ixtÞ time-dependent is implicit,

with x as the angular frequency and t as time.
2. Theoretical analysis

2.1. Constitutive relations

Let the region 0 < z < d be occupied by a

slanted chiral STF, as shown in Fig. 1, where a is

the slant angle of its axis of nonhomogeneity (i.e.,

the helical axis) with respect to the z axis. The half-
spaces z6 0 and zP d are vacuous. The relative

permittivity dyadic of the slanted chiral STF is

factorable as

�ðr; k0Þ ¼ S
y
ð�aÞ � S

z
ðrÞ � S

y
ðvsÞ � �ref k0ð Þ � ST

z
ðvsÞ

� ST

z
ðrÞ � ST

y
ð�aÞ; 0 < z < d;

ð1Þ

where the position vector r ¼ xux þ yuy þ zuz, k0 is
the free-space wavelength, and the superscript T

denotes the transpose. As most STFs are locally

orthorhombic [22,23], the reference relative per-

mittivity dyadic is given by [6]

�
ref

k0ð Þ ¼ �a k0ð Þuzuz þ �b k0ð Þuxux þ �c k0ð Þuyuy : ð2Þ

The wavelength-dependences of the scalars �a;b;c
are assumed in Section 3 to emerge from a single-

resonance Lorentzian model [24,25] as



Fig. 1. Schematic of the boundary value problem involving a

slanted chiral STF of thickness d illuminated by an obliquely

incident plane wave. Both specular ðn ¼ 0Þ and nonspecular

ðn 6¼ 0Þ reflections and transmissions occur when a > 0, but all

nonspecular reflections/transmissions fold into the specular re-

flection/transmission when a ¼ 0.
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�a;b;cðk0Þ ¼ 1þ pa;b;c

1þ N�1
a;b;c � ika;b;ck

�1
0

� �2� � ; ð3Þ

where pa;b;c are the oscillator strengths. The pa-
rameters ka;b;c and Na;b;c determine the resonance

wavelengths and absorption linewidths.

The rotational nonhomogeneity of the chosen

thin film is captured by the rotation dyadic

S
z
ðrÞ ¼ uxux

�
þ uyuy

�
cos

p
X

r � u‘ð Þ
h i

þ h uyux
�

� uxuy
�

� sin
p
X

r � u‘ð Þ
h i

þ uzuz; ð4Þ

the helical axis being parallel to the unit vector

u‘ ¼ ux sin aþ uz cos a. The structural period along

the helical axis is denoted by 2X. The parameter

h ¼ 1 for structural right-handedness, while

h ¼ �1 for structural left-handedness. The dyadic

S
y
ðrÞ ¼ uxuxð þ uzuzÞ cos r

þ uxuzð � uzuxÞ sin rþ uyuy ð5Þ

serves two different roles: whereas S
y
ðvsÞ delineates

the role of the growth process with ðp=2Þ � vs be-
ing the angle of declination from the helical axis,

S
y
ð�aÞ represents the slanted orientation of that

axis. The slant angle a is restricted to the range

ð�vs; vsÞ due to the fact that the helical nanowires

of a slanted chiral STF must be pointed upwards

in relation to the substrate plane [10]. When a ¼ 0,
the slant is absent and the usual chiral STFs are

represented by �ðr; k0Þ � �ðz; k0Þ. From here on-

wards, the dependences of various quantities on k0
are implicit.
2.2. Rigorous coupled-wave theory for planewave

incidence

The next step is to formulate the response of a

slanted chiral STF to an obliquely incident plane

wave. Let the incident plane wave propagate with

the wavevector ki ¼ kð0Þx ux þ kð0Þy uy þ kð0Þz uz from

the lower half-space z6 0, as shown also in Fig. 1.
The incident, the reflected and transmitted elec-

tromagnetic field phasors are expressed in a set of

Floquet harmonics, respectively, as follows [10]:

Ei ¼
X
n2Z

LðnÞ
þ aðnÞL

�
þ RðnÞ

þ aðnÞR

�
exp ikðnÞ

þ � r
� �

; z6 0;

ð6Þ

Hi ¼
�i

g0

X
n2Z

LðnÞ
þ aðnÞL

�
� RðnÞ

þ aðnÞR

�
exp ikðnÞ

þ � r
� �

; z6 0;

ð7Þ

Er ¼
X
n2Z

LðnÞ
� rðnÞL

�
þ RðnÞ

� rðnÞR

�
exp ikðnÞ

� � r
� �

; z6 0;

ð8Þ

Hr ¼
�i

g0

X
n2Z

LðnÞ
� rðnÞL

�
� RðnÞ

� rðnÞR

�
exp ikðnÞ

� � r
� �

; z6 0;

ð9Þ

Et ¼
X
n2Z

LðnÞ
þ tðnÞL

�
þRðnÞ

þ tðnÞR

�
exp ikðnÞ

þ � ðr
h

� duzÞ
i
; zPd;

ð10Þ

Ht ¼
�i

g0

X
n2Z

LðnÞ
þ tðnÞL

�
�RðnÞ

þ tðnÞR

�
exp ikðnÞ

þ � ðr
h

� duzÞ
i
; zPd:

ð11Þ

In (6)–(11) and hereafter, k0 ¼ x
ffiffiffiffiffiffiffiffiffi
l0�0

p ¼ 2p=k0 is

the free-space wavenumber and g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
is the

intrinsic impedance of free space; while faðnÞL ; aðnÞR g,
frðnÞL ; rðnÞR g and ftðnÞL ; tðnÞR g, respectively, are complex-

valued amplitudes of the left- and right-circularly
polarized (LCP and RCP) components of the nth-
order harmonic constituent of the incident, reflected

and transmitted fields. The symbol Z represents the

set f0;�1;�2; . . .g of all integers.
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The wavevectors k
ðnÞ
� as well as the circular

polarization vectors L
ðnÞ
� and R

ðnÞ
� of the nth-order

harmonics are compatible with the phase-match-

ing and the Floquet conditions; thus,

k
ðnÞ
� ¼ kðnÞx ux þ kð0Þy uy � kðnÞz uz; ð12Þ

L
ðnÞ
� ¼ � isðnÞ

�
� p

ðnÞ
�

�. ffiffiffi
2

p
; ð13Þ

R
ðnÞ
� ¼ � isðnÞ

�
þ p

ðnÞ
�

�. ffiffiffi
2

p
: ð14Þ

In these expressions, the vectors

sðnÞ ¼
�kð0Þy

kðnÞxy

ux þ
kðnÞx

kðnÞxy

uy ; ð15Þ

p
ðnÞ
� ¼ � kðnÞz

k0

kðnÞx

kðnÞxy

ux

 
þ
kð0Þy

kðnÞxy

uy

!
þ
kðnÞxy

k0
uz ð16Þ

help denote linearly polarized planar fields of s-
and p-types, in electromagnetics literature [8,26],

with respect to the wavevector k
ðnÞ
� . The scalars

kðnÞx ¼ kð0Þx þ njx; ð17Þ

kðnÞz ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � kðnÞxy

� �2r
; ð18Þ

kðnÞxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðnÞx

� �2
þ kð0Þy

� �2r
; ð19Þ

jx ¼ ðp=XÞj sin aj ð20Þ

depend on the transverse period Kx ¼ 2X=j sin aj of
the slanted chiral STF along the x axis.

The incident plane wave is the Floquet har-

monic of order 0; hence, aðnÞL ¼ aðnÞR ¼ 0 8n 6¼ 0.

Since faðnÞL ; aðnÞR g are supposed to be known, the

amplitude sets frðnÞL ; rðnÞR g and ftðnÞL ; tðnÞR g need to be

determined. The RCWA, which is widely used for

1D and 2D grating diffraction problems, permits

us to delineate the spectral characteristics of
planewave diffraction by a slanted chiral STF as

follows.

The spatially periodic variation of �ðrÞ of (1) is
represented by the Fourier expansion

�ðrÞ ¼
X
n2Z

�ðnÞ exp in jxxð½ þ jzzÞ�; 0 < z < d;

ð21Þ
where

�ðnÞ ¼
X
r;r0

�
ðnÞ
rr0urur0 ; r; r0 ¼ x; y; z ð22Þ

are constant-value dyadics; and jz ¼ ðp=XÞ cos a is

in accord with the period Kz ¼ 2X= cos a of the

slanted chiral STF normal to the substrate plane

(i.e., along the z axis). Wave propagation occurs

inside the chosen thin film such that the electro-

magnetic field phasors therein can be decomposed
as

E rð Þ ¼
X
n2Z

EðnÞ
x zð Þux

h
þ EðnÞ

y zð Þuy þ EðnÞ
z zð Þuz

i

� exp i kðnÞx x
�h

þ kð0Þy y
�i

; ð23Þ

H rð Þ ¼
X
n2Z

H ðnÞ
x zð Þux

h
þ H ðnÞ

y zð Þuy þ H ðnÞ
z zð Þuz

i

� exp i kðnÞx x
�h

þ kð0Þy y
�i

; ð24Þ

where EðnÞ
x;y;z and H ðnÞ

x;y;z are unknown functions of

z 2 ð0; dÞ. Following Chateau and Hugonin [21],

we also define

~EðnÞ
r ðzÞ ¼ EðnÞ

r ðzÞ expð�injzzÞ
~H ðnÞ
r ðzÞ ¼ H ðnÞ

r ðzÞ expð�injzzÞ

)
; r ¼ x; y; z:

ð25Þ
On substituting (21)–(25) in the the frequency-
domain Maxwell curl postulates

r� E rð Þ ¼ ixl0H rð Þ
r �H rð Þ ¼ �ix�0�ðrÞ � E rð Þ

�
; 0 < z < d;

ð26Þ
and exploiting the orthogonalities of the functions

expðikðnÞ
� � rÞ across any plane z ¼ constant, we

derive the following set of coupled-wave equa-
tions:

d

dz
~EðnÞ
x zð Þ þ injz

~EðnÞ
x zð Þ � ikðnÞx

~EðnÞ
z zð Þ ¼ ik0g0 ~H

ðnÞ
y zð Þ;

ð27Þ
d

dz
~EðnÞ
y zð Þ þ injz

~EðnÞ
y zð Þ � ikð0Þy

~EðnÞ
z zð Þ ¼ �ik0g0 ~H

ðnÞ
x zð Þ;

ð28Þ

kð0Þy
~EðnÞ
x zð Þ � kðnÞx

~EðnÞ
y zð Þ ¼ �k0g0 ~H

ðnÞ
z zð Þ; ð29Þ
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d

dz
~H ðnÞ
x zð Þ þ injz

~H ðnÞ
x zð Þ � ikðnÞx

~H ðnÞ
z zð Þ

¼ � ik0
g0

X
n02Z

�ðn�n0Þ
yx

~Eðn0Þ
x zð Þ

�
þ �ðn�n0Þ

yy
~Eðn0Þ
y zð Þ

þ �ðn�n0Þ
yz

~Eðn0Þ
z zð Þ

�
; ð30Þ

d

dz
~H ðnÞ
y zð Þ þ injz

~H ðnÞ
y zð Þ � ikð0Þy

~H ðnÞ
z zð Þ

¼ ik0
g0

X
n02Z

�ðn�n0Þ
xx

~Eðn0Þ
x zð Þ

�
þ �ðn�n0Þ

xy
~Eðn0Þ
y zð Þ

þ �ðn�n0Þ
xz

~Eðn0Þ
z zð Þ

�
; ð31Þ

kð0Þy
~H ðnÞ
x zð Þ � kðnÞx

~H ðnÞ
y zð Þ

¼ k0
g0

X
n02Z

�ðn�n0Þ
zx

~Eðn0Þ
x zð Þ

�
þ �ðn�n0Þ

zy
~Eðn0Þ
y zð Þ

þ �ðn�n0Þ
zz

~Eðn0Þ
z zð Þ

�
: ð32Þ

Eqs. (27)–(32) hold for all n 2 Z, and are thus an

infinite system of first-order ordinary differential

equations (ODEs). For numerical solution, we first

restrict the summations on their right sides to
jnj6Nt, and then define the four column vectors

~ErðzÞ
h i

¼ ~EðnÞ
r ðzÞ

h i
;

~HrðzÞ
h i

¼ ~H ðnÞ
r ðzÞ

h i
;

ErðzÞ½ � ¼ EðnÞ
r ðzÞ

	 

HrðzÞ½ � ¼ H ðnÞ

r ðzÞ
	 


9>=
>;;

r ¼ x; y; z; n 2 ½�Nt;Nt� ð33Þ

of size ð2Nt þ 1Þ. Likewise, we define the diagonal

ð2Nt þ 1Þ � ð2Nt þ 1Þ matrixes

K
x

h i
¼ kðnÞx dn;n0
h i

j
z

h i
¼ jz ndn;n0

h i
9=
;; n; n0 2 ½�Nt;Nt�; ð34Þ

where dn;n0 is the Kronecker delta, and the Toeplitz

matrixes

�
rr0

h i
¼ �

ðn�n0Þ
rr0

h i
; r ¼ x; y; z; n; n0 2 ½�Nt;Nt�:

ð35Þ
Substituting (29) and (32) into (27), (28), (30) and

(31) thereafter, in order to eliminate the normal

electromagnetic fields components (i.e., ~EðnÞ
z and

~H ðnÞ
z ), and performing some algebraic manipula-

tions, we derive the shift-invariant matrix ODE [27]
d

dz
~fðzÞ
h i

¼ i ~P
h i

~fðzÞ
h i

; 0 < z < d: ð36Þ

The column vector

~fðzÞ
h i

¼ ~Ex zð Þ
h iT

; ~Ey zð Þ
h iT

; g0 ~Hx zð Þ
h iT

; g0 ~Hy zð Þ
h iT� �T

ð37Þ

contains 4ð2Nt þ 1Þ components, and the z-inde-
pendent matrix ½~P� is given in Appendix A.

The matrix ODE (36) has the solution [28]

~fðz2Þ
h i

¼ ~G
h i

exp iðz2
n

� z1Þ ~D
h io

~G
h i�1

~fðz1Þ
h i

;

ð38Þ

where the columns of the square matrix ½~G� are the
successive eigenvectors of ½~P�, and the diagonal

matrix ½~D� contains the corresponding eigenvalues
of ½~P�. The assumption here is that ½~P� is diago-

nalizable, i.e., it has 4ð2Nt þ 1Þ linearly indepen-

dent eigenvectors.

In order to solve the boundary value problem,

we have to determine the column vector

f zð Þ
h i

¼ Ex zð Þ½ �T; Ey zð Þ
	 
T

; g0 Hx zð Þ½ �T; g0 Hy zð Þ
	 
Th iT

ð39Þ

instead of ½~fðzÞ�. The two column vectors are sim-

ply related to each other as

f zð Þ
h i

¼ CðzÞ
h i

~fðzÞ
h i

; ð40Þ

where the diagonal matrix

CðzÞ
h i

¼ expði~njzzÞdn;n0
h i

; n; n0 2 1; 4ð2Nt½ þ 1Þ�;

ð41Þ
~n ¼ Mod½n� 1; 2Nt þ 1� � Nt and Mod½m;m0� de-

notes the remainder when m is divided by m0, with

m and m0 being positive integers. According to (38)

and (40), we obtain the relation

fðz2Þ
h i

¼ Gðz2Þ
h i

exp iðz2
n

� z1Þ ~D
h io

� Gðz1Þ
h i�1

fðz1Þ
h i

; ð42Þ

where the matrix
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GðzÞ
h i

¼ CðzÞ
h i

~G
h i

ð43Þ

is a periodic function of z; hence,

fðdÞ
h i

¼ GðdÞ
h i

exp id ~D
h in o

Gð0Þ
h i�1

fð0Þ
h i

:

ð44Þ
The continuity of the tangential components of the
electric and magnetic field phasors across the two

boundaries z ¼ 0 and z ¼ d must be enforced with

respect to the Floquet harmonic of any order n.
Therefore, we get

f 0ð Þ
h i

¼
Y þ

e

h i
Y �

e

h i

Y þ
h

h i
Y �

h

h i
2
64

3
75 A½ �

R½ �

" #
;

f dð Þ
h i

¼
Y þ

e

h i
0
h i

Y þ
h

h i
0
h i

2
64

3
75 T½ �

0½ �

" #
;

ð45Þ

where the column vectors

A½ � ¼ aðnÞL

aðnÞR

" #
; R½ � ¼ rðnÞL

rðnÞR

" #
; T½ � ¼ tðnÞL

tðnÞR

" #

ð46Þ

are of size 4Nt þ 2. The square matrixes ½Y �
e
� and

½Y �
h
� of size ð4Nt þ 2Þ � ð4Nt þ 2Þ are quite

sparse; and their nonzero entries are calculated

as follows:

Y �
e

h i
nn0

¼ �i Y �
h

h i
nn0

¼ L
ðnÞ
� � ux

if n ¼ n0 2 ½1; ð2Nt þ 1Þ�;

Y �
e

h i
nn0

¼ �i Y �
h

h i
nn0

¼ L
ðnÞ
� � uy

if n ¼ n0 þ 2Nt þ 1;

Y �
e

h i
nn0

¼ i Y �
h

h i
nn0

¼ R
ðnÞ
� � ux

if n ¼ n0 � 2Nt � 1;

Y �
e

h i
nn0

¼ i Y �
h

h i
nn0

¼ R
ðnÞ
� � uy

if n ¼ n0 2 ½ð2Nt þ 2Þ; ð4Nt þ 2Þ�:

ð47Þ

Finally, substituting (45) into (44), we get
U
T

h i
V

T

h i
2
64

3
75 T½ � þ

e
id ~D

1

h i
½0�

½0� e
id ~D

2

h i
2
6664

3
7775

U
R

h i

V
R

h i
2
64

3
75 R½ �

¼
e
id ~D

1

h i
½0�

½0� e
id ~D

2

h i
2
664

3
775

U
A

h i

V
A

h i
2
64

3
75 A½ �; ð48Þ

where ½~D
1
� and ½~D

2
� are the upper and lower di-

agonal submatrixes of ½~D�, respectively, and the

rectangular matrixes

U
T

h i
V

T

h i
2
64

3
75 ¼ GðdÞ

h i�1 Y þ
e

h i
Y þ

h

h i
2
64

3
75 ð49Þ

U
R

h i
V

R

h i
2
64

3
75 ¼ � Gð0Þ

h i�1 Y �
e

h i
Y �

h

h i
2
64

3
75; ð50Þ

U
A

h i
V

A

h i
2
64

3
75 ¼ Gð0Þ

h i�1 Y þ
e

h i
Y þ

h

h i
2
64

3
75; ð51Þ

are defined for the notational brevity.

For calculating the unknown R½ � and T½ �, the R-

matrix propagating algorithm [21,29] – which is

based on the rearrangement of the positions of the

eigenvalues of ½~P� in thediagonalmatrix ½~D�– should
be utilized in order to avoid numerical instabilities,

especially when Nt is large [19,20]. Therefore, the

entries on the diagonal of ½~D� (thus ½~D
1
� and ½~D

2
�

also) are rearranged in increasing order of the

imaginary part, and the columns of ½~G� are rear-

ranged accordingly. The final algebraic equation

e
�id ~D

1

h i
U

T

h i
U

R

h i

V
T

h i
e
id ~D

2

h i
V

R

h i
2
6664

3
7775

T½ �
R½ �

" #

¼
U

A

h i

e
id ~D

2

h i
V

A

h i
2
664

3
775 A½ �; ð52Þ

yielded by (48) for the determination of R½ � and T½ �
is algorithmically stable due to the fact that the
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exponential terms e
id½~D

1
�
and e

id½~D
2
�
will never be-

come overwhelming in magnitude because of the

rearrangement of the eigenvalues. The matrix in-

verse operation required to solve (52) for R½ � and
T½ � is then easily accomplished, using standard
techniques [30], for arbitrary d and Nt.

Once R½ � and T½ � have been determined, the nth-
order reflection and transmission coefficients

rðnÞIJ ¼ rðnÞI

að0ÞJ

; tðnÞIJ ¼ tðnÞI

að0ÞJ

; I ; J ¼ L;R ð53Þ

can be computed as functions of the wavevector

ki ¼ kð0Þ
þ of the incident plane wave. Reflectances

(RðnÞ
LL, etc.) and transmittances (T ðnÞ

LL , etc.) of order n
can be additionally calculated as

RðnÞ
IJ ¼ Re½kðnÞz �

Re½kð0Þz �
jrðnÞIJ j

2
;

T ðnÞ
IJ ¼ Re½kðnÞz �

Re½kð0Þz �
jtðnÞIJ j

2
; I ; J ¼ L;R:

ð54Þ
2.3. Dyadic Green functions

Let us now synthesize the DGFs of a slanted

chiral STF bounded by two vacuous half-spaces.

Suppose initially that the slanted chiral STF is

absent; then the electric field phasors everywhere

can be derived as [31]

E rð Þ ¼ ixl0

Z Z Z
R3

G
0
ðr; r0Þ � Jðr0Þ d3r0

� r �
Z Z Z

R3

G
0
ðr; r0Þ � Kðr0Þ d3r0; ð55Þ

where Jðr0Þ and Kðr0Þ are the externally impressed
electric and magnetic current densities, respec-

tively, at the source position r0; while

G
0
ðr; r0Þ ¼ I

�
þ k�2

0 rr
�

expðik0jRjÞ=4pjRj½ � ð56Þ

is the infinite-medium DGF for free space. Here

and hereafter, R ¼ r� r0 and I is the identity dy-

adic.

In consonance with the distinguished role of
structural handedness, sources of circularly po-

larized plane waves are preferred. Hence, we define

two Beltrami source densities [32]
WL ¼ Jþ ix�0K; ð57Þ
WR ¼ J� ix�0K ð58Þ
of the left- and right-handed types, respectively.

These can be synthesized as co-located pairs of
electric and magnetic dipoles that are either par-

allel or anti-parallel. After substituting (57) and

(58) into (55), the electric field can be rewritten as

E rð Þ ¼ ixl0

2

Z Z Z
R3

G
L0
ðr; r0Þ �WLðr0Þ

h

þG
R0
ðr; r0Þ �WRðr0Þ

i
d3r0; ð59Þ

where

G
L0
ðr; r0Þ ¼ I

�
þ k�1

0 r� I
�
G

0
ðr; r0Þ; ð60Þ

G
R0
ðr; r0Þ ¼ I

�
� k�1

0 r� I
�
G

0
ðr; r0Þ: ð61Þ

Next, let the slanted chiral STF occupy the re-

gion 0 < z < d. The sources lie exclusively in the

lower half-space (i.e., z0 < 0 hereinafter) without

losing generality. Then the electric field in the ei-

ther of the two half-spaces bordering the thin film
must be of the form

E rð Þ ¼ ixl0

2

Z Z Z
R3

G
L
ðr; r0Þ �WLðr0Þ

h

þG
R
ðr; r0Þ �WRðr0Þ

i
d3r0; z 62 ½0; d�;

ð62Þ
where G

L
ðr; r0Þ and G

R
ðr; r0Þ are DGFs that take

the presence of the slanted chiral STF into ac-

count. Synthesis of these two DGFs is accom-

plished through the decomposition

G
I
ðr; r0Þ ¼ G

I0
ðr; r0Þ þG

Ir
ðr; r0Þ; z < 0;

G
It
ðr; r0Þ; z > d;

�
I ¼ L;R:

ð63Þ

As the planewave response of a slanted chiral STF

can be obtained using the RCWA, G
Ir
ðr; r0Þ and

G
It
ðr; r0Þ can be derived therefrom. Accordingly,

we begin with a spectral representation of G
0
ðr; r0Þ

as [33]

G
0
ðr; r0Þ ¼ �k�2

0 dðRÞuzuz þ
i

4p2

Z 1

�1

Z 1

�1
kð0Þz

� ��1

� exp ik
ð0Þ
� � R

� �
sð0Þsð0Þ
�

þ p
ð0Þ
� p

ð0Þ
�

�
dkð0Þx dkð0Þy ;

ð64Þ
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where the upper signs apply for z > z0 and the

lower signs for z < z0, while dðRÞ is the Dirac

delta function. It is clear that the second part of

G
0
ðr; r0Þ in (64) is an angular spectrum of both

propagating and evanescent plane waves. From
(60), (61) and (64), we obtain the similar expres-

sions

G
L0
ðr; r0Þ ¼ �k�2

0 dðRÞuzuz þ
i

4p2

Z 1

�1

Z 1

�1
kð0Þz

� ��1

� exp ik
ð0Þ
� � R

� �
L

ð0Þ
� R

ð0Þ
� dkð0Þx dkð0Þy ;

ð65Þ

G
R0
ðr; r0Þ ¼ �k�2

0 dðRÞuzuz þ
i

4p2

Z 1

�1

Z 1

�1
kð0Þz

� ��1

� exp ik
ð0Þ
� � R

� �
R

ð0Þ
� L

ð0Þ
� dkð0Þx dkð0Þy ;

ð66Þ

with the upper and lower signs applied in the same
way as in (64).

By strict analogy with the reflected and trans-

mitted plane waves in Section 2.2, we synthesize

the spectral representations of the remaining

DGFs in (63) as
G
Lr
ðr; r0Þ ¼ i

4p2

X
n2Z

Z 1

�1

Z 1

�1
kðnÞz

� ��1

� exp i kðnÞ
� � r

�	
� kð0Þ

þ � r0
�

RðnÞ

L
dkð0Þx dkð0Þy ;

z < 0; ð67Þ

G
Rr
ðr; r0Þ ¼ i

4p2

X
n2Z

Z 1

�1

Z 1

�1
kðnÞz

� ��1

� exp i kðnÞ
� � r

�	
� kð0Þ

þ � r0
�

RðnÞ

R
dkð0Þx dkð0Þy ;

z < 0; ð68Þ

G
Lt
ðr; r0Þ ¼ i

4p2

X
n2Z

Z 1

�1

Z 1

�1
kðnÞz

� ��1

� exp i kðnÞ
þ � ~r

�	
� kð0Þ

þ � r0
�

TðnÞ

L
dkð0Þx dkð0Þy ;

z > d; ð69Þ

G
Rt
ðr; r0Þ ¼ i

4p2

X
n2Z

Z 1

�1

Z 1

�1
kðnÞz

� ��1

� exp i kðnÞ
þ � ~r

�	
� kð0Þ

þ � r0
�

TðnÞ

R
dkð0Þx dkð0Þy ;

z > d; ð70Þ
where ~r ¼ r� duz. The reflection and transmission

dyadics entering the four previous equations are

specified as follows:

RðnÞ
L

kð0Þx ; kð0Þy

� �
¼ rðnÞLLL

ðnÞ
� Rð0Þ

þ þ rðnÞRLR
ðnÞ
� Rð0Þ

þ ; ð71Þ

RðnÞ
R

kð0Þx ; kð0Þy

� �
¼ rðnÞLRL

ðnÞ
� Lð0Þ

þ þ rðnÞRRR
ðnÞ
� Lð0Þ

þ ; ð72Þ

TðnÞ
L

kð0Þx ; kð0Þy

� �
¼ tðnÞLLL

ðnÞ
þ Rð0Þ

þ þ tðnÞRLR
ðnÞ
þ Rð0Þ

þ ; ð73Þ

TðnÞ
R

kð0Þx ; kð0Þy

� �
¼ tðnÞLRL

ðnÞ
þ Lð0Þ

þ þ tðnÞRRR
ðnÞ
þ Lð0Þ

þ : ð74Þ

As these four dyadics are related to the nth-order
Floquet harmonics in the reflected and transmitted
fields, all four are dependent on the wavevector

kð0Þ
þ . Noting that the integrands on the right sides

of (67)–(70) are 2D Lebesgue-integrable if the re-

flection and transmission dyadics in (71)–(74) are

bounded, we can carry out the integrations in

(67)–(70) numerically.
2.4. Asymptotic evaluation

In many applications related with far-field

radiation, only the asymptotic evaluation of the

double integrals (67)–(70) in the limit k0jrj ! 1
needs to be carried out. The methods of

stationary phase and steepest descent path (SDP)

are generally used for that purpose [34–36].

As for the double integrals, the contours of in-
tegration can be deformed to confine the integra-

tion on a local domain defined by two local SDPs

[37,38]. The saddle points (or first-order critical

points) along each SDP can be employed to es-

tablish the truncated Taylor expansion of the in-

tegrand, provided that the integrand term is

differentiable on the mapped complex domain [38].

Following this approach, the double integrals in
(67)–(70) can be asymptotically evaluated without

any trouble up to the lowest order 1
k0jrj

, provided

the observation point r is not close to the bound-

aries z ¼ 0 and z ¼ d, i.e., � z
jrj > 10

ffiffiffiffiffiffi
1

k0jrj

q
for z < 0

and ðz�dÞ
j~rj > 10

ffiffiffiffiffiffi
1

k0j~rj

q
for z > d.

With the source point r0 set equal to d 0uz,

d 0 < 0, the lowest-order approximations of the

DGFs in (67)–(70), in the limit k0jrj ! 1, turn
out to be
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G
Lr
ðr; r0Þ ’ 1

2pjrj
X
n2Z

RðnÞ
L
ðan; b0Þ

� exp iðk0jrj½ � cnd
0Þ�; z < 0; ð75Þ

G
Rr
ðr; r0Þ ’ 1

2pjrj
X
n2Z

RðnÞ
R
ðan; b0Þ

� exp iðk0jrj½ � cnd
0Þ�; z < 0; ð76Þ

G
Lt
ðr; r0Þ ’ 1

2pj~rj
X
n2Z

TðnÞ
L
ð~an; ~b0Þ

� exp iðk0j~rj½ � ~cnd
0Þ�; z > d; ð77Þ

G
Rt
ðr; r0Þ ’ 1

2pj~rj
X
n2Z

TðnÞ
R
ð~an; ~b0Þ

� exp iðk0j~rj½ � ~cnd
0Þ�; z > d; ð78Þ

subject to the restrictions stated in the previous

paragraph. In (75)–(78) an ¼ k0 x
jrj � nKx and

~an ¼ k0 x
j~rj � nKx are the saddle points along the

SDPs of kð0Þx with respect to the nth-order Floquet
harmonics in the reflected and transmitted fields,

respectively; while b0 ¼ k0
y
jrj and

~b0 ¼ k0
y
j~rj are cor-

respondingly the saddle points along the SDPs of

kð0Þy . The quantities cn and ~cn are defined on the top

Riemann sheet such that
cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � a2n � b2

0

q
; ImðcÞP 0;

~cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � ~a2n � ~b2

0

q
; Imð~cÞP 0:
Fig. 2. Schematic of the irradiation of a slanted chiral STF of

thickness d by a dipolar source located at r ¼ d 0uz, d 0 < 0.
3. Results and discussion

3.1. Preliminaries

We investigated the response of a slanted chiral

STF to sources comprising electric and magnetic

dipoles. As any chiral STF discriminates between
LCP and RCP plane waves strongly in the Bragg

regime, we chose two different Beltrami source

configurations [39]:

ðaÞ WL ¼ ixp
2

usdðr0 � d 0uzÞ; WR ¼ 0; ð79Þ

ðbÞ WL ¼ 0; WR ¼ ixp
usdðr0 � d 0uzÞ: ð80Þ
2

These configurations are of the left- and right-

handed types, respectively. Nominally, either

configuration is a pair of parallel electric and

magnetic dipoles co-located at r0 ¼ d 0uz; ðd 0 < 0Þ,
with Re½pe�ixt� being the electric dipole moment;
see Fig. 2. The unit vector us represents the ori-

entation of the dipolar sources. For either config-

uration, the electric field at observation points far

from both the sources and the slanted chiral STF is

derived from (59) in a normalized form as

eðrÞ ¼ 4pjrjEðrÞ
l0px2

exp ð � ik0jrjÞ: ð81Þ

Calculations of e(r) were made with the following

constitutive and geometric parameters: pa ¼ 2:0,
pb ¼ 2:6, and pc ¼ 2:1; ka ¼ kc ¼ 140 nm and

kb ¼ 150 nm; Na ¼ Nb ¼ Nc ¼ 500; X ¼ 200 nm,

d ¼ 60 X, vs ¼ 30�, and h ¼ 1. The chosen con-

stitutive parameters are potentially realizable using
silicon dioxide, and are thus likely to be compati-

ble with semiconductor and optical technologies.

The ratio d=X is large enough so that the circular

Bragg phenomenon is fully developed for low

values of a [10,11]. The slant angle a was chosen in

the range 0�6 a6 15�. The dipolar sources were

located at d 0 ¼ �10k0, and the far-field response

was calculated at a fixed radial distance
jrj ¼ 105k0. The maximum order of the Floquet

harmonics was fixed at Nt ¼ 20 for the chosen

wavelength-regime, after ensuring that every re-

flectance and transmittance greater than 10�4 in

magnitude converged to 0:1% accuracy. All prop-

agating harmonics and some evanescent harmon-

ics were thereby covered. Computed values of
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jeðrÞj2 in the xz and yz planes, for various types of
dipolar sources are shown in the Figs. 3, 4, and,

9–12.
3.2. Unslanted chiral STF

Let us begin with an unslanted chiral STF, i.e.,

a ¼ 0�. The responses of such films to incident
plane waves [6,40] as well as Betrami source con-

figurations [39] have been studied. The most

prominent features of the planewave and dipolar

responses are due to the circular Bragg phenome-

non. With the chosen parameters, the Bragg re-

gime is given by k0 2 ½702; 752� nm for normally

incident plane waves; furthermore, the Bragg re-

gime blue-shifts for oblique incidence [41].
Figs. 3 and 4 show plots of jeðrÞj2 in the xz and

yz planes for dipolar sources that are oriented

parallel (i.e., us ¼ ux) and perpendicular (i.e.,

us ¼ uz), respectively, to the xy plane. The plots for
y-directed dipolar sources do not differ qualita-

tively from those for x-directed sources. The
wavelength k0 ¼ 727 nm lies in the middle of the

Bragg regime for normal planewave incidence.

Evidently, the radiation patterns in Figs. 3 and 4
contain substantial Fabry–Perot rings in the lower

(i.e., reflection) half-space which arise due to

thickness resonances inside the film. Fabry–Perot

rings are also present in the upper (i.e., transmis-

sion) half-space, but are considerably muted [39].

One of the two most interesting features of the

radiation patterns in Fig. 3 is the presence of a

wedge along the z axis in the transmission half-
space (Figs. 3(b) and (d)) for the right-handed

Beltrami source configuration. That wedge is

conspicuously absent for the left-handed Beltrami

source configuration, but a double-fang feature –

the second of the two interesting features – appears

in the reflection half-space (Figs. 3(a) and (c)). The

diversity with respect to the handedness of the

source configuration is the cumulative expression
of the circular Bragg phenomenon observed with

normally [6] and obliquely [40] incident plane

waves. As the fields radiated by a source configu-

ration can be decomposed into an angular spec-

trum of circularly polarized plane waves, the

characteristic features of the circular Bragg phe-

nomenon – which is displayed by a segment of that

angular spectrum when the wavelength belongs to
the Bragg regime [40] – coalesce to create the
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wedge and/or the double-fang feature in the radi-

ation pattern.

Although the chiral STF is definitely excited

along its helical axis (i.e, the z axis) by x- and y-
directed sources, it is not axially excited when the

dipolar sources are z-directed. In the latter case,
the dipolar radiation is broadside, not endfire [42].

Therefore, the radiation patterns in Fig. 4 do not

contain evidence of the circular Bragg phenome-

non in the form of substantially diverse responses

of the chiral STF to the two Beltrami source

configurations.

3.3. Slanted chiral STF

3.3.1. Response to planewave incidence

The interaction of the circular Bragg phenom-

enon and the Rayleigh–Wood anomalies for the

special case of plane waves normally incident on a

slanted chiral STF has been examined recently

[10]. The high transmittance (if absorption is low)

for an incident cross-handed plane wave in the
Bragg regime remains specular even for a 6¼ 0,

being clearly evident in the n ¼ 0 harmonic com-

ponent of the transmitted field. However, the high

reflectance of a co-handed plane wave in the same

regime becomes nonspecular for a 6¼ 0, as it occurs

in the n ¼ �2 harmonic component 2 of the

reflected field. Furthermore, the Bragg regime

blue-shifts as the slant angle increases, and the
center-wavelength of the Bragg regime can be es-

timated by solving the equation [10]

kBr0 � X cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cðkBr0 Þ

q�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�dðkBr0 Þ

q �
¼ 0; ð82Þ

where

~�dðk0Þ ¼
�aðk0Þ�bðk0Þ

�aðk0Þ cos2 vs þ �bðk0Þ sin2 vs
: ð83Þ

Rayleigh–Wood anomalies – the conversion of a
Floquet harmonic of order n from either propa-
2 Specifically, the high-reflectance feature appears in the

n ¼ �2 harmonic for a > 0, and n ¼ þ2 harmonic for a < 0,

regardless of the structural handedness of the thin film and the

angle of planewave incidence.
gating to evanescent or vice versa – for different

orders occur at kðnÞz ¼ 0, i.e., at wavelengths

kRW
0n

¼ 2X
jn sin aj : ð84Þ

As jaj increases, kRW
0�2

decreases far more rapidly

than kBr0 , leading to a shrinkage of the Bragg

regime; and eventually the circular Bragg phe-

nomenon is completely subverted by the Rayleigh–

Wood anomaly for order n ¼ �2 for a?0. For

normal incidence and the chosen constitutive pa-

rameters, the circular Bragg phenomenon vanishes

as jaj increases beyond 17.1�.
Eqs. (82) and (84) must undergo changes for

oblique incidence. One the one hand, the Bragg

regime is blue-shifted by oblique incidence. The

actual functional dependence of kBr0 on the incident

wavevector ki ¼ kð0Þ
þ is very complicated. However,

our numerical calculations have suggested that the

solution of the equation

kBr0 � X cos a

ffiffiffiffiffiffiffi
kð0Þz

k0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cðkBr0 Þ

q�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�dðkBr0 Þ

q �
¼ 0

ð85Þ
provides a good quantitative estimate of kBr0 when

kð0Þz =k0 2 ½
ffiffi
3

p

2
; 1�; and this estimate also holds for un-

slanted chiral STFs [41]. On the other hand, Ray-

leigh–Wood anomalies for different orders occur at

kRW
0n

¼

2X
jn sin aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kð0Þy

k0

� 2
s

� kð0Þx
k0

0
@

1
A; n > 0;

2X
jn sin aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kð0Þy

k0

� 2
s

� kð0Þx
k0

0
@

1
A; n < 0;

8>>>>>><
>>>>>>:

ð86Þ
wherein the upper signs apply for a > 0 and the
lower signs for a < 0. Clearly, kRW

0n
6¼ kRW

0�n
when

kð0Þx 6¼ 0, and the value of kRW
0n

is affected by both

kð0Þx =k0 and kð0Þy =k0, though in different ways:

Whereas an increase of jkð0Þy =k0j blue-shifts the

Rayleigh–Wood anomalies for all orders, an in-

crease of jkð0Þx =k0j either blue-shifts or red-shifts the
Rayleigh–Wood anomaly for order n, depending
on the signs of kð0Þx =k0 and n.

The influence of Rayleigh–Wood anomalies on

the circular Bragg phenomenon is very explicit in



  

  

Fig. 5. Spectrums of planewave reflectance Rð�2Þ
RR and transmittance T ð0Þ

RR, calculated for a slanted chiral STF with the same properties as

for Fig. 3, except that a ¼ 10�. The incident plane wave is RCP, and the chiral STF is structurally right-handed. (a, b) Incidence in the

xz plane; (c, d) incidence in the yz plane.
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the plots of the reflectances and transmittances for

obliquely incident plane waves. Fig. 5 shows the

spectrums of Rð�2Þ
RR and T ð0Þ

RR when a ¼ 10�. The

spectrums are plotted for

• incidence in the xz plane (i.e., kð0Þy ¼ 0), and

• incidence in the yz plane (i.e., kð0Þx ¼ 0).

The circular Bragg phenomenon is clearly identi-
fiable as a ridge in plots of Rð�2Þ

RR and as a trough in

the plots of T ð0Þ
RR, both features being absent in the

remittance plots (not shown) for incident LCP

plane waves because the chosen film is structurally

right-handed. For either incidence plane, Fig. 5

indicates that the Bragg regime blue-shifts more for

more obliquely incident plane waves, as predicted.

More importantly, as the incidence wavevector
ki tilts away from the z axis, both kRW

0�2
(for a?0)

and kBr0 change noticeably. If kRW
0�2

becomes smaller

than kBr0 , the signature of the circular Bragg phe-

nomenon for incident RCP plane waves disap-

pears. The wavelength-neighborhood of the

disappearance depends strongly on the orientation

of the plane of incidence with respect to the plane

containing the helical axis (i.e., xz plane); hence,
the circular Bragg phenomenon is far from dis-

playing circular symmetry with respect to the angle

tan�1 kð0Þy =kð0Þx when a 6¼ 0.

The dependence of kRW
0�2

(for a?0) on kð0Þx =k0 is

different from that on kð0Þy =k0. When kð0Þy =k0 is
constant, kRW
0�2

changes linearly with kð0Þx =k0; and the

Bragg regime is susceptible to subversion by the

Rayleigh–Wood anomaly for order n ¼ �2 if

kð0Þx =k070. That is the reason for the absence of the

Bragg regime in Figs. 5(a) and (b) (a ¼ 10�), for
kð0Þx =k0 2 ð�1;�0:37Þ. In contrast, kRW

0�2
is a mono-

tonically decreasing function of jkð0Þy =k0j for con-
stant kð0Þx =k0. Therefore, in Figs. 5(c) and (d)

(a ¼ 10�), the Bragg regime is completely sub-

verted by the Rayleigh–Wood anomaly for order

n ¼ �2 in the angular regime jkð0Þy =k0j 2 ð0:83; 1Þ.
The influence of the slant angle a?0 on the

subversion of the circular Bragg phenomenon by

the Rayleigh–Wood anomaly for order n ¼ �2

had been shown in a predecessor paper, but only
for normal incidence. Figs. 6 and 7 present key

remittances for arbitrary incidence in either the xz
plane (i.e., kð0Þy ¼ 0) or the yz plane (i.e., kð0Þx ¼ 0),

for a ¼ 0�; 5�; 10�, and 15�. For these plots, the

wavelength k0 was fixed equal to ~kBr0 , which is de-

fined as the solution of Eq. (82) and is therefore

the center-wavelength of the Bragg regime for

normal incidence. Both figures clearly show that
the angular spread of the Bragg regime is asym-

metric with respect to kð0Þx but symmetric with re-

spect to kð0Þy . The effect of a 6¼ 0 is fairly trivial

when the incident plane wave is cross-handed

(Fig. 6), but not when the incident plane wave is
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Fig. 6. Dependences of the remittances Rð0Þ
RL þ Rð0Þ

LL (solid lines) and T ð0Þ
RL þ T ð0Þ

LL (dashed lines) on the obliqueness of planewave incidence:

(a, c, e, g) kð0Þy ¼ 0; (b, d, f, h) kð0Þx ¼ 0. The slanted chiral STF has the same parameters as the unslanted one in Fig. 3, but for the value

of a: (a, b) a ¼ 0�; (c, d) a ¼ 5�; (e, f) a ¼ 10�; (g, h) a ¼ 15�. The wavelength k0 ¼ ~kBr0 , which is defined as the solution of Eq. (82) and is

therefore the center-wavelength of the Bragg regime for normal incidence. In (a) and (b), Rð0Þ
RL þ Rð0Þ

LL and T ð0Þ
RL þ T ð0Þ

LL are replaced byP
jnj6Nt

RðnÞ
RL þ RðnÞ

LL

h i
and

P
jnj6Nt

½T ðnÞ
RL þ T ðnÞ

LL �, respectively, because all nonspecular remittances fold into the specular remittances for

a ¼ 0�.
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Fig. 7. Same as Fig. 6, except the remittances plotted are Rð�2Þ
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RR, respectively, because all nonspecular remittances fold into the specular remittances for

a ¼ 0�.
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co-handed (Fig. 7). The asymmetric shift of the

Bragg regime due to a is clearly demonstrated in

Figs. 7(a), (c), (e) and (g) by the kð0Þx -variations of

Rð�2Þ
RR and T ð0Þ

RR for co-handed incidence in the xz
plane. When a rises to 15�, new features appear in

the plots of Rð�2Þ
RR and T ð0Þ

RR, as shown in Figs. 7(g)
and (h). While partially subverted by a Rayleigh–

Wood anomaly, the crest feature in Rð�2Þ
RR splits into

two narrower and disconnected portions in

Fig. 7(g); and the split is correspondingly present

in the plot of T ð0Þ
RR also. The major qualitative dif-

ference between Figs. 7(g) and (h) lets us conclude

that the circular Bragg phenomenon, whether or

not subverted by a Rayleigh–Wood anomaly, be-
comes strongly sensitive to the plane of incidence

when jaj crosses a threshold value.

3.3.2. Parallel dipolar sources

Figs. 8 and 9, respectively, show the radiation

patterns of Beltrami dipolar sources in the pres-

ence of the slanted chiral STF with a ¼ 5�, when
us ¼ ux and us ¼ uy . The wavelength was chosen
k0 ¼ ~kBr0 ¼ 724 nm, i.e., in the middle of the Bragg

regime for normal incidence. The characteristic

features of these radiation patterns are tailored by

the circular Bragg phenomenon discussed in Sec-

tion 3.3.1. Noticeably, both (i) the wedge in the

transmission half-space for the right-handed di-
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Fig. 8. Same as Fig. 3, but for a ¼ 5� and k0 ¼ ~kBr0 ¼ 724 nm.
polar sources and (ii) the double-fang feature in
the reflection half-space for the left-handed dipolar

sources are located asymmetrically in the xz plane
about the z axis. In contrast, the radiation patterns

are symmetric in the yz plane about the z axis, just
as for unslanted chiral STFs. The reason seems

clear by virtue of the fact that the circular Bragg

phenomenon is significantly circularly asymmetric

about the z axis and sensitive to the plane of
planewave incidence when a 6¼ 0. No wonder,

there is a vast difference between the radiation

pattern in the xz plane for us ¼ ux (Fig. 8(b)) and

that in the yz plane using us ¼ uy (Fig. 9(d)).

In order to interpret the radiation patterns

further, let us define uðrÞ 2 ð�p; p� as the angle

determined by

r

jrj ¼
ux cosuðrÞ þ uz sinuðrÞ; r � uy ¼ 0;
uy cosuðrÞ þ uz sinuðrÞ; r � ux ¼ 0:

�
ð87Þ

In Figs. 8(b) and 9(b), the wedge is centered at
uðrÞ < p=2; but it is centered at uðrÞ ¼ p=2 in Figs.

8(d) and 9(d). The reason is that, although the

circular Bragg phenomenon shifts in the þkð0Þx di-

rection in the left plots of Fig. 7 as a increases, it

does not shift at all along the kð0Þy axis in the right

plots of the same figure.

Even though the dominant remittances for cross-

handed incidentplanewavesarealways specular (i.e.,
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of order n ¼ 0) – as exemplified by Fig. 6 – the dou-

ble-fang features in Figs. 8(a) and 9(a) have rotated

counterclockwise with respect to that in Fig. 3(a).

These three figures contain the radiation patterns in

the xz plane; while the corresponding radiation pat-

terns in the yz plane (in Figs. 3(c), 8(c) and 9(c)) are
symmetric with respect to the z axis, regardless of the
value of a. The attributes of the circular Bragg phe-

nomenon versus a in Fig. 7 also explain the foregoing
features of the radiation patterns.

The slant angle a can affect the wedge and the

double-fang feature even more drastically than in

Figs. 8 and 9, for which a ¼ 5�. When a is in-

creased to 10�, Fig. 10 shows that the wedge ex-
pands and rotates clockwise so much that there is

no transmission for uðrÞ 2 ð0; p=2Þ in the xz plane
– when k0 ¼ ~kBr0 ¼ 716 nm, the Beltrami dipolar

source is right-handed, and us ¼ ux.

The circular Bragg phenomenon being fre-

quency-selective, the wavelength of radiation in

relation to the Bragg regime also affects the radi-

ation pattern. Clearly, because of the blue-shift of
the Bragg regime for oblique incidence, the wedge

and/or the double-fang feature tend to be ob-

liquely oriented when k0 is lower than ~kBr0 . This is

exemplified by the radiation patterns in Fig. 11, for
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Fig. 10. Computed values of jeðrÞj2 in the xz and yz planes, for
right-handed Beltrami dipolar sources radiating at

k0 ¼ ~kBr0 ¼ 716 nm. The dipolar source is (a, b) x-directed, and
(c, d) y-directed. The slanted chiral STF has the same param-

eters as the one for Fig. 8, except that a ¼ 10�.
which k0 ¼ 670 nm, the Beltrami dipolar source is

right-handed, and us ¼ ux. The wedge feature is

located in the yz plane in the uðrÞ-neighborhoods
of both p=4 and 3p=4 for a ¼ 5� (Fig. 11(b)) and
a ¼ 10� (Fig. 11(d)) as well.

Incidentally, in Fig. 11(c), enhanced radiation

is evident in the xz plane, near the surface of the

slanted chiral STF for a ¼ 10�. Unfortunately,

the computation does not seem to be accurate

because the asymptotic evaluation procedure

is invalid in the vicinity of the slanted chiral

STF.
3.3.3. Perpendicular dipolar sources

Because the fields emitted by a perpendicular

dipolar source (i.e., us ¼ uz) are of the end-fire type

with respect to the slanted chiral STF, the radia-

tion patterns may not evince any trace of the cir-

cular Bragg phenomenon when jaj is small – as

suggested by the limiting case of a ¼ 0� in Fig. 4.
However, for larger jaj, a significant broadside

aspect to the interaction between the dipolar

source and the thin film is possible. Fig. 12 pre-

sents the radiation patterns for a ¼ 15� and z-di-
rected dipolar sources radiating at k0 ¼ ~kBr0 ¼ 702

nm. Although the plots labeled a, c and d in
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Fig. 12 look very similar to their counterparts in

Fig. 4, a contrast between Fig. 4(b) (a ¼ 0�) and
12(b) (a ¼ 15�) is evident. A wedge is located in the

regime uðrÞ 2 ð0; p=4Þ in Fig. 12(b), but not in
Fig. 4(b). Thus, even for perpendicular dipolar

sources, the circular Bragg phenomenon can come

into play when a 6¼ 0.
4. Concluding remarks

In this paper, we formulated the electromag-
netic response characteristics of chiral sculptured

thin films, which are anisotropic and periodically

nonhomogeneous along an axis slanted at an angle

a with respect to the normal of the substrate plane.

First, the planewave response of a slanted chiral

STF was formulated for arbitrary incidence con-

ditions. A rigorous coupled-wave analysis was

implemented with a stable algorithm to describe
the planewave response of the slanted chiral STF.

Then the dyadic Green functions were set up as

angular planewave spectrums. Asymptotic tech-

niques were employed to evaluate the DGFs in the

far-field limit. Due to the structural chirality of the

chosen thin film, Beltrami source configurations

were chosen.
The circular Bragg phenomenon displayed by

the slanted chiral STF on planewave excitation

was shown to underlie the discriminatory treat-

ment of left- and right-handed Beltrami sources.

The appearance of a wedge and/or a double-fang

feature in radiation patterns is the cumulative
expression of the circular Bragg phenomenon

displayed differently by the differently propagat-

ing plane waves in the planewave spectrum of

the fields emitted by the sources. Because of the

transverse periodicity induced by a 6¼ 0�, the

slanted chiral STF exhibits a circular Bragg

phenomenon that is partially nonspecular; fur-

thermore, it is strongly sensitive to the angle of
incidence because of the effect of a Rayleigh–

Wood anomaly. As a result, the angular place-

ments of the wedge and the double-fang feature

in the radiation pattern can be tailored asym-

metrically with respect to the normal of the

substrate plane. Furthermore, the radiation

pattern would be affected by the value of a es-

pecially for right-handed Beltrami source con-
figurations.
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Appendix A

The 4ð2Nt þ 1Þ � 4ð2Nt þ 1Þ kernel matrix ½~P� is
given as

~P
h i

¼

~P
11

h i
~P
12

h i
~P
13

h i
~P
14

h i
~P
21

h i
~P
22

h i
P
23

h i
~P
24

h i
~P
31

h i
~P
32

h i
~P
33

h i
~P
34

h i
~P
41

h i
~P
42

h i
~P
43

h i
~P
44

h i

2
6666664

3
7777775
; ðA:1Þ
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wherein the sixteen ð2Nt þ 1Þ � ð2Nt þ 1Þ subma-

trixes are defined as follows:

~P
11

h i
¼ � j

z

h i
� K

x

h i
�
zz

h i�1

�
zx

h i
;

~P
12

h i
¼ � K

x

h i
�
zz

h i�1

�
zy

h i
;

~P
13

h i
¼

kð0Þy

k0
K

x

h i
�
zz

h i�1

;

~P
14

h i
¼ k0 I

h i
� 1

k0
K

x

h i
�
zz

h i�1

K
x

h i
;

ðA:2Þ

~P
21

h i
¼ �kð0Þy �

zz

h i�1

�
zx

h i
;

~P
22

h i
¼ � j

z

h i
� kð0Þy �

zz

h i�1

�
zy

h i
;

~P
23

h i
¼ �k0 I

h i
þ

kð0Þy

� �2
k0

�
zz

h i�1

;

~P
24

h i
¼ �

kð0Þy

k0
�
zz

h i�1

K
x

h i
;

ðA:3Þ

~P
31

h i
¼�

kð0Þy

k0
K

x

h i
þ k0 �

yz

h i
�
zz

h i�1

�
zx

h i�
� �

yx

h i
;

~P
32

h i
¼ 1

k0
K

x

h i
K

x

h i

þ k0 �
yz

h i
�
zz

h i�1

�
zy

h i�
� �

yy

h i
�
yy

h i
;

~P
33

h i
¼� j

z
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� kð0Þy �

yz

h i
�
zz

h i�1
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~P
34

h i
¼ �
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h i
�
zz

h i�1

K
x

h i
;

ðA:4Þ

~P
41

h i
¼ �

kð0Þy

� �2
k0

I
h i

� k0 �
xz

h i
�
zz

h i�1

�
zx

h i�
� �

xx

h i
;

~P
42

h i
¼

kð0Þy

k0
K

x

h i
� k0 �

xz

h i
�
zz

h i�1

�
zy

h i�
� �

xy

h i
;

~P
43

h i
¼ kð0Þy �

xz

h i
�
zz

h i�1

;

~P
44

h i
¼ � j

z

h i
� �

xz

h i
�
zz

h i�1

K
x

h i
:

ðA:5Þ

The ð2Nt þ 1Þ � ð2Nt þ 1Þ identity matrix is de-
noted by ½I �.
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Abstract. Chiral sculptured thin films (STFs) have unidirectionally periodic electromagnetic constitutive
properties and therefore exhibit the circular Bragg phenomenon. The time-domain Maxwell equations are
solved using finite difference calculus in order to establish the spatiotemporal anatomy of the action of
axially excited, chiral STF slabs on optical narrow-extent pulses (NEPs) modulating circularly polarized
carrier waves. A Lorentzian model was adopted for the permittivity dyadics of the chiral STFs.
The time-domain manifestation of the circular Bragg phenomenon is focussed on. First, on examining
the refraction of NEPs by a chiral STF half-space, a light pipe and the pulse bleeding phenomenon are
shown to occur – when the handednesses of the carrier wave and the chiral STF coincide and the carrier
wavelength is in the vicinity of the center-wavelength of the Bragg regime. Next, pulse bleeding inside a
chiral STF slab is shown to be responsible for the long wakes of reflected pulses and low energy contents
of transmitted pulses, when the incident wave spectrums significantly overlap with the Bragg regime and
the carrier waves have the same handedness as the chiral STF slab. Thus, a chiral STF slab can drastically
affect the shapes, amplitudes, and spectral components of femtosecond pulses.

PACS. 77.55.+f Dielectric thin films – 78.20.Bh Theory, models, and numerical simulation –
42.70.-a Optical materials

1 Introduction

Chiral liquid crystals [1] are now widely used in optics [2].
The fabrication of their solid analogs became possible
during the past few years with the development of the
sculptured thin-film (STF) technology [3]. Initial research
on the planewave response of chiral STFs [4,5] suggested
many specialized applications of them [6], some of which
would take advantage of their porous nature – such as
gas and humidity sensors [7,8]. Other applications could
make use of their solid nature, for instance, in solid optics
and optoelectronics. The first optical applications are now
emerging [9–11] as a result of improved fabrication tech-
nology [12,13]; and experimental research on their optical
characterization is also advancing [13–15].

All of the optical applications cited exploit the cir-
cular Bragg phenomenon that all helicoidal bianisotropic
mediums (HBMs) – exemplified by chiral STFs as well
as chiral liquid crystals – must display in consequence
of their periodically and unidirectionally nonhomogeneous
constitution [18]. Let the direction of nonhomogeneity of
a chiral STF be parallel to the z axis, while the film com-
pletely occupies the region z` ≤ z ≤ zr. When circularly

a e-mail: JBG136@psu.edu
b e-mail: AXL4@psu.edu

polarized, monochromatic light falls normally on this film
of sufficient thickness, then it is

• almost perfectly reflected if the handedness of incident
light coincides with the structural handedness of the
film, but
• almost perfectly transmitted if otherwise,

provided absorption within the film is negligible and the
free-space wavelength λ0 of the incident light lies within
the Bragg regime. This regime is sufficiently identified by
a center-wavelength λBr

0 and its bandwidth is quite nar-
row [5,13,16]. When absorption cannot be ignored, the
foregoing bulleted statements on polarization-sensitive re-
flection and transmission have to be modified to take ab-
sorption into account [17], but the relationship between
the handedness of incident light and the structural hand-
edness of the chiral STF remains delicate.

Planewave response characteristics are not sufficient
to understand the optics of chiral STFs. This has be-
come clear from analytical examinations of modal energy
flows in these materials [19]. The shortcoming must be
overcome because femtosecond optical pulses are routinely
generated these days [20], and widespread industrial ex-
ploitation of such narrow-extent pulses (NEPs) is immi-
nent. The bandwidth of a carrier wave that is amplitude-
modulated by a NEP is very wide, and is likely to
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completely encompass the Bragg wavelength-regime of a
chiral STF encountered by it. That possibility will have
repercussions on the design of STF-based optical devices.
But the time-domain manifestation of the circular Bragg
phenomenon is yet not known.

This paper aims to remedy that situation. In broad
terms, we had two aims to undertake the work reported
here:

A. to establish the nature and the site of the interaction
between the handedness of incident light and the struc-
tural handedness of an axially excited chiral STF, and

B. to examine the reflection and the transmission of NEPs
by an axially excited chiral STF.

As conventional frequency-domain research [4,5,13] re-
lies on solving the Maxwell equations for monochromatic
fields, which does not allow for the separation of the ef-
fects due to the two interfaces of any slab with free space
(i.e., vacuum), a time-domain investigation is necessary.
Such an investigation must take several features of chi-
ral STFs into account: (i) unidirectional nonhomogeneity,
(ii) anisotropy, (iii) temporal dispersion, and (iv) absorp-
tion. Explicit consideration of the last two features is man-
dated by the wide bandwidths of carrier waves that are
amplitude-modulated by NEPs.

In Section 2, we present the constitutive relations of a
chiral STF as well as the relevant electromagnetic deriva-
tions, and establish a finite–difference algorithm. Numer-
ical results and conclusions are presented in Section 3.
Vectors are underlined once and dyadics twice; t denotes
time; while r = xux + yuy + zuz is the position vector in
a Cartesian coordinate system with ux, uy and uz as the
unit vectors.

2 Theoretical analysis

As mentioned earlier, the slab region z` ≤ z ≤ zr, (z` > 0),
is occupied by a chiral STF, while the half-spaces z ≤ z`
and z ≥ zr are vacuous. A carrier wave modulated by a
pulse is launched from the plane z = 0 at time t = 0 in
the +z direction. It excites the chiral STF, and eventually
metamorphoses into a reflected pulse and a transmitted
pulse.

2.1 Constitutive relations

The time-domain constitutive relations of a linear dielec-
tric medium may be expressed as

D(r, t) = ε0
(
ε ∗E

)
(r, t) , (1)

B(r, t) = µ0 H(r, t). (2)

Here, ε0 = 8.854× 10−12 F/m and µ0 = 4π × 10−7 H/m
are the permittivity and permeability of free space, re-
spectively, while the operation(

ε ∗E
)

(r, t) =
∫ ∞

0

ε (r • uz, τ) • E (r, t− τ) dτ (3)

denotes convolution with respect to time.
The relative permittivity dyadic everywhere is speci-

fied by

ε(r, t) =


I δ(t) , z /∈ [z`, zr]
S
z
(z − z`) • S

y
(χ) • εo

ref
(t) •

S−1

y
(χ) • S−1

z
(z − z`) , z ∈ [z`, zr]

,

(4)

where I is the identity dyadic and δ(t) is the Dirac delta
function. The rotation dyadic

S
z
(z) = uzuz + (uxux + uyuy) cos

πz

Ω

+ (uyux − uxuy) sin
πz

Ω
(5)

captures the anisotropy as well as the rotational nonho-
mogeneity of a chiral STF, with 2Ω being the structural
period. Equation (5) holds for a structurally right-handed
(RH) STF; alter the sign of the third term on its right
side for a structurally left-handed (LH) STF. Finally, the
tilt dyadic

S
y
(χ) = uyuy + (uxux + uzuz) cosχ

+ (uzux − uxuz) sinχ , (6)

where χ > 0◦ is the so-called angle of rise [6].
Single-resonance Lorentzian characteristics [21] are as-

sumed for the three components of εo
ref

(t); thus [17],

εo
ref

(t) = εa(t)uzuz + εb(t)uxux + εc(t)uyuy . (7)

In this equation,

εa,b,c(t) = δ(t) + pa,b,c

(
2πc0

λa,b,c0

)
sin
(

2πc0

λa,b,c0

t

)
× exp

(
− c0t

Na,b,cλ
a,b,c
0

)
U(t) , (8)

where U(t) is the unit step function and c0 = (ε0µ0)−1/2.
The oscillator strengths are denoted by pa,b,c; λ

a,b,c
0 (1 +

N−2
a,b,c)

−1/2 are the resonance wavelengths; while large
values of Na,b,c imply narrow absorption bands located
around the resonance wavelengths.

2.2 Partial differential equations for axial propagation

Denoting partial differentiation with respect to a variable
v as ∂v, we substitute the constitutive relations (1) and (4)
in the source-free Maxwell curl equations ∇ × E(r, t) =
−∂tB(r, t) and ∇ × H(r, t) = ∂tD(r, t). For axial prop-
agation, ∂x ≡ ∂y ≡ 0 and ∇ ≡ uz ∂z. Accordingly, we
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obtain the following six differential equations:

∂zEx(z, t) = −µ0∂tHy(z, t) , (9)
∂zEy(z, t) = µ0∂tHx(z, t) , (10)

∂zHx(z, t) = ε0∂t
[
uy •

(
ε ∗E

)
(z, t)

]
, (11)

∂zHy(z, t) = −ε0∂t
[
ux •

(
ε ∗E

)
(z, t)

]
, (12)

0 = ∂t
[
uz •

(
ε ∗E

)
(z, t)

]
, (13)

0 = ∂tHz(z, t) . (14)

Equation (14) simply means that Hz(z, t) ≡ Hz(z); fur-
thermore Hz(z, t) = 0 in view of the initial conditions im-
posed later. The remaining five equations must be handled
together. That is best done using a 5×5 matrix formula-
tion. Let the column 5-vector

[F (z, t)] = [Ex(z, t), Ey(z, t), Hx(z, t), Hy(z, t), Ez(z, t)]
T

(15)

contain the five remaining components of the electromag-
netic field, the superscript T indicating the transpose.
Then, (9)–(13) may be written compactly as

[
J
]
∂z [F (z, t)] =[

Q
]
∂t [F (z, t)] + ε0∂t

{([
A
]
∗ [F ]

)
(z, t)

}
. (16)

In (16), the constitutive properties are contained in the
matrix

[
A
]

(z, t) which is identically null-valued for z /∈
[z`, zr], while

[
A
]

(z, t) =


0 0 0 0 0
0 0 0 0 0

A31(z, t) A32(z, t) 0 0 A35(z, t)
−A41(z, t) −A31(z, t) 0 0 −A45(z, t)
A45(z, t) A35(z, t) 0 0 A55(z, t)

 ,
z ∈ [z`, zr] , (17)

with

A31 =
(
εa sin2 χ+ εb cos2 χ− εc

)
× sin

π(z − z`)
Ω

cos
π(z − z`)

Ω
, (18)

A32 =
(
εa sin2 χ+ εb cos2 χ

)
× sin2 π(z − z`)

Ω
+ εc cos2 π(z − z`)

Ω
− 1 , (19)

A35 = (εb − εa) sinχ cosχ sin
π(z − z`)

Ω
, (20)

A41 =
(
εa sin2 χ+ εb cos2 χ

)
× cos2 π(z − z`)

Ω
+ εc sin2 π(z − z`)

Ω
− 1 , (21)

A45 = (εb − εa) sinχ cosχ cos
π(z − z`)

Ω
, (22)

A55 = εa cos2 χ+ εb sin2 χ− 1 . (23)

The other two 5×5 matrixes appearing in (16) are as fol-
lows: [

J
]

= diag [1, 1, 1, 1, 0] , (24)

[
Q
]

=


0 0 0 −µ0 0
0 0 µ0 0 0
0 ε0 0 0 0
−ε0 0 0 0 0
0 0 0 0 ε0

 . (25)

2.3 Finite difference equations for axial propagation

Analytical solution of (16) is not known and, therefore,
we resort to a simple numerical technique. Both space and
time are discretized as

zi = i∆z , i = 0, 1, 2, 3, ...
tn = n∆t , n = 0, 1, 2, 3, ...

}
, (26)

derivatives are replaced by central differences, and the
leapfrog method is used [22]. Accordingly, (16) transforms
to the difference equation

[
J
]( [F ]ni+1 − [F ]ni−1

2∆z

)
=
[
Q
]
•

(
[F ]n+1

i − [F ]n−1
i

2∆t

)

+ ε0

n−1∑
m=1

[
A
]m
i

•

(
[F ]n−m+1

i − [F ]n−m−1
i

2

)
+
ε0
2
[
A
]n
i
•

(
[F ]1i − [F ]0i

)
, (27)

wherein the shorthand notation

[F ]ni = [F (zi, tn)] ,
[
A
]n
i

=
[
A(zi, tn)

]
(28)

has been used. Let us note in passing that
[
A
]0
i

is null-
valued as per (8).

Solving (27) for [F ]n+1
i , we obtain

[F ]n+1
i = [F ]n−1

i + β
[
V
]
•
(
[F ]ni+1 − [F ]ni−1

)
−

n−1∑
m=1

[
W
]m
i

•
(

[F ]n−m+1
i − [F ]n−m−1

i

)
∆t

−
[
W
]n
i
•
(

[F ]1i − [F ]0i
)
∆t , (29)

with[
V
]

= c−1
0

[
Q
]−1 [

J
]
,
[
W
]m
i

= ε0
[
Q
]−1 [

A
]m
i
. (30)

Here, we have defined the real number β = c0∆t/∆z. The
condition β < 1 ensures the numerical stability of the
algorithm [22].

Equation (29) requires initial as well as boundary con-
ditions. Setting

[F ]0i = [0, 0, 0, 0, 0]T ∀ i , (31)
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we assert the absence of the electromagnetic field any-
where at time t = 0. The boundary condition

[F ]n0 = g(tn)[ϕ(tn)] (32)

contains a carrier wave represented by the column vector
[ϕ(t)] that is amplitude-modulated by the pulse function
g(t). Equation (29) can now be solved iteratively.

3 Numerical results and discussion

For numerical simulation, the oscillator strengths were
set as pa = 0.40, pb = 0.52 and pc = 0.42; while
λa0 = λc0 = 280 nm and λb0 = 290 nm were chosen to
lie in the ultraviolet regime. The parameters Na = Nb =
Nc = 100 ensured that absorption is moderate in the vis-
ible regime. The structural half-period Ω = 200 nm and
the tilt angle χ = 20◦ were also set. For these param-
eters, the center-wavelength of the Bragg regime is esti-
mated as λBr

0 = 516 nm and the full-width half-maximum
(FWHM) bandwidth of the Bragg regime is estimated to
be 27 nm [17].

For all numerical results reported here, the boundary
condition (32) was defined through

[ϕ±(t)] =
[
cos(

2πc0

λcar
0

t),± sin(
2πc0

λcar
0

t),

∓η−1
0 sin(

2πc0

λcar
0

t), η−1
0 cos(

2πc0

λcar
0

t), 0
]T

, (33)

g(t) =
c0t

2λcar
0

exp(
−c0t

λcar
0

) . (34)

Whereas [ϕ
+

(t)] represents a left-handed plane wave,
[ϕ−(t)] represents a right-handed plane wave, both circu-
larly polarized. Values of λcar

0 chosen are as follows: 430,
516 and 600 nm.

The aforementioned algorithm was implemented, using
the Fortran 90 computing language and single-precision
arithmetic, on a Sun Microsystems computer. The chosen
spatiotemporal domain was discretized with ∆z = 5 nm
and β = 0.9, so that ∆t = 0.015 fs. Snapshots of the axial
component

Pz(z, t) = uz • [E(z, t)×H(z, t)] (35)

of the instantaneous Poynting vector are shown at t =
12.0 fs in Figure 1 for the incident pulses at each se-
lected carrier wavelength. The pulse duration is ' 8 fs,
and Pz(z, t) is clearly independent of the handedness of
the carrier plane wave. Parenthetically, as the choice (31)
of initial condition implies that Dz(z, t) ≡ 0 ∀ t, we tested
our computer program to ensure that the latter require-
ment was met.

3.1 Chiral STF half-space

Let us begin by exploring the reflection and refraction1

of the chosen NEPs at the first interface z = z`. For
this purpose, we simply removed zr outside the domain
{i ∈ [0, 3000] , n ∈ [0, 3431]} of calculation – about the
largest possible domain allowed by the capabilities of our
computer for this problem – while z` = 7500 nm. Thus, the
launched NEP takes 25.0 fs to arrive at the vacuum/STF
interface z = z`.

Snapshots of Pz(z, t) at t = 49.5 fs are shown in
Figure 2 for LH carrier waves, and in Figure 3 for RH car-
rier waves. Ample time elapsed so that the incident pulse...
can not be in evidence in both figures. Figure 4 gives a
magnified view of Pz(z, t) near the boundary of the chiral
STF when the carrier wavelength is 516 nm. The data in
these figures is normalized to the peak value of Pz(z, t)
attained by the incident pulse with λcar

0 = 516 nm.
Examining the results in Figures 2 and 3, we observe

that the reflected pulse contains more energy for RH car-
rier waves than for LH carrier waves. This observation is
further substantiated by the plots in Figure 5 of the in-
stantaneous energy per unit transverse area

U`(t) =
1
2

∫ z`

0

[ε0E(z, t) • E(z, t) + µ0H(z, t) • H(z, t)] dz

(36)

in the left (i.e., vacuous) half-space, computed for t ∈
[0, 2z`/c0]. The value of this integral was approximated
with the simple Euler method [22]. In all cases, U`(t) rises
with time over the temporal width of the incident pulse
and then levels off until the incident pulse reaches the
interface z = z` at t = 25.0 fs. Then it decreases precipi-
tously, as much of the incident energy crosses over to the
chiral STF half–space. For LH carrier waves, U`(t) lev-
els off after the drop, indicating that the reflected pulse
acquires constant energy.

The situation is quite different for RH carrier waves.
The energy density U`(t) in the vacuous half-space con-
tinues to rise for t & 33 fs, indicating that the reflected
pulse continues to gain energy. The only source of energy
available is the refracted pulse, which implies that energy
flows from the chiral STF into the vacuum.

Indeed, in Figure 3, Pz(z, t) < 0 not only for z < z`
but also in the part of the chiral STF closest to the inter-
face z = z`. A light pipe is formed across that interface,
and the refracted pulse “bleeds” energy into the vacuous
half-space. We observed the length of the light pipe to
continue to increase with time over the entire domain of
our simulation. The light pipe can be seen more clearly
in Figure 4 when the carrier light is RH, while the light
pipe is absent when the carrier is LH. The formation of
the light pipe clearly means that the reflected pulse has a
long wake.

Thus, when the carrier wave is RH, the refracted pulse
loses energy for two reasons: (i) the chiral STF is an ab-
sorbing medium, so that the refracted pulse must attenu-
ate as it propagates along the +z axis; and (ii) the wake

1 We reserve the term transmission for chiral STF slabs.
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Fig. 1. Snapshots of the axial component Pz(z, t) of the instantaneous Poynting vector at t = 12.0 fs. Only the incident pulses
exist at this instant of time. Top: λcar

0 = 430 nm; middle: λcar
0 = 516 nm; bottom: λcar

0 = 600 nm. Data in all plots have been
normalized to the peak value of the incident pulse with λcar

0 = 516 nm.
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Fig. 2. Snapshots of the axial component Pz(z, t) of the instantaneous Poynting vector at t = 49.5 fs across the interface of
vacuous and chiral STF half-spaces, for LH carrier waves. Top: λcar

0 = 430 nm; middle: λcar
0 = 516 nm; bottom: λcar

0 = 600 nm.
See Figure 1 for normalization details.
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Fig. 4. Magnified view of the vacuum/chiral STF interface for LH (top graph) and RH (bottom) carriers with 516 nm wavelength,
gleaned respectively from Figures 2 and 3.
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Fig. 5. Evolution of U`(t), the instantaneous energy per unit transverse area, with time in the vacuous half-space for LH
(graphs on left) and RH (graphs on right) carrier waves. The plots have been normalized to the maximum value of U`(t) when
λcar

0 = 516 nm.

of the refracted pulse continues to direct some energy to-
wards the interface z = z`. Further attenuation occurs
during back-propagation, as does partial leakage into the
vacuous half-space. Eventually, the reflected pulse will ac-
quire its final shape and energy content, and the refracted
pulse will die out, but our simulations did not span a long
enough portion of spacetime to confirm that conclusion.

Significantly, the rate of growth of U`(t) for t & 33 fs is
the highest when the carrier wave is RH and λcar

0 = λBr
0 .

Furthermore, Fourier analysis of [F ] (z, t) for t & 33 fs
and z < z` shows that the reflected field spectrum has a
very prominent maximum at λBr

0 when the carrier wave is
RH, the highest intensity recorded when λcar

0 equals λBr
0 .

The foregoing time-domain observations therefore consti-
tute an exposition of the spatiotemporal anatomy of the
circular Bragg phenomenon, which has been observed ex-
perimentally for continuous wave excitation of chiral STF
slabs (of finite width) [13,16].

3.2 Chiral STF slab

Having established that the interaction of the handed-
nesses of incident light and the chiral STF takes place
in the vicinity of the first interface, we now proceed to
scattering by a chiral STF occupying the region z ∈
[11000, 15000] nm. This computation was performed over
the domain {i ∈ [0, 4400] , n ∈ [0, 4901]}, virtually the
largest domain allowed by our computer.

In Figure 6, snapshots of Pz(z, t) for the transmit-
ted and reflected pulses carried by LH plane waves at
t = 72.0 fs are given. Figure 7 displays similar plots for
the pulses carried by RH plane waves. Only the primary

reflected/transmitted pulses were captured in our simula-
tion, while secondary pulses (arising from multiple transits
within the slab) arriving at later times were excluded by
the limited domain of our simulation. As, however, the pri-
mary pulses contain most of the energy, our results suffice
for discussion.

The plots in Figures 6 and 7 show that the peak power
densities of transmitted pulses are lower than those of the
incident pulses, with the former increasing with λcar

0 . To
a great extent, this increase can be explained by the fact
that absorption bands in the chosen material are located
at 280 and 290 nm wavelengths which lie in the ultraviolet
regime. Consequently, absorption inside the chiral STF
slab is lesser when λcar

0 is farther away from the absorption
bands.

The longer wakes of the reflected pulses for RH rather
than for LH carrier waves, as seen in Figures 6 and 7, are
related to the light pipe described in the previous section.
Pulse bleeding occurs inside the chiral STF slab, most
prominently when λcar

0 = λBr
0 . As a clear consequence of

that phenomenon, the reflected pulse energy is the high-
est when the circularly polarized carrier wave has the same
handedness as the chiral STF and λcar

0 = λBr
0 . This state-

ment is justified by the plots of U`(t) shown in Figure 8.
The characteristics of these plots are similar to those for
reflection by a chiral STF half-space in Figure 5.

The handedness of the carrier plane wave has a marked
effect on the energy content of the transmitted pulse, ac-
cording to Figures 6 and 7. The peak transmitted power
density is higher, for all three values of λcar

0 , when the car-
rier wave is LH. This observation is corroborated by the
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Fig. 6. Snapshots of the axial component Pz(z, t) of the instantaneous Poynting vector at t = 72.0 fs across a chiral STF slab
(z ∈ [11000, 15000] nm), for LH carrier waves. Top: λcar

0 = 430 nm; middle: λcar
0 = 516 nm; bottom: λcar

0 = 600 nm.
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Fig. 7. Same as Figure 6, but the carrier waves are RH.

plots of the instantaneous energy per unit transverse area

Ur(t) =
1
2

∫ z4400

zr

[ε0E(z, t) • E(z, t) + µ0H(z, t) • H(z, t)] dz

(37)

in the right half-space. The transmitted pulse emerges
from the chiral STF slab at t ' 52 fs. We note that Ur(t)
is significantly less thereafter with a RH carrier as com-
pared to that with a LH carrier wave, when λcar

0 = λBr
0 .

Incidentally, both U`(t) and Ur(t) in Figures 8 and 9, re-
spectively, would increase slightly, after the arrival of sec-
ondary pulses.
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Fig. 8. Temporal evolution of U`(t) in the left half-space z ≤ z` for LH (graphs on left) and RH (graphs on right) carrier waves
incident on a chiral STF slab. The plots have been normalized to the maximum value of U`(t) when the carrier wavelength is
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Fig. 9. Same as Figure 8, but for Ur(t) evaluated in the right half-space z ≥ zr.

Several calculations show that the difference between
the reflected/transmitted energy density for carrier waves
of opposite handednesses is more pronounced for thicker
chiral STF slabs. Certainly, the occurrence of pulse bleed-
ing explains why the circular Bragg phenomenon is easier
to observe in frequency–domain experiments for thicker
chiral STF slabs [13,23]. In thicker slabs, the electro-
magnetic field interacts with the material over a longer

distance (and for a longer time), so that the light pipe
transfers more energy to the reflected pulse when the con-
ditions associated with the circular Bragg phenomenon
exist.

Furthermore, Figures 6 and 7 indicate that the trans-
mitted pulse has a more prominent wake for RH than
for LH carrier waves, especially at the two higher val-
ues of λcar

0 . Thus, the handedness of the carrier light in
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Fig. 10. Normalized spectrums of
h
|Ẽx(t, λ0)|2 + |Ẽy(t, λ0)|2

i1/2

for the incident (solid lines), the reflected (dotted lines), and

the transmitted fields (dashed lines); λcar
0 = 430 nm. Top: LH carrier wave; bottom: RH carrier wave. Only the primary reflected

and the primary transmitted pulses are captured here. The vertical lines on the graphs mark the locations of λcar
0 (solid) and λBr

0

(dotted). The peak value of
h
|Ẽx(t, λ0)|2 + |Ẽy(t, λ0)|2

i1/2

for the incident pulse is normalized to unity. The calculated values

for the transmitted pulses occasionally exceed those for the corresponding incident pulses due to discretization and truncation
errors in evaluating the spectrums, but these errors are largely inconsequential as they occur outside the half–maximum bands
of the incident pulses.

relation to that of the chiral STF slab affects pulse dis-
tortion, particularly when the conditions are right for the
pulse bleeding phenomenon to appear.

Further light is shed on these issues by the spatial
Fourier transforms2 Ẽx(t, λ0) and Ẽy(t, λ0) of the sampled
Ex(z, t) and Ey(z, t), respectively. These were computed
as

Ẽx,y(t, λ0) ≈
∫ z′b

z′a

exp
(

2πj
λ0

z

)
Ex,y(z, t) dz , j =

√
−1 .

(38)

Although the integral on the right side of (38) should ide-
ally be evaluated over an infinite spatial domain, the finite
interval [z′a, z

′
b] ≡ [0, z`] at time t = 15.01 fs was sufficient

to capture the incident pulse. The Fourier transforms of
the primary reflected and transmitted pulses were taken at
t = 72.0 fs over the spatial domains [0, z`] and [zr, z4400],
respectively. Secondary reflected/transmitted pulses have
much smaller energies than their primary counterparts,
and so were excluded from consideration.

Normalized spectrums of
[
|Ẽx(t, λ0)|2 +

|Ẽy(t, λ0)|2
]1/2

for each selected value of λcar
0 are

plotted in Figures 10–12. Reflection is noticeably weaker
2 In vacuum, the spatial and the temporal Fourier trans-

forms of any electromagnetic field component are isomorphic
and simply related [24].

when the carrier wave is LH rather than RH, for all
three values of λcar

0 . The effects of the pulse bleeding
phenomenon are most evident in Figure 11, where a drop
in transmission and increase in reflection at wavelengths
near λBr

0 can be seen. A smaller peak in the reflected
spectrum at λBr

0 can be observed for RH carrier in
Figures 10 and 12 also; and this peak is accompanied
by a corresponding dip in the transmitted spectrum, as
expected [17,23].

Incidentally, the transmission spectral peaks for LH
carrier waves in Figures 10–12 are located at wavelengths
slightly greater than λcar

0 , the difference between the wave-
length of peak transmission and λcar

0 being smaller for
larger λcar

0 . This is due to the absorption characteristics
of the chiral STF slab. The closer that λcar

0 is to the
resonance wavelengths, the farther must the transmis-
sion spectral peak be from the incidence spectral peak,
in agreement with the snapshots presented in Figures 6
and 7.

4 Concluding remarks

Solving the Maxwell curl equations explicitly in the time
domain, we have shown that a chiral STF slab can dras-
tically affect the shapes, amplitudes, and spectral compo-
nents of femtosecond pulses. The wavelength and handed-
ness of the plane wave carrying the incident pulse and the
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Fig. 11. Same as Figure 10, but λcar
0 = 516 nm.
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Fig. 12. Same as Figure 10, but λcar
0 = 600 nm.

properties of the chiral STF determine the characteristics
of the transmitted and reflected pulses.

The ability of chiral STF slabs to more strongly trans-
mit or reflect a NEP depending on its carrier wavelength
and handedness can find use in laser mirrors, optical fil-
ters, multiplexers, and other in-line optical telecommuni-
cation devices. The alteration in transmitted pulse shape
is important in light recent work that suggests several
bits of information may be encoded in a single femtosec-
ond pulse [25]. When chiral STFs are to be used in
optical circuits, pulse shaping may be needed to offset

distortion by them as well as to either avoid or exploit the
handedness-sensitive filtering action of the circular Bragg
phenomenon. Furthermore, as diffusion of gaseous and liq-
uid species into the porous microstructure of chiral STFs
can alter their electromagnetic properties [6,26], these ma-
terials are strong candidates for incorporation into optical
sensing systems based on pulse propagation.

J.B. Geddes III gratefully acknowledges support by a Proctor
and Gamble Summer Undergraduate Research Scholarship.
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Erratum

Reflection and transmission of optical narrow-extent pulses
by axially excited chiral sculptured thin films

J.B. Geddes III and A. Lakhtakia

CATMAS – Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics,
212 Earth-Engineering Sciences Building, Pennsylvania State University, University Park, PA 16802-6812, USA

Eur. Phys. J. AP 13, 3–14 (2001)

The same typographical error crept in the last term on the right sides of equations (19), (21) and (23) referred of the
paper above. Please replace −1 by −δ(t). All other equations as well as our results are not affected. We regret any
inconvenience caused by this error.
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Abstract. We present simulations of the transmission and reflection of narrow-extent pulses incident upon a
chiral sculptured thin film (STF) along its axis of spirality, when the circular Bragg phenomenon is excited.
Even though the frequency-domain reflection and transmission spectrums of a sufficiently thick chiral STF
slab acquire final shapes within the Bragg regime, the shape and the duration of the transmitted pulse
change with slab thickness over the entire range of our simulations. The emergence of a multiple-hump
structure in the transmitted pulse is relevant to the use of chiral STFs in digital optics communication.

PACS. 77.55.+f Dielectric thin films – 78.20.Bh Theory, models, and numerical simulation –
42.70.-a Optical materials

1 Introduction

Any helicoidal bianisotropic medium (HBM) will, in gen-
eral, display the circular Bragg phenomenon when suit-
ably excited along its axis of spirality, because it is pe-
riodically nonhomogeneous along that axis [1]. Chiral
liquid crystals [2,3] as well as chiral sculptured thin films
[4,5] exemplify HBMs and are therefore known to dis-
play that phenomenon. Briefly, a structurally right- (resp.
left-) handed HBM slab only a few periods thick almost
completely reflects axially incident, right (resp. left) circu-
larly polarized light with wavelength lying in the so-called
Bragg regime; while the reflection of axially incident, left
(resp. right) circularly polarized light in the same regime
is very little. The bandwidth and the peak reflectivity of
the Bragg regime first increase with the thickness of the
slab, and then saturate [3,6]. Once this saturation has oc-
curred, further thickening of the slab has negligible effects
on the reflection spectrum.

Investigations of the circular Bragg phenomenon have
traditionally been conducted entirely in the frequency do-
main. Only recently did time-domain studies of optical
pulse propagation in complex chiral mediums – includ-
ing liquid crystals [7,8] and sculptured thin films (STFs)
[9] – commence. This may be because time-domain stud-
ies require enormous computer memory resources in or-
der to fully incorporate causal constitutive relations [8,9],
while the computer memory requirements for the corre-
sponding frequency-domain investigations are negligible in
comparison.

a e-mail: JBG136@psu.edu
b e-mail: AXL4@psu.edu

The current explosive growth of digital optics com-
munication [10] has made time-domain research for novel
materials imperative. As liquid crystalline as well as thin-
film versions of HBMs are extremely attractive for op-
tical applications [11,12], particularly as polarization-
discriminatory filters, the circular Bragg phenomenon
must be studied in the time domain.

In our initial study in that vein [9], we showed that a
light pipe emerges and a pulse bleeding phenomenon oc-
curs in a chiral STF half-space, when (i) the handednesses
of a normally incident, amplitude-modulated carrier wave
and the chiral STF coincide, and (ii) the carrier wave-
length is in the vicinity of the center-wavelength of the
Bragg regime. We also showed that pulse bleeding inside
a chiral STF slab is responsible for the long wakes of re-
flected pulses and the low energy contents of the transmit-
ted pulses, when the incident pulse is wideband and the
conditions are right for the circular Bragg phenomenon to
be manifested. Thus, a chiral STF slab can directly af-
fect the shapes, amplitudes, and spectral components of
femtosecond pulses.

In continuation of our earlier work [9], we report here
on the influence of the thickness of a chiral STF slab
on the circular Bragg phenomenon in the time domain.
Our formulation is sufficiently general so that our conclu-
sions also apply to chiral liquid crystals. In Section 2, we
briefly review our finite difference algorithm [9] to simulate
the propagation of a narrow-extent (i.e., wideband) pulse
through a chiral STF slab. Then, assuming Lorentzian
constitutive properties, we present a scheme to accelerate
that algorithm. Section 3 contains the numerical results
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we obtained and a discussion of the technological ramifi-
cations of our findings.

2 Theory

Suppose the region z` ≤ z ≤ zr, (z` > 0), is occupied by
a chiral STF, while the half-spaces z ≤ z` and z ≥ zr are
vacuous. A carrier wave modulated by a pulse is launched
from the plane z = 0 at time t = 0 in the +z direction.
It excites the chiral STF slab, and eventually transforms
into a reflected pulse and a transmitted pulse.

2.1 Constitutive relations

The time-domain constitutive relations everywhere may
be expressed as [9]

D(r, t) = ε0
(
ε ∗E

)
(r, t) , B(r, t) = µ0 H(r, t) , (1)

where ε0 and µ0 are the permittivity and the permeability
of free space, respectively, while the operation ∗ denotes
convolution with respect to time. The relative permittivity
dyadic is specified by

ε(r, t) =


I δ(t) , z /∈ [z`, zr]
S
z
(z − z`) · Sy(χ) · [εa(t)uzuz

+εb(t)uxux + εc(t)uyuy
]
·

×S−1

y
(χ) · S−1

z
(z − z`) , z ∈ [z`, zr]

,

(2)

where I is the identity dyadic; δ(t) is the Dirac delta func-
tion; and ux, uy, and uz are the Cartesian unit vectors.
The rotation dyadic

S
z
(z) = uzuz + (uxux + uyuy) cos(πz/Ω)

+ (uyux − uxuy) sin(πz/Ω) (3)

captures the structural right-handedness of the chosen chi-
ral STF, with 2Ω being the structural period. The tilt
dyadic

S
y
(χ)=uyuy+(uxux+uzuz) cosχ+(uzux−uxuz) sinχ

(4)

is a function of the angle of rise χ.
Single-resonance Lorentzian characteristics are as-

sumed for the dielectric response properties of the chiral
STF; thus [13],

εa,b,c(t) = δ(t) + χa,b,c(t)

= δ(t) + pa,b,c

(
2πc0
λa,b,c0

)
sin
(

2πc0
λa,b,c0

t

)
× exp

(
− c0t

Na,b,cλ
a,b,c
0

)
U(t) , (5)

where U(t) is the unit step function, c0 = (ε0µ0)−1/2,
the oscillator strengths are denoted by pa,b,c, while λa,b,c0

and Na,b,c delineate the resonant attributes of the chosen
material.

2.2 Review of 5×5 matrix formulation

For axial excitation, all fields are independent of x and y.
Let the column 5-vector

[F (z, t)] = [Ex(z, t), Ey(z, t), Hx(z, t), Hy(z, t)Ez(z, t)]
T

(6)

contain the five non-zero components of the electromag-
netic field, the superscript T indicating the transpose.
Then, the Maxwell curl postulates may be written com-
pactly as [9][
J
]
∂z [F (z, t)]=

[
Q
]
·∂t [F (z, t)]+ε0∂t

{([
A
]
∗[F ]

)
(z, t)

}
,

(7)

with ∂z ≡ ∂/∂z and ∂t ≡ ∂/∂t. In (7), the constitutive
properties are contained in the 5×5 matrix

[
A
]

(z, t) which
is identically null-valued for z /∈ [z`, zr], while

[
A
]

(z, t) =


0 0 0 0 0
0 0 0 0 0

A31(z, t) A32(z, t) 0 0 A35(z, t)
−A41(z, t) −A31(z, t) 0 0 −A45(z, t)
A45(z, t) A35(z, t) 0 0 A55(z, t)

 ,
z ∈ [z`, zr] , (8)

with

A31 = (εa sin2 χ+ εb cos2 χ− εc)

× sin
π(z − z`)

Ω
cos

π(z − z`)
Ω

, (9)

A32 = (εa sin2 χ+ εb cos2 χ)

× sin2 π(z − z`)
Ω

+ εc cos2 π(z − z`)
Ω

− 1 , (10)

A35 = (εb − εa) sinχ cosχ sin
π(z − z`)

Ω
, (11)

A41 = (εa sin2 χ+ εb cos2 χ)

× cos2 π(z−z`)
Ω

+εc sin2 π(z−z`)
Ω

−1 , (12)

A45 = (εb − εa) sinχ cosχ cos
π(z − z`)

Ω
, (13)

A55 = εa cos2 χ+ εb sin2 χ− 1. (14)

The two other 5×5 matrixes appearing in (7) are as fol-
lows: [

J
]

= diag [1, 1, 1, 1, 0] , (15)

[
Q
]

=


0 0 0 −µ0 0
0 0 µ0 0 0
0 ε0 0 0 0
−ε0 0 0 0 0
0 0 0 0 ε0

 . (16)

We also define the matrixes
[
W (z, t)

]
= ε0

[
Q
]−1 [

A(z, t)
]

and
[
V
]

= c−1
0

[
Q
]−1 [

J
]

for convenience.
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2.3 Accelerated finite-difference algorithm

Both space and time are discretized as zi = i∆z, (i =
0, 1, 2, 3, ...), and tn = n∆t, (n = 0, 1, 2, 3, ...); deriva-
tives are replaced by central differences, and the leapfrog
method is employed. Accordingly, (7) transforms to the
matrix difference equation [9]

[F ]n+1
i = [F ]n−1

i + β
[
V
]
·
(
[F ]ni+1 − [F ]ni−1

)
−
[
q
]n
i
−
[
W
]n
i
·
(

[F ]1i − [F ]0i
)
∆t , (17)

wherein the shorthand notations

[F ]ni =
[
f(zi, tn)

]
,
[
W
]n
i

=
[
W (zi, tn)

]
(18)

have been used; and β = c0∆t/∆z < 1 for stability [14].
The last two terms on the right side of (17) must be cal-
culated only if zi ∈ [z`, zr].

The bulk of the convolution is contained in the term

[
q
]n
i

=
n−1∑
m=1

[
W
]m
i
·
(

[F ]n−m+1
i − [F ]n−m−1

i

)
∆t , (19)

and its calculation requires most of the computational
time. Any acceleration – even on a supercomputer – is de-
sirable. If we ensure that z` > z1, the chosen Lorentzian
properties (5) provide the following route:

Let us define the additional variables

ζa,b,c(t) = pa,b,c

(
2πc0
λa,b,c0

)
cos
(

2πc0
λa,b,c0

t

)
× exp

(
− c0t

Na,b,cλ
a,b,c
0

)
U(t) (20)

in analogy with χa,b,c(t), as well as the constants

χ̄a,b,c = sin
(

2πc0
λa,b,c0

∆t
)

exp
(
− c0∆t

Na,b,cλ
a,b,c
0

)
ζ̄a,b,c = cos

(
2πc0
λa,b,c0

∆t
)

exp
(
− c0∆t

Na,b,cλ
a,b,c
0

)
 . (21)

Likewise, let us also define the following 5×5 matrix func-
tions: [

Y
]

(z, t) =
[
W
]

(z, t)
∣∣∣
χa,b,c(t)→ ζa,b,c(t)[

W̄
]

(z) =
[
W
]

(z, t)
∣∣∣
χa,b,c(t)→ χ̄a,b,c[

Ȳ
]

(z) =
[
W
]

(z, t)
∣∣∣
χa,b,c(t)→ ζ̄a,b,c


. (22)

All of the foregoing definitions are to be used only for
z ∈ [z`, zr], and yield the temporal recurrence relations[

W
]m+1

i
=
[
Ȳ
]
i

[
W
]m
i

+
[
W̄
]
i

[
Y
]m
i[

Y
]m+1

i
= −

[
W̄
]
i

[
W
]m
i

+
[
Ȳ
]
i

[
Y
]m
i

 , (23)

with
[
W̄
]
i

=
[
W̄
]

(zi) and
[
Ȳ
]
i

=
[
Ȳ
]

(zi). Next, defining
the column vector

[k]ni =
n−1∑
m=1

[
Y
]m
i
·
(

[F ]n−m+1
i − [F ]n−m−1

i

)
∆t , (24)

as well as making use of (23), we obtain the twin recur-
rence relations[

q
]n+1

i
=
[
W
]1
i
·
(

[F ]n+1
i − [F ]n−1

i

)
∆t

+
[
Ȳ
]
i

[
q
]n
i

+
[
W̄
]
i
[k]ni

[k]n+1
i =

[
Y
]1
i
·
(

[F ]n+1
i − [F ]n−1

i

)
∆t

−
[
W̄
]
i

[
q
]n
i

+
[
Ȳ
]
i
[k]ni


(25)

from the definitions (19) and (24).
The constant matrixes

[
W
]1
i
,
[
Y
]1
i
,
[
W̄
]
i

and
[
Ȳ
]
i

corresponding to all zi ∈ [z`, zr] are computed in the be-
ginning and stored. Thereafter, the accelerated solution
algorithm proceeds as follows:

∀ i > 0 ,

knowing
{[
q
]n−1

i
, [k]n−1

i , [F ]0,1,n,n−1,n−2
i , [F ]ni±1

}
,

compute

[
q
]n
i

=
[
W
]1
i
·
(

[F ]ni − [F ]n−2
i

)
∆t

+
[
Ȳ
]
i

[
q
]n−1

i
+
[
W̄
]
i
[k]n−1

i ,

[k]ni =
[
Y
]1
i
·
(

[F ]ni − [F ]n−2
i

)
∆t

−
[
W̄
]
i

[
q
]n−1

i
+
[
Ȳ
]
i
[k]n−1

i ,

[F ]n+1
i = [F ]n−1

i + β
[
V
]
·
(
[F ]ni+1 − [F ]ni−1

)
−
[
q
]n
i
−
[
W
]n
i
·
(

[F ]1i − [F ]0i
)
∆t .

(26)

3 Numerical results and discussion

The foregoing algorithm was implemented with the fol-
lowing constitutive properties: pa = 0.40, pb = 0.52,
pc = 0.42, χ = 20◦, and Ω = 200 nm. These parame-
ters fixed the center-wavelength of the Bragg regime at
516 nm, with a full-width half-maximum (FWHM) band-
width of approximately 27 nm [4,9]. In order to keep
absorption negligible at visible wavelengths so that the
transmitted pulse possesses sufficiently high energy, we
chose λa,c0 = 280 nm, λb0 = 290 nm, and Na,b,c = 105.
Setting z` = 60 µm, we varied the thickness zr − z`
of the chiral STF from 5Ω to 100Ω; hence, zr ranged
from 61 µm to 80 µm in our simulations. The domain
{i ∈ [0, 30 000] , n ∈ [0, 31 681]} was the same for each cal-
culation, and the resolution of our grid was defined by set-
ting ∆z = 4 nm and β = 0.9, so that ∆t = 0.012 fs. We
chose the initial condition [F ]0i = [0] ∀ i, thereby asserting
the absence of the electromagnetic field anywhere at time
t = 0. The boundary condition [F ]n0 = g(tn) [ϕ(tn)] used
by us describes a carrier wave represented by the column
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vector [ϕ(t)] that is amplitude-modulated by the pulse
function g(t). For all numerical results reported here,[
ϕ±(t)

]
=
[
cos
(

2πc0
λcar

0

t

)
,± sin

(
2πc0
λcar

0

t

)
,

∓η−1
0 sin

(
2πc0
λcar

0

t

)
, η−1

0 cos
(

2πc0
λcar

0

t

)
, 0
]T

,

(27)

g(t) =
c0t

2λcar
0

exp
(
−c0t
λcar

0

)
. (28)

Whereas [ϕ
+

(t)] represents a left circularly polarized
(LCP) plane wave, [ϕ−(t)] represents a right circularly po-
larized (RCP) plane wave. The carrier wavelength was set
to lay squarely in the Bragg regime, so that λcar

0 = 516 nm.
With this choice, the duration of the pulse was approx-
imately 8 fs; and the pulse bandwidth completely con-
tained the Bragg regime. Computations were performed
on a Cray T3E supercomputer with a program written in
FORTRAN 90.

Snapshots of the axial component of the Poynting
vector P (z, t) = uz · [E(z, t)×H(z, t)] for each slab
thickness chosen are presented in Figures 1–6 at t =
115.3, 230.6, 288.2, and 380.4 fs. The initial pulse can be
seen to the left of the chiral STF slab in the top panel
of each figure. Subsequent snapshots detail the evolution
of the incident pulse in time as it propagates from left to
right, encounters the chiral STF slab, and transforms into
a transmitted pulse and a reflected pulse. The snapshot at
t = 380.4 fs is presented in magnified view as the bottom
panel of each figure. The carrier wave is RCP, so that the
conditions are right for the circular Bragg phenomenon to
occur.

When the thickness zr−z` = 5Ω, the transmitted pulse
is endowed with virtually the same shape and most of the
energy of the incident pulse; see Figure 1. Suitably coded
information in the duration and shape of the incident pulse
is retained upon transmission through the chiral STF slab,
although a slight distortion is possible.

A decrease in peak intensity and a temporal broaden-
ing of the transmitted pulse occur as the thickness zr− z`
increases to 20Ω (Fig. 2). As the thickness increases fur-
ther to 40Ω in Figure 3, the transmitted pulse is dilated
further in time, and takes on a dromedary-like shape with
several distinct humps. These results indicate that mea-
surements of the duration of the transmitted pulse might
be complicated by the presence of multiple humps.

At thicknesses of 60Ω, 80Ω and 100Ω, Figures 4–6
respectively show that the overall transmitted pulse dura-
tion continues to increase and more distortion is evident.
Although the transmitted pulses in the final panels of
Figures 3–6 all possess the multiple-hump structure, each
pulse has a different shape. This fact suggests that the
transmitted pulse shape and duration continue to evolve,
even though the transmission spectrum saturates [6] with
respect to the slab thickness.

The duration of the reflected pulse increases as the
slab thickness rises from 5Ω to 40Ω, even though the peak

intensity does not change significantly (Figs. 1–3). This is
in accord with the observation of the light pipe in the
predecessor paper [9]. For zr − z` > 40Ω or so, the total
energy of the reflected pulse does not change very much
with increasing film thickness. This is reasonable because
the incident pulse’s spectral components lying within the
Bragg regime together carry a finite amount of energy,
and it is these spectral components that are largely re-
flected by the chiral STF slab. Hence, once the circular
Bragg phenomenon deepens and saturates, the energy of
the reflected pulse will not undergo large increases with
increasing film thickness.

The foregoing time-domain observations are borne out
by comparison with their frequency-domain counterparts,
a task we accomplished by taking the Fourier transforms
of the incident, reflected, and transmitted pulses using the
formula

Ẽx,y(z, λ0)=
∫ tb

ta

Ex,y(z, t) exp
(
−j

2πc0t
λ0

)
dt , j =

√
−1 .

(29)

The parameters z, ta, and tb were chosen to capture as
much of the pulse as possible; z = 14 000∆z was chosen
for the incident and reflected pulses, while z = zr + 50∆z
for the transmitted pulse. We selected ta = 15 000∆t,
17 500∆t, and 16 000∆t, respectively, for the incident, re-
flected, and transmitted pulses; tb = 17 000∆t for the
incident pulse; and tb = 31 680∆t for the reflected and
transmitted pulses. Although our simulations would not
capture all of the secondary pulses arising from multiple
transits within the chiral STF slab, the secondary pulses
may be neglected since most of the energy resides in the
primary reflected and transmitted pulses.

The quantity Ẽ(z, λ0) = [|Ẽx(z, λ0)|2 +|Ẽy(z, λ0)|2]1/2
is plotted in Figure 7 for several values of zr − z`. As the
slab thickness increases, the transmission at Bragg-regime
wavelengths drops, and there is a corresponding increase
in reflection. For zr − z` > 40Ω the transmission and re-
flection spectrums in the Bragg regime change very little
with increasing slab thickness; this effect is the saturation
of the circular Bragg phenomenon, and it vindicates our
time-domain simulations.

Thus, even though the reflected and transmitted pulse
spectrums may acquire final shapes (in the frequency do-
main) for a sufficiently thick chiral STF slab, evidently
the transmitted pulse shape and duration are always in-
fluenced by the slab thickness, while the energy content
of the reflected pulse is governed by the overlap of the
spectrum of the incident pulse with the Bragg regime.

We have shown that pulse is broadened and distorted
as it propagates through the chiral STF slab, when the
conditions are right for the occurrence of the circular
Bragg phenomenon – a fact which must be remembered
when designing devices employing such films. A chiral
STF slab must be thick enough to exhibit the desired fil-
tering properties associated with the circular Bragg phe-
nomenon, but thin enough to allow the transmitted pulse
to retain appropriately coded information. The appear-
ance of the multiple-hump structure may garble certain
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Fig. 1. Snapshots of P (z, t) = uz · [E(z, t)×H(z, t)] at t = 115.3, 230.6, 288.2, and 380.4 fs – detailing the evolution of a
narrow-extent pulse modulating a RCP carrier plane wave. The incident pulse impinges on a right-handed chiral STF slab of
thickness zr − z` = 5Ω from the left, and metamorphoses into a reflected pulse (left of the slab) and a transmitted pulse (right
of the slab). See the text for values of all parameters used. Multiply all values by 0.0001 W m−2 to obtain the original data.
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Fig. 2. Same as Figure 1, but the slab thickness zr − z` = 20Ω.
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Fig. 3. Same as Figure 1, but the slab thickness zr − z` = 40Ω.
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Fig. 4. Same as Figure 1, but the slab thickness zr − z` = 60Ω.
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Fig. 5. Same as Figure 1, but the slab thickness zr − z` = 80Ω.
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Fig. 6. Same as Figure 1, but the slab thickness zr − z` = 100Ω.
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Fig. 7. Plots of Ẽ(z, λ0) =
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for the incident (solid lines), reflected (dotted lines), and transmitted

(dashed lines) pulses and increasing values of zr − z`. The deepening of the circular Bragg phenomenon (in the frequency
domain) is evident as the thickness zr − z` of the chiral STF slab increases. The data have been normalized to the peak value

of
h
|Ẽx(z, λ0)|2 + |Ẽy(z, λ0)|2

i1/2

taken by the incident pulse modulating a RCP carrier wave. See the text for the parameter

values used to calculate these results.
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information, if the effects of slab thickness are not properly
taken into account. But the multiple-hump structure is
also valuable in that it may be exploited for pulse-shaping,
as has been done with scalar Bragg gratings [16].

Although the circular Bragg phenomenon does not oc-
cur when the carrier wave is LCP [15], and the trans-
mission is high through even a 100 Ω-thick slab, signifi-
cant broadening of the transmitted pulse can be observed,
as may be gleaned from Figure 8. Of note here is that
the multiple-hump structure does not appear for pulses
carried by LCP carrier waves across thick slabs, indicat-
ing that pulse distortion of that kind is a function of
the relative handedness of the chiral STF and the carrier
wave. Broadening of transmitted pulses travelling on LCP
carrier waves may be technologically significant, depend-
ing on the specific application at hand.

This research was supported in part by the Pittsburgh Super-
computing Center.
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Erratum

Time-domain simulation of the circular Bragg phenomenon
exhibited by axially excited chiral sculptured thin films

J.B. Geddes III and A. Lakhtakia

CATMAS – Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics,
212 Earth-Engineering Sciences Building, Pennsylvania State University, University Park, PA 16802-6812, USA

Eur. Phys. J. AP 14, 97–105 (2001)

A transcription error crept in the last term on the right sides of equations (10), (12) and (14) of the referred paper above.
Please replace −1 by −δ(t). All other equations as well as our results are not affected. We regret any inconvenience
caused by this error.



ground plane, becomes a planar rectangular monopole an-
tenna when the bottom ground plane is removed. A paramet-
ric study of the rectangular monopole antenna has been
carried out to optimize the bandwidth. We obtained a mea-

Ž .sured broad bandwidth from 1.220 to 3.550 GHz 1:2.9 . The
radiation pattern at various frequencies in the E- and H-
planes of these antennas is similar to that of a thin monopole
of equivalent height.
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PULSE-CODED INFORMATION
TRANSMISSION ACROSS AN AXIALLY
EXCITED CHIRAL-SCULPTURED THIN
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ABSTRACT: Although a monochromatic plane wa�e of a certain
circular polarization state and wa�elength may be almost completely
reflected by a chiral sculptured thin film, we show here that information
coded in rectangular pulses can still be transmitted across the
film�pro�ided the rise and fall times of the pulses are sufficiently small
and the pulse widths are sufficiently large. � 2001 John Wiley & Sons,
Inc. Microwave Opt Technol Lett 28: 59�62, 2001.

Key words: chiral-sculptured thin films; circular Bragg phenomenon;
pulse-code modulation

1. INTRODUCTION

Ž .Chiral-sculptured thin films STFs are solid dielectric exam-
� �ples of the so-called helicoidal bianisotropic media 1 . A

class of nanoengineered materials, chiral STFs behave as
unidirectionally nonhomogeneous, periodic, anisotropic, di-
electric continuua in the visible and infrared regimes. Their
periodicity allows them the ability to display the Bragg phe-

Žnomenon on axial excitation. Their structural handedness or
.chirality makes the Bragg phenomenon polarization sensi-

tive. Thus, virtually no reflection occurs when a structurally
right-handed chiral STF of finite thickness is axially excited

Ž .by monochromatic left circularly polarized LCP light,

Contract grant sponsor: Pittsburgh Supercomputing Center
Contract grant sponsor: Proctor & Gamble Summer Undergraduate Re-
search Fellowship

whereas virtually perfect reflection of incident right circularly
Ž .polarized RCP light occurs�provided the film is sufficiently

thick and the wavelength lies in the so-called Bragg regime.
The described circular Bragg phenomenon has been theoreti-

� �cally as well as experimentally established 2, 3 , and is the
� �basis of several actual and potential applications in optics 1 .

Optical communication systems employ monochromatic
� �light for carrying information coded in rectangular pulses 4 .

Typical pulse widths have been in the subpicosecond range
� �for quite a while 5 , and continue to get shorter. If an optical

device fabricated with a chiral STF were used, and if the
carrier wavelength were to lie in the Bragg regime of that
chiral STF, the circular polarization state of the carrier wave
can be expected to have a major effect on the pulse transmis-
sion characteristics of the device.

This thought provided the motivation for the present
communication. We set up an initial-boundary value problem
for the axial excitation of a chiral STF by a circularly polar-
ized carrier plane wave that is amplitude modulated by a
rectangular pulse. The time-domain constitutive relations of
the chiral STF were chosen to be Lorentzian, with resonance
wavelengths in the ultraviolet regime and modest absorption

� �in the visible regime 2, 6 . The Bragg regime of the chiral
STF was arranged to lie in the visible regime as well. Finite-
difference calculus was used to solve the time-domain
Maxwell equations in order to determine the interaction of a
rectangular pulse with a chiral STF.

A brief description of the theoretical treatment is pro-
vided in the next section, followed by a discussion of the
obtained results. Vectors are single underlined, dyadics are
double underlined, while u , u , and u denote Cartesianx y z

unit vectors. The wavelength in free space is denoted by � .0

2. THEORY IN BRIEF

The chosen pulse is launched into the half space z 	 0 from
the plane z � 0 at time t � 0. A chiral STF fills the region

Ž .z � z � z z 	 0 , while the half spaces z � z and z 	 zl r l l r
are vacuous.

In the constitutive relations

Ž . Ž .Ž . Ž . Ž . Ž .D r , t � � �� E r , t , B r , t � � H r , t 10 0

� and � are the permittivity and permeability of free space,0 0
� �while � denotes convolution with respect to time 7, 8 . The

relative permittivity dyadic is given by

Ž . � �I� t , z � z , z
 l r

0 �1Ž . Ž . Ž . Ž .�S z � z � S � � � t � S �Ž . Ž .� r , t � 2z l y ref y

�1� Ž . � ��S z � z , z  z , zz l l r

Ž .wherein I is the identity dyadic and � t is the Dirac delta
function; the rotation dyadic

� z
Ž . Ž .S z � u u � u u � u u cosz z z x x y y �

� z
Ž . Ž .� u u � u u sin 3y x x y �

denotes the structural right-handedness of the chiral STF
with 2� as the structural period along the z-axis; and the tilt
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dyadic

Ž . Ž .S � u u � u u � u u cos � � u u � u u sin �y y y x x z z z x x z

Ž .4

involves the angle of rise �� 0�. The chiral STF is assumed
� �to have Lorentzian response properties as follows 2, 6 :

0 Ž . Ž . Ž . Ž . Ž .� t � � t u u � � t u u � � t u u 5ref a z z b x x c y y

with

2� c 2� c0 0Ž . Ž .� t � � t � p sin ta, b , c a , b , c a , b , c a , b , cž / ž /� �0 0

c t0 Ž . Ž .� exp � UU t . 6a, b , cž /N �a, b , c 0

In the foregoing expression, c � 1� � � is the speed of'0 0 0
light in vacuum; p are the oscillator strengths; �a, b, c anda, b, c 0

N determine the resonance wavelengths and linewidths;a, b, c

Ž .while UU t is the Heaviside function.
The launched rectangular incident pulse

1
Ž . � Ž . Ž .� Ž .g t � UU t � UU t � t 7p'2

modulates the amplitude of a circularly polarized carrier
wave. Whereas t is the pulse width, the carrier wavelength isp

denoted by �car. The signal propagates in the �z-direction0
until it encounters the chiral STF at z � z . Subsequently, ar

Žreflected pulse arises in the half space z � z , and a trans-l
.mitted pulse may eventually exist in the half space z 	 z .r

The initial-boundary value problem thus described may be
treated using finite-difference calculus, as has been done

� �previously for cholesteric liquid crystals 9 . First, ��� x 	 0
and ��� y 	 0 are set in order to consider only axial propaga-
tion; and then, z and t are discretized with � z and � t as the
relevant increments. Derivatives in the time-domain Maxwell
equations are replaced by central differences, and the leapfrog

� �method is employed 10 . For the sake of brevity, further
details of the solution algorithm thus obtained are not given
here.

3. NUMERICAL RESULTS AND DISCUSSION

The devised algorithm was implemented on a Cray T3E
supercomputer, with the space increment � z � 4 nm and the
time increment � t � 0.012 fs. The boundaries of the chiral
STF were demarcated as z � 50,000 nm and z � 54,000l r
nm; and the following parameters were chosen for its dielec-
tric properties: p � 0.40, p � 0.52, and p � 0.42; �a � �c

a b c 0 0

� 280 nm and �b � 290 mn; and N � N � N � 100. Set-0 a b c
ting �� 200 nm and �� 20�, we fixed the center wave-
length of the Bragg regime at �Br � 516 nm with a full-width0

Ž . � �half-maximum FWHM bandwidth of 27 nm 11 . Thus,
502.5 � � � 529.5 nm is the Bragg regime.0

The pulse duration was set at t � 90.1 fs, and the follow-p
ing values were chosen for the carrier wavelength �car: 430,0
500, 516, 530, and 600 nm. The FWHM bandwidth of the
incident signal is � 9 nm. Both LCP and RCP carrier plane
waves were considered.

The computed axial component of the Poynting vector
Ž . � Ž . Ž .�P z, t � u � E z, t � H z, t was recorded as a functionz z

of time for the incident and reflected pulses at z � 35,000
Ž .nm to the left of the chiral STF , and for the transmitted

Ž .pulse at z � 55,000 nm to the right of the chiral STF . The

Ž . � Ž . Ž .�Figure 1 Temporal record of P z, t � u � E z, t � H z, t at z � 35,000 nm � z when an incident rectangular pulse is carriedz z l
car Ž . Ž . 2by an LCP plane wave; � � 430, 500, 516, 530, and 600 nm from top to bottom . Multiply all values of P z, t by 0.0026 W�m to0 z

obtain the unscale data
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Figure 2 Same as Figure 1, except that the carrier wave is RCP

results for the incident and reflected pulses are plotted in
Figures 1 and 2 for LCP and RCP carrier waves, respectively.
In these figures, the signature of the circular Bragg phe-
nomenon is clearly evident. The incident pulse is visible in
the interval 115 � t � 205 fs, and the reflected pulse begins
to appear at t � 215 fs. The carrier wave is LCP in Figure 1,
and the energy content of the reflected pulse is minimal,

regardless of the carrier wavelength. When the carrier wave
is RCP and �car lies outside the Bragg regime, there is0
minimal reflection in Figure 2 also. However, when the
bandwidth of the incident pulse overlaps the Bragg regime,
the reflected pulse contains more energy; indeed, the re-
flected pulse is most energetic in Figue 2 when �car coincides0

with �Br.0

Figure 3 Same as Figure 1, but for z � 55,000 nm � zr
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Figure 4 Same as Figure 3, except that the carrier wave is RCP

The results for the transmitted pulse, presented in Figures
3 and 4, corroborate the foregoing observations. Aside from a
small amount of absorption, most of the incident pulse en-

.ergy is transmitted into the right half space when either: 1
.the carrier wave is LCP, or 2 the carrier wave is RCP and

�car lies outside the Bragg regime. However, when the hand-0
edness of the carrier wave matches the structural handedness
of the chiral STF and the carrier wavelength lies within the
Bragg regime, the transmitted pulse is quite weak.

There is another�and a more significant�observation to
be made in Figures 3 and 4: even when the transmission is
weak, two spires remain at the leading and trailing edges of
the transmitted pulse. That is, although most of the energy of
an incident pulse is reflected when the circular Bragg phe-
nomenon is excited by virtue of the wavelength and the
circular polarization state of the carrier wave, a ghost of the
pulse passes through the chiral STF. This ghost contains
information about the width of the pulse, which is of funda-
mental importance to any optical communication system em-

� �ploying a pulse-width modulation scheme 4, 12 . In addition,
the spire at the leading edge of each pulse is particularly
prominent, meaning that the time interval between the ar-
rivals of two consecutive pulses may be measured. Thus,
chiral STFs may be used for optical devices employed in

� �pulse-position modulation systems 12 .
The spires fore and aft of each transmitted pulse can be

attributed to the spectral components outside the Bragg
regime that are transmitted by the slab. Although the FWHM

Ž .bandwidth of the incident pulse � 9 nm is less than that of
Ž .the Bragg regime 27 nm , there are spectral components of

the pulse that lie outside the Bragg regime, even when
�car � �Br. These components are due to the steep edges of0 0
the incident pulse, and those sufficiently removed from the
ultraviolet resonances at 280 and 290 nm do not pass through
the chiral STF without excessive absorption. Thus, the rise
and fall times of rectangular pulses must be sufficiently small,
and the pulse widths must be sufficiently large, for ghost

transmission to occur in opposition to the circular Bragg
phenomenon.
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Abstract. The reflection and transmission of optical videopulses incident axially upon a slab of a chiral
sculptured thin film (STF) is studied using a finite-difference simulation in the time domain. Videopulse
bleeding is shown to occur when the handedness of the carrier plane wave matches the structural handedness
of the chiral STF and the carrier wavelength lies in the Bragg regime.

PACS. 77.55.+f Dielectric thin films – 78.20.Bh Theory, models, and numerical simulation –
42.70.-a Optical materials

1 Introduction

The propagation of ultrashort optical pulses is of scien-
tific as well as technical interest. Scientifically, such pulses
are used to probe atomic, molecular, and material sys-
tems at short time scales [1,2]. Ultrashort optical pulses
have potential practical utility in communications, sen-
sors, and medicine. Although most recent experimental
research has investigated pulses that contain multiple op-
tical cycles (i.e., cycles of the carrier light wave), pulses
so short that they comprise about one optical cycle or less
are possible. These entities, known as videopulses [3–5],
are among the closest approximations of an impulse func-
tion that have yet been created.

Previous research on the interaction of femtosecond-
duration pulses with chiral sculptured thin films (STFs)
and cholesteric liquid crystals (CLCs) – materials that
may be useful for manipulating ultrashort optical pulses –
revealed the spatiotemporal anatomy of the circular
Bragg phenomenon exhibited by these materials as a
consequence of their helicoidally periodic microstruc-
ture [6,7]. In the frequency domain, the circular Bragg
phenomenon is manifested as polarization-dependent re-
flection: monochromatic, right circularly polarized (RCP)
light is largely reflected from a structurally right-handed
material of little absorbance, while left circularly polarized
(LCP) light is reflected very little, when the wavelength of
the incident light lies within a wavelength band called the
Bragg regime. In the time domain, upon entering a struc-
turally right-handed chiral STF, an optical pulse modulat-
ing a RCP (but not a LCP) carrier plane wave undergoes

a e-mail: AXL4@psu.edu

a protracted, reflective transfer of energy out of the struc-
turally chiral material in addition to experiencing any ab-
sorption. This polarization-selective reflection of energy,
dubbed pulse bleeding, accounts for the increased reflec-
tion associated with the circular Bragg phenomenon in the
frequency domain, and explains other effects such as the
long duration of reflected pulses when the conditions for
the circular Bragg phenomenon are present.

The previously studied pulses were of multiple op-
tical cycles in duration. Our aim here is to show
that polarization-dependent bleeding can occur even for
videopulses. We solved the time-domain Maxwell equa-
tions on a Cray T3E supercomputer for the propagation of
videopulses through a chiral STF of finite thickness, and
examine the reflection and transmission of videopulses.
The constitutive relations employed for the unidirection-
ally nonhomogeneous film are causal [9], and display the
characteristic helicoidal variation of dielectric anisotropy
with local orthorhombic symmetry [7]. CLCs can be ac-
commodated in our formalism, being simplifications of
chiral STFs in macroscopic electromagnetic terms. The
reader is referred to two papers [7,8] for details of the
algorithm employed by us.

2 Results and discussion

The region z` ≤ z ≤ zr, (z` > 0), is occupied by a chi-
ral STF, while the half-spaces z ≤ z` and z ≥ zr are
vacuous. A carrier plane wave amplitude-modulated by a
videopulse is launched from the plane z = 0 at time t = 0
in the +z direction. It excites the chiral STF slab, and
eventually transforms into a reflected pulse and a trans-
mitted pulse.
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Fig. 1. Snapshots of the axial component of the instantaneous Poynting vector at four different instants of time (from top to
bottom, t = 14.4, 27.4, 30.6, 50.4 fs) when the carrier plane wave is LCP. Multiply all values on the ordinates by 4.0×10−6 W m−2

to obtain the actual data.

The relative permittivity dyadic is specified as a func-
tion of position vector r = xux + yuy + zuz and time t by

ε(r, t) =
I δ(t) , z /∈ [z`, zr]
S
z
(z − z`) • Sy(χ) • [εa(t)uzuz

+εb(t)uxux + εc(t)uyuy
]
•

S−1

y
(χ) • S−1

z
(z − z`) , z ∈ [z`, zr]

, (1)

where I is the identity dyadic; δ(t) is the Dirac delta func-
tion; and ux, uy, and uz are the Cartesian unit vectors.
The rotation dyadic

S
z
(z) = uzuz + (uxux + uyuy) cos(πz/Ω)

+(uyux − uxuy) sin(πz/Ω) (2)

captures the structural right-handedness of the chosen chi-
ral STF, with 2Ω being the structural period. The tilt
dyadic

S
y
(χ) = uyuy + (uxux + uzuz) cosχ

+(uzux − uxuz) sinχ (3)

is a function of the angle of rise χ. As single-resonance
Lorentzian characteristics are assumed for the dielectric
response properties of the chiral STF,

εa,b,c(t) = δ(t) + pa,b,c

(
2πc0

λa,b,c0

)
sin
(

2πc0

λa,b,c0

t

)
× exp

(
− c0t

Na,b,cλ
a,b,c
0

)
U(t) ,

where U(t) is the unit step function; c0 is the speed of light
in vacuum; the oscillator strengths are denoted by pa,b,c;
while λa,b,c0 and Na,b,c delineate the resonant attributes of
the chosen material.

For the numerical results presented here, we set z` =
8 µm, zr = 12 µm, pa = 0.40, pb = 0.52, pc = 0.42,
λa,c0 = 280 nm, λb0 = 290 nm, Na,b,c = 105, χ = 20◦,
and Ω = 200 nm. The Bragg regime therefore is centered
at 516 nm free-space wavelength, with a full-width half-
maximum bandwith of approximately 27 nm [10].

The incident signal is either a RCP or LCP carrier
plane wave whose amplitude is modulated by the pulse
function

g(t) =
c0t

2λcar
0

exp
(
−c0t

0.2λcar
0

)
, (4)

where λcar
0 is the carrier wavelength in vacuum. The

videopulse in this paper is roughly 2 fs in duration, which
translates to approximately 1 1

2 optical cycles of the carrier
wave when λcar

0 = 516 nm.
Snapshots of the axial component of the instantaneous

Poynting vector are presented at four instants of time in
the panels of Figures 1 and 2. In each case, the carrier
wavelength λcar

0 = 516 nm, but the carrier wave in Fig-
ure 1 is LCP while the carrier wave in Figure 2 is RCP.
The videopulse traverses the space 0 < z < z` and en-
ters the chiral STF slab, whereupon part of it is reflected
and part transmitted. It is evident in both figures that the
transmitted pulse is considerably longer than the incident
pulse, regardless of the carrier plane wave’s handedness.
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Fig. 3. Magnified views of the fourth panels (t = 50.4 fs) of Figures 1 and 2 (top and bottom, respectively).

Magnified views of the fourth panels of Figures 1 and 2
are given in Figure 3. From that figure, we see that the re-
flected pulse is much longer when the carrier wave is RCP
than LCP, and the reflected and transmitted pulses are
joined by a light pipe that ferries energy across the first
vacuum/chiral STF interface. Thus, videopulse bleeding
occurs in the case where the carrier wave is RCP. Frame-
by-frame examination shows that although the videopulse

modulating the LCP carrier wave also undergoes some
bleeding, the light pipe across the first vacuum/chiral STF
interface ferries much less energy and exists for a much
shorter duration than with the RCP carrier wave. It is not
clear whether the short-duration, low-energy light pipe for
videopulses carried by LCP carrier waves is physically pos-
sible or simply a numerical artifact due to the extremely
brief durations of videopulses. From these observations, we
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conclude that pulse bleeding does not require the presence
of many optical cycles in the incident pulse to occur.

Thus, we have shown the occurrence of videopulse
bleeding in an axially excited chiral STF when the hand-
edness of the carrier plane wave matches the structural
handedness of the film and the carrier wavelength lies in
the Bragg regime. The same conclusion follows for CLCs.

This research was supported in part by the Pittsburgh Super-
computing Center.
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Multiple Bragg regimes exhibited
by a chiral sculptured thin film half-space on axial excitation
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Abstract: Axially excited chiral sculptured thin films (STFs)
are shown to display the circular Bragg phenomenon in
more than one wavelength-regime, owing to the dispersion
inherent in their dielectric susceptibilities. With the assump-
tion of the one-resonance Lorentz model for the constitutive
parameters in a frequency-domain investigation, two Bragg
regimes emerge: one pre-resonant, and the other post-reso-
nant. A wavelength-regime of perfect reflection also ap-
pears. The pulse-bleeding mechanism previously shown to
underlie the pre-resonant Bragg regime turns out to be re-
sponsible also for the post-resonant Bragg regime. Femtose-
cond pulse propagation in the post-resonant regime would
be very likely affected by the existence of multiple Bragg
and perfectly reflecting regimes.

Key words: Bragg regime – chiral thin film – circular Bragg
phenomenon – femtosecond pulse – Lorentz model – pulse
propagation – sculptured thin film

1. Introduction

Owing to the periodic and rotational variation of its
constitutive properties along a fixed axis, any helicoi-
dal bianisotropic medium (HBM) must display the so-
called circular Bragg phenomenon upon axial excita-
tion by a plane wave [1]. This statement is supported
by observations on both chiral liquid crystals [2, 3] and
chiral sculptured thin films [4].
The circular Bragg phenomenon is polarization-

selective, which is easy to conclude from frequency- as
well as time-domain results. Let a circularly polarized
plane wave with free-space wavelength l0 axially ex-
cite a chiral sculptured thin film (STF) of finite thick-
ness. Provided the film thickness is sufficiently large
and l0 lies within a certain wavelength-regime (deter-
mined by the periodicity and the relative permittivity
dyadic of the chiral STF), the reflectance is much high-
er if the handedness of the incident plane wave

matches the structural handedness of the chiral STF
than if otherwise [4]. Grating theory provides an expla-
nation of this phenomenon [5]: A plane wave of
matching handedness effectively encounters a Bragg
grating, while that of the other handedness does not.
In the time domain, upon entering a structurally

right/left-handed chiral STF, an optical pulse modulat-
ing a right/left (but not a left/right) circularly polarized
carrier plane wave undergoes a protracted, reflective
transfer of energy out of the structurally chiral materi-
al in addition to experiencing absorption. This polar-
ization-selective back-flow of energy, dubbed pulse
bleeding , accounts for the increased reflection asso-
ciated with the circular Bragg phenomenon in the fre-
quency domain, and also explains other effects – such
as the long duration of reflected pulses when the con-
ditions for the circular Bragg phenomenon are present
[6, 7].
The center-wavelength as well as the bandwidth of

the Bragg regime can be easily predicted, provided
the constitutive properties are taken to be fre-
quency-dependent (in a relevant part of the electro-
magnetic spectrum) [4]. But the frequency-domain
constitutive properties of linear materials must be
dispersive, which is a requirement mandated by
causality [8,9]. This leads to the speculation that
more than one Bragg regime may be displayed on
axial excitation.
This paper presents the results of our frequency-do-

main as well as time-domain investigations. With the
assumption that dielectric properties of a chiral STF
can be satisfactorily described by the single-resonance
Lorentz model [10, 11], our emphasis is on the short-
wavelength side of the material resonances in the
electromagnetic spectrum. We show via frequency-
and time-domain investigations that multiple Bragg
regimes are indeed possible for axially excited chiral
STFs, because of dispersion. Although the problems
we address here involve only chiral STF half-spaces
for the sake of simplicity, experience [6, 12] informs
us that the results would be applicable to the more
realistic chiral STF slabs as well. Mathematical iso-
morphism guarantees the potential applicability of the
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understanding derived here to chiral liquid crystals
[13] too.

2. Theoretical preliminaries

The geometry of the problems addressed here com-
prises two half-spaces. While the half-space z � z‘ is
vacuous, the half-space z � z‘ is occupied by a structu-
rally right-handed chiral STF whose axis of nonhomo-
geneity is parallel to the z axis. The actual value of z‘
is irrelevant for frequency-domain, but not for time-
domain, calculations.

2.1 Frequency-domain constitutive relations

For frequency-domain research, all electromagnetic
fields are assumed to have an exp ð�iwtÞ time-depen-
dence, with w as the angular frequency, t as the time,
and i ¼

ffiffiffiffiffiffiffi
�1

p
. The constitutive relations between the

various electromagnetic field phasors, applicable every-
where, may be stated as follows:

~DDðr; l0Þ ¼ e0 ~EEEðr; l0Þ ~EEðr; l0Þ
~BBðr; l0Þ ¼ m0

~HHðr; l0Þ

)
: ð1Þ

Here and hereafter, e0 and m0 are the permittivity and
the permeability of free space (i.e., vacuum), respec-
tively; h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
and c0 ¼ 1=

ffiffiffiffiffiffiffiffiffi
e0m0

p
; while

l0 ¼ 2pc0=w is the free-space wavelength. The position
vector is denoted by r ¼ xux þ yuy þ zuz, with ux, uy
and uz as the unit cartesian vectors.
The relative permittivity dyadic ~EEEðr; l0Þ is conveni-

ently and compactly expressed as [4]

~EEEðr; l0Þ

¼

I ; z < z‘

Szðz� z‘Þ � SyðcÞ
� ½~eeaðl0Þuzuz þ ~eebðl0Þ uxux þ ~eecðl0Þuyuy�
� S�1

y ðcÞ � S�1
z ðz� z‘Þ ; z > z‘

8>>>><
>>>>:

:

(2)

In these expressions, I is the identity dyadic; while
~eea; b; cðl0Þ are complex-valued scalar functions of the
wavelength. The rotation dyadic

SzðzÞ ¼uzuz þ ðuxux þ uyuyÞ cos
pz

W

þ ðuyux � uxuyÞ sin
pz

W
ð3Þ

captures the helicoidal periodicity of the chiral STF,
with 2W being the structural period. The tilt dyadic

SyðcÞ ¼uyuy þ ðuxux þ uzuzÞ cos c
þ ðuzux � uxuzÞ sin c ð4Þ

represents the locally aciculate microstructure of the
chiral STF, with c as the angle of tilt.

2.2. Time-domain constitutive relations

With the electromagnetic phasors related to the elec-
tromagnetic fields via the temporal Fourier transform
as

~EEðr; l0Þ ¼
Ð1

�1
Eðr; tÞ exp ðiwtÞdt ; ð5Þ

the time-domain counterparts of (1) are expressed as

Dðr; tÞ ¼ e0ðEE * EÞ ðr; tÞ
Bðr; tÞ ¼ m0 Hðr; tÞ

�
: ð6Þ

The operation * denotes convolution with respect to
time; thus,

ðEE * EÞ ðr; tÞ ¼
Ð1
0
EE r; tð Þ E r; t � tð Þ dt : ð7Þ

The counterpart of (2) in the time domain is the dyadic
function

EEðr; tÞ

¼

I dðtÞ ; z < z‘

Szðz� z‘Þ � SyðcÞ
� ½eaðtÞ uzuz þ ebðtÞ uxux þ ecðtÞ uyuy�
� S�1

y ðcÞ � S�1
z ðz� z‘Þ ; z > z‘

8>>>><
>>>>:

;

(8)

where dðtÞ is the Dirac delta function, while ea;b; cðtÞ
are real-valued functions of time.

2.3 Single-resonance Lorentz model

We chose the single-resonance Lorentz model [10] for
the dielectric susceptibility functions

~cca;b; cðl0Þ ¼ ~eea; b; cðl0Þ � 1 ð9Þ

and

ca;b; cðtÞ ¼ ea;b; cðtÞ � dðtÞ : ð10Þ

Accordingly,

~cca;b; cðl0Þ ¼
pa; b; c

1þ ðN�1
a; b; c � ila; b; c0 =l0Þ2

ð11Þ

and

ca;b;cðtÞ ¼ pa; b; c
2pc0

la;b; c0

 !
sin

2pc0

la;b; c0

t

 !

� exp � c0t

Ma;b; cl
a; b; c
0

 !
UðtÞ ð12Þ

constitute a matched pair with respect to the temporal
Fourier transform. In these expressions, UðtÞ is the unit
step function; pa; b; c denote the so-called oscillator
strengths; while Na; b; c ¼ 2pMa; b; c and la; b; c0 determine
the resonance wavelengths and linewidths.
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For all calculations reported in this paper, we chose
pa ¼ 0:80, pb ¼ 1:04, pc ¼ 0:84, c ¼ 20�, la; c0 ¼ 280 nm,
lb0 ¼ 290 nm, Ma; b; c ¼ 100, and W ¼ 90 nm. The spec-
trums of ~eea; b; c are shown in figure 1.

3. Planewave response of a chiral STF half-space

Suppose an arbitrarily polarized plane wave is nor-
mally incident on the chiral STF half-space from the
vacuous half-space z � z‘. As a result, a plane wave is
reflected into free space, while refraction into the chir-
al STF also occurs.

3.1. Boundary value problem

For axial excitation, all fields are independent of x and
y, so that @=@x � 0 and @=@y � 0. The electric field
phasor associated with the two plane waves in the vac-
uous half-space is stated as

~EEðz; l0Þ ¼ aLðl0Þ uþ þ aRðl0Þu�½ � exp ik0ðz� z‘Þ½ �
þ rLðl0Þ u� þ rRðl0Þ uþ½ � exp �ik0ðz� z‘Þ½ � ;
z � z‘ : ð13Þ

Here, k0 ¼ 2p=l0 is the wavenumber in free space; the
complex unit vectors u	 ¼ ðux 	 iuyÞ=

ffiffiffi
2

p
; aLðl0Þ and

aRðl0Þ are the known amplitudes of the left- and the
right-circularly polarized (LCP and RCP) components
of the incident plane wave; while rLðl0Þ and rRðl0Þ are
the unknown amplitudes of the reflected planewave
components. The magnetic field phasor corresponding
to (13) is then easily determined from the Faraday
equation.
The electromagnetic field phasors induced in the

chiral STF half-space are given as [14, 15],

~EEðz; l0Þ

¼
P4
m¼1

0 amðl0Þ exp ½igmðz� z‘Þ�

� ux em1 cos
pðz� z‘Þ

W
� em2 sin

pðz� z‘Þ
W

� ��

þ uy em1 sin
pðz� z‘Þ

W
þ em2 cos

pðz� z‘Þ
W

� �
þ uzem3

�
;

z � z‘ ; ð14Þ

and

~HHðz; l0Þ

¼
P4
m¼1

0 amðl0Þ exp igmðz� z‘Þ½ �

� ux hm1 cos
pðz� z‘Þ

W
� hm2 sin

pðz� z‘Þ
W

� ��

þ uy hm1 sin
pðz� z‘Þ

W
þ hm2 cos

pðz� z‘Þ
W

� ��
;

z � z‘ : ð15Þ

The (un-normalized) cartesian components of the
modal field phasors, given by

em1ðl0Þ ¼ wm0 g2m � k20~eec þ
p

W

� �2� �

em2ðl0Þ ¼ 2iwm0
p

W
gm

em3ðl0Þ ¼ em1ðl0Þ
~eea � ~eeb
~eea~eeb

~eed cos c sin c

hm1ðl0Þ ¼ �i
p

W
g2m þ k20~eec �

p

W

� �2� �

hm2ðl0Þ ¼ gm g2m � k20~eec �
p

W

� �2� �

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

; 1 � m � 4 ;

ð16Þ
contain the four modal wavenumbers

g1ðl0Þ ¼ � g3ðl0Þ ¼ þ 2�1=2

(
k20 ð~EEc þ ~eedÞ þ 2

p

W

� �2

þ k0 k20ð~eec � ~eedÞ2 þ 8
p

W

� �2
ð~eec þ ~eedÞ

� �1=2)1=2

(17)
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Fig. 1. a) Real and b) imaginary parts of ~eea;b;c as functions of
the free–space wavelength l0, when pa ¼ 0:80, pb ¼ 1:04,
pc ¼ 0:84, c ¼ 20�, la;c0 ¼ 280 nm, lb0 ¼ 290 nm, and
Ma; b; c ¼ 100 in (11). The plots of ~eeaðl0Þ and ~eecðl0Þ are vir-
tually indistinguishable.



and

g2ðl0Þ ¼ � g4ðl0Þ ¼ þ 2�1=2

(
k20 ð~eec þ ~eedÞ þ 2

p

W

� �2

� k0 k20ð~eec � ~eedÞ2 þ 8
p

W

� �2
ð~eec þ ~eedÞ

� �1=2)1=2

:

(18)

The quantity

~eedðl0Þ ¼
~eea ~eeb

~eea cos2 cþ ~eeb sin2 c
ð19Þ

is defined for convenience, the difference between ~eec
and ~eed quantifying the degree of anisotropy relevant to
an axially excited chiral STF [16]. We assume here that
W is finite and exclude the possibility of the excitation
of axially propagating Voigt waves [17].
The summation symbols in (14) and (15) are primed

to indicate that two of the four modal coefficients
amðl0Þ, 1 � m � 4, must be identically null-valued in
the present context. The determination of which two
requires computation of the z-directed components of
the modal time-averaged Poynting vectors ~PPmðz; l0Þ,
1 � m � 4; thus,

~PPmzðz; l0Þ ¼ uz � ~PPmðz; l0Þ
¼ 1

2 jamj
2 exp �2 Im gm½ � zf g

�Re em1h*m2 � em2h*m1
� 	

; 1 � m � 4 ;

(20)

where the asterisk denotes the complex conjugate. Be-
cause ~PP1z > 0 and ~PP3z < 0, in general [18], we must
have a1 6¼ 0 and a3 � 0. The quantities ~PP2z and ~PP4z are
always opposite in sign; hence, either a2 � 0 when
~PP2z=ja2j2 < 0, or a4 � 0 when ~PP4z=ja4j2 < 0.
The boundary value problem is formulated by ensur-

ing the continuity of the tangential components of the
electric and the magnetic field phasors across the plane
z ¼ z‘. Four simultaneous algebraic equations emerge
[14], whose solution yields the four unknown coeffi-
cients appearing in (13), (14) and (15).
Our attention is focussed in this section on the four

reflection coefficients entering the 2�2 matrix in the
following relation:

rLðl0Þ
rRðl0Þ

� �
¼ rLLðl0Þ rLRðl0Þ

rRLðl0Þ rRRðl0Þ

� �
� aLðl0Þ

aRðl0Þ

� �
: ð21Þ

These coefficients are doubly subscripted: those with
both subscripts identical refer to co-polarized, while
those with two different subscripts denote cross-polar-
ized, reflection. The square of the modulus of a reflec-
tion coefficient is called a reflectance.

3.2. Numerical results

Computed values of the four reflectances RLL ¼ jrLLj2,
etc., as functions of l0 are plotted in fig. 2. The consti-

tutive properties of the chiral STF used are specified in
section 2.3.
Five characteristics of the plots in fig. 2 are remark-

able:

A. In the pre-resonant regime l0 > 290 nm, the circu-
lar Bragg phenomenon is evident in the neighbor-
hood of 349 nm. In this Bragg regime, roughly of
20 nm bandwidth, the co-polarized reflectance RRR

is very high while the co-polarized reflectance RLL

is very low. Both cross-polarized reflectances RLR

and RRL are very small. These characteristics are,
of course, well-known [4] and have already been
exploited technologically [19, 20].

B. In the post-resonant regime l0 < 280 nm, another
circular Bragg phenomenon is evident in the
neighborhood of 147 nm. It has the same charac-
teristics as the one in the pre-resonant regime, ex-
cept that it has a much narrower bandwidth. This
is not surprising since ~eecðl0Þ and ~eedðl0Þ are likely
to be much closer to each other in the post- than
in the pre-resonant regimes, by virtue of the high-
frequency behavior of the Lorentz model. The
multiplicity of Bragg regimes exhibited by an axi-
ally excited HBM has thus been demonstrated for
the first time, to our knowledge.

C. Extremely high cross-polarized and negligibly
small co-polarized reflectances are evident for l0
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and Ma;b;c ¼ 100 in (13).



lying roughly between 220 nm and 280 nm. This is
because Re ~eecðl0Þ½ � < 0 and Re ~eedðl0Þ½ � < 0 in this
regime. The chiral STF is insensitive to the hand-
edness of the incident plane wave, because it re-
flects like a metal does at microwave frequencies.
This corroborates a preliminary finding wherein
dispersion had been neglected [21].

D. Two other features can be seen at wavelengths for
which Re ~eecðl0Þ½ � and Re ~eedðl0Þ½ � are of opposite
signs –– in the neighborhoods of 220 nm and
285 nm. These are polarization-insensitive and do
not appear to be technologically significant.

E. A general decline in reflectance at very low wave-
lengths is indicative of the fact that ~eea; b; cðl0Þ ! 1
as l0 ! 0, which is a feature of the Lorentz model
[11].

4. Pulse response of a chiral STF half-space

Let z‘ > 0, and a carrier wave modulated by a pulse be
launched from the plane z ¼ 0 at time t ¼ 0 in the þz
direction. It excites the chiral STF half-space, and
eventually transforms into a reflected pulse and a re-
fracted pulse.

4.1. Initial-boundary value problem

The initial-boundary value problem for the pulse re-
sponse of the chosen half-space is best formulated in
terms of the column 5-vector [6]

Fðz; tÞ½ � ¼ ½Exðz; tÞ; Eyðz; tÞ; Hxðz; tÞ; Hyðz; tÞEzðz; tÞ�T ;

ð22Þ
which contains the five non–zero components of the
electromagnetic field, the superscript T indicating
the transpose. After substituting the constitutive re-
lations (6) and (8) into the Maxwell curl postulates,
r� Eðr; tÞ ¼ �ð@=@tÞ Bðr; tÞ and r�Hðr; tÞ
¼ ð@=@tÞ Dðr; tÞ, the matrix differential equation

½J � � @
@z

Fðz; tÞ½ � ¼ ½Q � � @
@t

Fðz; tÞ½ �

þ e0
@

@t
fð A½ � * F½ �Þ ðz; tÞg ð23Þ

emerges. In (23), the constitutive properties are con-
tained in the 5�5 matrix ½A� ðz; tÞ which is identically
null-valued for z < z‘, while

A½ �ðz; tÞ

¼

0 0 0 0 0

0 0 0 0 0

A31ðz; tÞ A32ðz; tÞ 0 0 A35ðz; tÞ
�A41ðz; tÞ �A31ðz; tÞ 0 0 �A45ðz; tÞ
A45ðz; tÞ A35ðz; tÞ 0 0 A55ðz; tÞ

2
6666664

3
7777775
; z>z‘ ;

(24)

with

A31ðz; tÞ ¼ ½eaðtÞ sin2 cþ ebðtÞ cos2 c� ecðtÞ�

� sin
pðz� z‘Þ

W
cos

pðz� z‘Þ
W

; ð25Þ

A32ðz; tÞ ¼ eaðtÞ sin2 cþ ebðtÞ cos2 c
� 	
� sin2

pðz� z‘Þ
W

þ ecðtÞ cos2
pðz� z‘Þ

W
� dðtÞ ;

(26)

A35ðz; tÞ ¼ ½ebðtÞ � eaðtÞ� sin c cos c sin
pðz� z‘Þ

W
; ð27Þ

A41ðz; tÞ ¼ eaðtÞ sin 2cþ ebðtÞ cos 2c
� 	
� cos2

pðz� z‘Þ
W

þ ecðtÞ sin2
pðz� z‘Þ

W
� dðtÞ ;

(28)

A45ðz; tÞ ¼ ebðtÞ � eaðtÞ½ � sin c cos c cos
pðz� z‘Þ

W
; ð29Þ

A55ðz; tÞ ¼ eaðtÞ cos2 cþ ebðtÞ sin2 c� dðtÞ : ð30Þ

The two other 5�5 matrixes appearing in (23) are as
follows:

J½ � ¼ diag 1; 1; 1; 1; 0½ � ; ð31Þ

Q½ � ¼

0 0 0 �m0 0

0 0 m0 0 0

0 e0 0 0 0

�e0 0 0 0 0

0 0 0 0 e0

2
6666664

3
7777775
: ð32Þ

Eq. (23) requires initial as well as boundary condi-
tions. As the electromagnetic field is absent every-
where at t ¼ 0, we set the initial condition

½Fðz; 0Þ� � ½0; 0; 0; 0; 0�T : ð33Þ
The chosen boundary condition

½Fð0; tÞ� ¼ gðtÞ ½jðtÞ� ð34Þ
describes a carrier wave represented by the column
vector ½jðtÞ� that is amplitude-modulated by the pulse
function gðtÞ. For all numerical results reported here,

½j	ðtÞ� ¼ cos
2pc0
lcar0

t


 �
; 	 sin

2pc0
lcar0

t


 �
;

�


 h�1
0 sin

2pc0
lcar0

t


 �
; h�1

0 cos
2pc0
lcar0

t


 �
; 0

�T
(35)

and

gðtÞ ¼ c0t

2lcar0

exp
�c0t

lcar0


 �
; ð36Þ

were used. Whereas ½jþðtÞ� represents a LCP plane
wave, ½j�ðtÞ� represents a RCP plane wave, of free-
space wavelength lcar0 .
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A central difference scheme converts the partial dif-
ferential equation (23) into a set of recursive algebraic
equations [6]. Our interest lying in the zone
z � 0; t � 0f g, space and time are discretized as

zj ¼ j Dz, ð j ¼ 0; 1; 2; 3; . . .Þ, and tn ¼ n Dt,
ðn ¼ 0; 1; 2; 3; . . .Þ; derivatives are replaced by central
differences, and the leapfrog method is employed. Ac-
cordingly, (28) transforms to the matrix difference
equation [6]

F½ �nþ1
j ¼ F½ �n�1

j þbc�1
0 Q½ ��1 � J½ � � ð ½F�njþ1 � F½ �nj�1Þ

� e0 Q½ ��1 �
Pn�1

m¼1
½A�mj � ð F½ �n�mþ1

j � ½F�n�m�1
j Þ Dt

� e0 Q½ ��1 � A½ �nj � ð½F�
1
j � F½ �0j Þ Dt ; ð37Þ

wherein the shorthand notations

½F�nj ¼ ½Fðzj; tnÞ� ; ½A�nj ¼ ½Aðzj; tnÞ� ð38Þ

have been used; and b ¼ c0 Dt=Dz < 1 for stability
[22]. The last two terms on the right side of (37) must
be calculated only if zj > z‘. The calculation of F½ �nþ1

j
on the left side of (37) was greatly accelerated by a
computational scheme that exploited the structure of
the single-resonance Lorentz model, as detailed else-
where [7].

4.2. Numerical results

The duration of the chosen pulse function gðtÞ is di-
rectly proportional to the carrier wavelength lcar0 . As a
reference, the pulse duration is � 3:1 fs when
lcar0 ¼ 200 nm. The constitutive properties of the chiral
STF used for time-domain calculations are specified in
Section 2.3. We set z‘ ¼ 7500 nm, Dz ¼ 5 nm and
Dt ¼ 0:015 fs. Calculations were performed using a
Fortran 90 program implemented on an IBM RS 6000
AIX workstation over the domain j 2 0; 3000½ �;f
n 2 0; 3431½ �g. Computed values of Eðz; tÞ, Hðz; tÞ and
the axial component of the instantaneous Poynting vec-
tor

Pzðz; tÞ ¼ uz � ½Eðz; tÞ �Hðz; tÞ� ð39Þ

were stored and analyzed for many values of the car-
rier wavelength lcar0 2 50; 600½ � nm.
As shown in section 3.2, our choice of the chiral STF

parameters produces two distinct Bragg regimes –– one
for plane waves on the long-wavelength side of the ma-
terial resonances (the pre-resonant regime), and the
other on the short-wavelength side of those resonances
(the post-resonant regime). If lcar0 lies in either of the
two regimes, the time-domain signature of the circular
Bragg pheneomenon must be clearly evident in the re-
flected pulse. The same signature ought to be present
if the pulse spectrum substantially overlaps a Bragg
regime.
The pre-resonant Bragg regime has been thoroughly

investigated [6, 7, 23]. Specifically, when an optical pulse
modulating a RCP (but not a LCP) plane wave axially

excites a structurally right-handed chiral STF, a pro-
tracted, reflective transfer of energy ensues. This polar-
ization-selective pulse bleeding explains the circular
Bragg phenomenon in the frequency domain, and will
gather importance as chiral STFs are incorporated in
femtosecond communication technology [19, 20, 24].
The post-resonant Bragg regime is likely to have a

narrower bandwidth than its pre-resonant counterpart.
This is because the permittivity of any material, at very
high frequencies, tends towards that of free space [11],
which would tend to decrease the degree of anisotropy
and, in turn, the bandwidth of the Bragg regime. This
is, of course, evident in figure 2.
In view of the focus of the predecessor reports

[6, 7, 23] on the pre-resonant regime, we decide to con-
fine the numerical results presented in the section to
the post–resonant regime. Snapshots of Pzðz; tÞ at
t ¼ 12 fs are shown in fig. 3 for lcar0 ¼ 87, 147, and
207 nm. As the electromagnetic field is confined to the
vacuous half-space at that instant, Pzðz; tÞ is indepen-
dent of the handedness of the carrier plane wave.
At a later time, a reflected pulse and a refracted

pulse emerge. Corresponding to those selected for
fig. 3, snapshots of Pðz; tÞ at t ¼ 45 fs are shown in
figs. 4 and 5, for RCP and LCP carrier plane waves,
respectively. Clearly, the reflected pulse appears to be
much more distorted when the carrier wave is RCP
than when it is LCP, which means that the interaction
between the carrier wave and the chiral STF is more
pronounced when the handedness of the former coin-
cides with the structural handedness of the latter.
Most importantly, pulse bleeding is evident in fig. 4

but not in fig. 5, when lcar0 ¼ 147 nm. This is even
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Fig. 3. Snapshots of the axial component Pzðz; tÞ of the in-
stantaneous Poynting vector at t ¼ 12 fs. Only the incident
pulse exists at this instant of time. Top: lcar0 ¼ 87 nm; middle:
lcar0 ¼ 147 nm; bottom: lcar0 ¼ 207 nm. Data in all plots of
figs. 3–6 are normalized to the peak value of the incident
pulse when lcar0 ¼ 87 nm.



more clearly shown in the magnified plots of fig. 6,
wherein a pipe of backward flowing electromagnetic
energy across the interface z ¼ z‘ has been identified.
The refracted pulse energy must continue to diminish
and the reflected pulse energy must continue to grow,
therefore, until the refracted pulse has been substan-
tially drained by reverse bleeding and forward at-
tenuation –– when the carrier handedness matches the
structural handedness and the carrier wavelength lies

in the post-resonant Bragg regime. This situation has
already been encountered for the pre-resonant Bragg
regime [6].
The incident pulse is of �2:3 fs duration when

lcar0 ¼ 147 nm. Such short-duration pulses have been
routinely produced now for about two decades
[25, 26], and even attosecond pulses are nowadays pos-
sible [27]. They have very wide bandwidths. Conceiva-
bly, ultrawide-bandwidth pulses could cover more than
one Bragg regimes. This is demonstrated in fig. 7,
which was computed from the data collected for pulses
launched on carrier waves with lcar0 ¼ 147 nm.
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Fig. 4. Snapshots of the axial component Pzðz; tÞ of the in-
stantaneous Poynting vector at t ¼ 45 fs, when the carrier
plane wave is RCP. Top: lcar0 ¼ 87 nm; middle: lcar0 ¼ 147 nm;
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Fig. 5. Same as fig. 4, except that the carrier plane wave is
LCP.
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The quantity plotted in fig. 7 is the magnitude of

EEðl0; tÞ ¼
Ðz‘
0
Eðz; tÞ exp ð�ik0zÞdz ; ð40Þ

which is a truncated spatial Fourier transform of
Eðz; tÞ. The plots for t ¼ 22:5 fs encompass the inci-
dent pulse (which is about to impinge on the interface
z ¼ z‘ at that instant), and those for t ¼ 45:0 fs capture
enough information about the reflected pulse to be
meaningful.
Vacuum being non-dispersive, the spatial and the

temporal Fourier transforms of any electromagnetic
field therein are isomorphic and simply related [28].
Not surprisingly therefore, the plots in fig. 7 have the
same information as in fig. 2. The post-resonant Bragg
regime is clearly observable around 147 nm wave-
length, and so is the pre-resonant Bragg regime
around 349 nm wavelength, polarization-sensitivity
being the distinguishing feature. The latter regime is
not strongly manifested in fig. 7, only because the
pulse energy is mostly confined to wavelengths around
147 nm.
Also, a polarization-insensitive, high-reflectance re-

gime is present roughly between 220 nm and 280 nm
in fig. 7; see item C of section 3.2. Finally, the declin-
ing reflectances at very short wavelengths –– as identi-
fied in item E of section 3.2 –– are also in evidence in
fig. 7.

5. Concluding remarks

As real materials exhibit dispersive behavior due to
the dictates of causality [8, 9], axially excited chiral
sculptured thin films can be expected to display the
circular Bragg phenomenon more than once in the
electromagnetic spectrum. This expectation was
borne out by our frequency-domain investigation on
the planewave response of an axially excited chiral
STF half-space, for whose dielectric properties we as-
sumed the one-resonance Lorentz model [10, 11]. A
long-wavelength (or pre-resonant) and a short-wave-
length (or post-resonant) Bragg regimes emerged. In
addition, our results showed that a chiral STF would
act as a perfect reflector in a post-resonant wave-
length-band.
These conclusions were confirmed by our time-do-

main investigation of the femtosecond-pulse response
of the same half-space. The pulse-bleeding mechanism
underlying the pre-resonant Bragg regime [6] was also
shown to hold for the post-resonant Bragg regime.
Furthermore, we concluded that the reflection of a
femtosecond pulse carried by a plane wave in the post-
resonant regime would be very likely affected by all
Bragg regimes and perfectly reflecting regimes. As the
understanding gleaned could be easily applied to trans-
mission across chiral STF slabs, the potential of chiral
STFs for the shaping of femtosecond pulses [29] is pro-
mising.

To conclude, all our results could also apply to cho-
lesteric liquid crystals [12, 30], provided our assump-
tions regarding constitutive parameters hold.
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Abstract

Using a numerical time-domain method, we studied the reflection and refraction of optical narrow-extent pulses by

linear and cubically nonlinear chiral sculptured thin films (STFs). The incident signal consisted of a carrier plane wave

whose amplitude was modulated by a pulse envelope. The carrier phase and the nonlinearity of the chiral STF were

found to have significant effects on both the shape and magnitude – as described by the instantaneous Poynting vector –

of the reflected pulses, particularly with respect to the circular Bragg phenomenon exhibited by chiral STFs. The

provided results point towards uses of the nanoengineered STFs in optical communication and sensing devices.

� 2003 Published by Elsevier B.V.
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1. Introduction

When any number of materials are evaporated

or sputtered in vacuum onto a relatively cool
substrate that can rotate about the axes normal

and tangential to its surface plane, sculptured thin

films (STFs) are created [1–4]. These nanoengi-

neered materials are characterized by a columnar

microstructure that is twisted and bent at the
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nanoscale into many possible shapes, depending

on the pattern of rotations. Rotation about an axis

tangent to the substrate plane gives rise to sculp-

tured nematic thin films (SNTFs). Column shapes
possible for SNTFs include chevrons, C-shapes,

and S-shapes. Rotation of the substrate about the

axis normal to its surface gives rise to chiral STFs

comprising nanohelixes [2]. Rotation about both

axes simultaneously creates hybrid architectures,

and multisection STFs can also be fabricated [5].

In the past several years, STF-based circular po-

larization filters, handedness inverters, and spec-
tral hole filters have been fabricated and tested

[6–8].

mail to: jbg136@psu.edu
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In this paper, we concern ourselves with chiral

STFs, the nanohelixes of which have constant

pitch. Being periodically nonhomogeneous normal

to the substrate plane, such STFs display the cir-

cular Bragg phenomenon [1,4]. When monochro-

matic, circularly polarized light whose wavelength
lies in the so-called the Bragg regime encounters a

chiral STF, it is:

• largely reflected if the circular polarization state

of the incident light matches the structural

handedness of the film, but

• largely refracted into the film if otherwise.

The circular Bragg phenomenon is a key char-

acteristic of chiral STFs that makes many of their
potential optical applications – such as laser

mirrors and spectral hole filters – possible [1]. Its

time-domain manifestation is a pulse-bleeding

phenomenon described as follows.

Suppose that an optical signal, described as a

carrier planewavewhose amplitude ismodulated by

a pulse envelope, is incident on a structurally right-

handed chiral STF. If the carrier wave is left circu-
larly polarized (LCP), the reflected pulse carries

little energy as compared to the incident pulse. In

contrast, if the carrier wave is right circularly po-

larized (RCP) and the signal bandwidth substan-

tially overlaps the Bragg regime of the chiral STF, a

much greater proportion of the incident energy is

reflected. Moreover, when the carrier wave is RCP,

the reflected pulse has a much longer duration than
when the carrier wave is LCP – which phenomenon

has been dubbed as pulse-bleeding. As a refracted

pulse with RCP carrier wave propagates in the

chiral STF, a portion of its energy in the Bragg re-

gime is continually bled back out of the film to join

the reflected pulse. The pulse-bleeding phenomenon

is the time-domain manifestation of the circular

Bragg phenomenon, and it was first investigated for
cholesteric liquid crystals [9]. The investigation

continued with time-domain studies of the circular

Bragg phenomenon exhibited by chiral STFs, which

yielded evidence suggesting that these nanoengi-

neered materials could be useful in manipulating

both narrow- and wide-extent pulses [10–14].

The technology to produce ultrashort light

pulses of ever more fleeting duration has advanced
since the advent of the laser to the present time,

and femtosecond pulses are now routinely created.
There are a multitude of uses for such pulses, in-

cluding ultrafast interrogation of chemical reac-

tions, lidar, communications, and materials

processing [15,16]. Due to the relative ease with

which their microstructure can be controlled dur-

ing fabrication, STFs present a promising tech-
nology for manipulating these pulses. We expect

chiral STFs to be especially useful in shaping and

filtering ultrashort pulses.

In this paper, we study two heretofore unex-

plored parameters that impact the shapes of optical

pulses reflected from chiral STFs – specifically, the

effects of carrier phase and material nonlinearity.

We calculated how pulses having different carrier
wavelengths, phase, and circular polarization state

are reflected from a chiral STF. The carrier wave-

lengths were chosen to be either in the Bragg re-

gime or on either side of it. Moreover, since the

power, and hence the electric field magnitude, of

ultrashort pulses can be high [15,16], we expect

nonlinear effects to be potentially significant when

such pulses are incident on chiral STFs. Hence, we
studied the reflection of pulses from both linear and

cubically nonlinear chiral STF halfspaces.

The plan of this paper is as follows. In Section 2

of this paper, we set up the initial-boundary

problem to be solved, including a mathematical

description of the optical properties of chiral STFs

and the incident pulses. We present our results in

Section 3 and discuss their ramifications. In the
mathematical development that follows, vectors

are underlined once and dyadics twice.
2. Problem description

The spatial domain of the initial-boundary value

problem is separated into two halfspaces. The
halfspace z < z‘ ðz‘ > 0Þ, is vacuous, while a chiral

STF occupies the other halfspace z > z‘. An optical

signal is launched at time t ¼ 0 from the plane z ¼ 0.

It impinges normally upon the chiral STF half-

space, and portions of it are reflected and refracted.

2.1. Constitutive properties of chiral STFs

The constitutive relations of a linear dielectric

STF are
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D r; tð Þ ¼ � r; tð Þ � E r; tð Þ; ð1Þ
B r; tð Þ ¼ loH r; tð Þ; ð2Þ
where � denotes convolution with respect to time.

The permittivity dyadic operator of a chiral STF is

defined as [10–14]

� r; tð Þ ¼ �oSz
ðz� z‘Þ � Sy

ðvÞ � �o
ref
ðtÞ � S�1

y
ðvÞ

� S�1

z
ðz� z‘Þ; ð3Þ

where �o is the permittivity scalar of free space (i.e.,

vacuum), the tilt dyadic

S
y
ðvÞ ¼ ðuxux þ uzuzÞ cos v

þ ðuzux � uxuzÞ sin vþ uyuy ; ð4Þ

the rotation dyadic

S
z
ðzÞ ¼ ðuxux þ uyuyÞ cos

pz
X

� �
þ hðuyux � uxuyÞ sin

pz
X

� �
þ uzuz; ð5Þ

where v 2 0; p=2ð � is the so-called angle of rise, and

2X is the pitch (or the structural period). The

vectors ux, uy , and uz define a Cartesian coordinate

system, with the z axis being the axis of periodic

nonhomogeneity. The choice h ¼ þ1, used for the

calculations reported here, holds for a structurally

right-handed chiral STF; and the choice h ¼ �1

indicates structural left-handedness. The local or-
thorhombic symmetry of chiral STFs [1] at mac-

roscopic length scales mandates the representation

�o
ref
ðtÞ ¼ �aðtÞuzuz þ �bðtÞuxux þ �cðtÞuyuy : ð6Þ

We assumed single-resonance Lorentzian charac-

teristics [17] with weak cubic nonlinearity for �a;b;c,
i.e.,

�a;b;cðtÞ ¼ dðtÞþ pa;b;c 1
h

þ pnljEðtÞj2
i
xa;b;c sin xa;b;ctð Þ

� exp

�
� xa;b;ct
2pNa;b;c

�
UðtÞ; ð7Þ

where dðtÞ is the Dirac delta function; UðtÞ is the
unit step function; co ¼ 1=

ffiffiffiffiffiffiffiffiffi
�olo

p
is the speed of

light in free space; lo is the permeability of free

space; xa;b;c ¼ 2pco=ka;b;c are the angular frequen-

cies of the material resonances; ka;b;cð1þ N�2
a;b;cÞ

�1=2

are the resonance wavelengths; pa;b;c are the oscil-
lator strengths; and pnl is the cubic nonlinearity

parameter.

When pnl 6¼ 0, convolutions of the form

�a;b;cðtÞ � Eðr; tÞ are to be interpreted as follows:
�a;b;cðtÞ �Eðr; tÞ ¼Eðr; tÞþ pa;b;cxa;b;c

�
Z t

0

sinðxa;b;csÞexp
�
� xa;b;cs
2pNa;b;c

�

�ð1þ pnljEðr; t� sÞj2Þ

�Eðr; t� sÞds:
2.2. Incident narrow-extent optical pulses

All fields in this problem are independent of y
and z. The electric field E z; tð Þ and the magnetic

field H z; tð Þ are adequately captured in free space

by the 4-vector F z; tð Þ ¼ Ex;Ey ;Hx;Hy

� �T
, wherein

the superscript T indicates the transpose. The in-

cident signal is described by a pulse envelope

function that modulates the amplitude of either a
LCP or a RCP carrier plane wave.

We employed the function

gðtÞ ¼ A
t
sp

� �
exp

�
� 2t
sp

�
: ð8Þ

for the pulse envelope. The quantity sp suffices to

set the pulse duration, and the variable A deter-

mines the strength of the launched signal. The

carrier wave is denoted by the 4-vector

u�ðtÞ ¼ ½ cosðxcart:þ /Þ;� sinðxcart þ /Þ;

� g�1
0 sinðxcart þ /Þ; g�1

0 cosðxcart þ /Þ�T;

ð9Þ
wherein xcar ¼ 2pco=kcar; kcar is the carrier wave-

length; / denotes the carrier phase; while
g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
lo=�o

p
is the intrinsic impedance of free

space. The upper/lower sign in (9) denotes LCP/

RCP for propagation in the þz direction, but

RCP/LCP for propagation in the �z direction.

Thus, the field 4-vector in the launch plane z ¼ 0 is

given by

F 0; tð Þ ¼ gðtÞu ðtÞ; tP 0: ð10Þ
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2.3. Calculation parameters

We solved the time-domain Maxwell equations

for the initial-boundary problem with a finite dif-

ference technique, the basics of which are de-
scribed elsewhere [10–14]. For the presented

results, we set z‘ ¼ 20 lm and sp ¼ 3:44 fs. The

constitutive parameters of the chiral STF half-

space were chosen as follows: pa ¼ 0:40, pb ¼ 0:52,
pc ¼ 0:42; ka ¼ kc ¼ 280 nm, kb ¼ 290 nm;

Na;b;c ¼ 100; v ¼ 20� and X ¼ 200 nm. Whereas

pnl ¼ 0 for linear STFs, we set pnl ¼ 10�11 m2 V�2

for the chosen nonlinear STFs. The choice A ¼ 106

V m�1 sufficed to allow significant nonlinear effects

to be observed when pnl took the nonzero value.

The carrier phase / was chosen equal to either 0 or

p=2 for maximum contrast in elucidating the ef-

fects of this signal-launch parameter. The center

wavelength of the Bragg regime for the linear case

is 516 nm, and the Bragg regime has a bandwidth

of approximately 27 nm [18].
3. Results and discussion

The z-component of the instantaneous Poynting

vector

Pz z; tð Þ ¼ uz � E z; tð Þ½ � H z; tð Þ� ð11Þ
is plotted in Fig. 1 at time t ¼ 30:1 fs. At that in-

stant of time, the launched signal is still some

distance from the interface z ¼ z‘; and so Fig. 1

shows just the incident pulse. The pulse shape is

independent of the incident carrier�s wavelength,

phase, and polarization state. However, the re-

flected pulse shape is dependent on those param-
eters, as well as on the nonlinearity of the chiral

STF. Such effects are evident in Figs. 2–5, which
Fig. 1. Plot of the Poynting vector Pz z; tð Þ for the incident pulse
at t ¼ 30:1 fs.
depict the reflected pulses at t ¼ 132 fs. Figs. 2 and

3 display the reflected pulses from linear and

nonlinear chiral STFs, respectively, when the in-

cident carrier wave is LCP. Figs. 4 and 5 present

the results of the analogous situation when the
incident carrier wave is RCP. The refracted pulses

for the situations corresponding to Figs. 2–5 are

presented in Figs. 6–9.

The effects of pulse bleeding in linear STFs

become evident by comparing the reflected pulses

in Fig. 2 with those in Fig. 4. Relatively little en-

ergy is reflected and the reflected pulse duration is

short, when the incident carrier wave is LCP as
opposed to RCP. In the latter case, the reflected

pulses have long tails as a result of pulse-bleeding,

irrespective of their carrier phase or wavelength.

Even the signals with carrier wavelengths outside

the Bragg regime (kcar ¼ 430 or 600 nm) undergo

pulse-bleeding – because the short duration of an

incident signal endows it with a large bandwidth, a

portion of which overlaps the Bragg regime.
Hence, all the pulses in Figs. 4 and 5 have long

tails; but the tails with the greatest energy belong

to the signals with carrier wavelengths in the center

of the Bragg regime (i.e., kcar ¼ 516 nm; note that

the Bragg wavelength may shift slightly from that

value when pnl 6¼ 0). That the foregoing effects are

also observed on comparison of Figs. 3 and 5 in-

dicates that the circular Bragg phenomenon also
occurs in the nonlinear chiral STFs also, at least

for the chosen type of nonlinearity.

The smaller the carrier wavelength, the greater

the energy content of the leading edges of the re-

flected pulses – irrespective of other factors. We

surmise that this effect is due to the closer proximity

of shorter carrier wavelengths to the absorption

resonances at 280 and 290 nm. The impedance
mismatch between vacuum and the chiral STF in-

creases as the carrier wavelength approaches the

material resonance regimes. The impedance mis-

match does not depend on the handedness of the

carrier wave with respect to the structural handed-

ness of the film.The greatest effects of the impedance

mismatch are seen at the leading edges of the re-

flectedpulses, butnot at later times – since the energy
content and length of their tails are governedmostly

by the circular Bragg phenomenon, which takes

some time to develop inside the chiral STF [11].



(a)

(b)

(c)

Fig. 2. Plots of the Poynting vector component Pz z; tð Þ, at t ¼
132 fs, of the pulses reflected by a linear chiral STF. The carrier

phase is either / ¼ 0 or / ¼ p=2; and the carrier wavelength is

kcar ¼ 430 nm (a), kcar ¼ 516 nm (b), or kcar ¼ 600 nm (c). The

carrier plane wave is LCP. The vacuum/STF boundary at z‘ ¼ 20

lm is not shown. See the text for the values of other parameters.

(a)

(b)

(c)

Fig. 3. Same as Fig. 2, except that the chiral STF is nonlinear.
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The effects of nonlinearity are apparent on

comparing Fig. 2 with Fig. 3, and Fig. 4 with
Fig. 5. Pulses reflected from nonlinear STFs tend



(a)

(b)

(c)

Fig. 4. Same as Fig. 2, except that the carrier plane wave is

RCP.

(a)

(b)

(c)

Fig. 5. Same as Fig. 4, except that the chiral STF is nonlinear.
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to carry more energy at their leading edges than

pulses reflected from linear STFs. This conclusion
holds regardless of the carrier phase, wavelength,

or polarization state. Once again, this follows from



(a)

(b)

(c)

Fig. 7. Same as Fig. 6, except that the chiral STF is nonlinear.

(a)

(b)

(c)

Fig. 6. Plots of the Poynting vector component Pz z; tð Þ, at t ¼ 132

fs, of the pulses refracted into a linear chiral STF. The carrier

phase is either / ¼ 0 or / ¼ p=2; and the carrier wavelength is

kcar ¼ 430 nm (a), kcar ¼ 516 nm (b), or kcar ¼ 600 nm (c). The

carrier plane wave is LCP. The vacuum/STF boundary at z‘ ¼ 20

lm is not shown. See the text for the values of other parameters.
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the greater impedance mismatch at the interface

z ¼ z‘ when the chiral STF is nonlinear, because of

the multiplicative nature of nonlinearity in (7).



� þ

(a)

(b)

(c)

Fig. 9. Same as Fig. 8, except that the chiral STF is nonlinear.

(a)

(b)

(c)

Fig. 8. Same as Fig. 6, except that the carrier plane wave is RCP.
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The reflected signal from a chiral STF is a su-

perposition of LCP and RCP components. Spe-

cifically, the reflected field F rðtÞ observed at a point
in the vacuous halfspace long after the incident
signal has passed must be of the form:

F rðtÞ ¼ gLCPðtÞu ðtÞ þ gRCPðtÞu ðtÞ: ð12Þ
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The functions gLCPðtÞ and gRCPðtÞ describe the

envelopes for the LCP and RCP components of

the reflected signal, respectively. The Poynting

vector PrðtÞ of the reflected signal is

PrðtÞ ¼
1

g0
g2LCPðtÞ
�

þ g2RCPðtÞ

þ 2gLCPðtÞgRCPðtÞ cosð2xcart þ 2/Þ
�
: ð13Þ

Hence, we expect to observe the effects of car-

rier phase when LCP and RCP components of the

reflected signal interfere with each other. We do

observe the effects of / in the leading portions of

the reflected pulses – the regions within about

2cosp ¼ 2:06 lm of their leading edges – in Figs. 2–

5. When the incident carrier wave is RCP, dis-

tinctive oscillations occur, and the minimums and
maximums (peaks and valleys) of the reflected

pulse shift with respect to one another as the car-

rier phase changes. Specifically, the oscillations

occur at a frequency of about 2co=kcar; and a

minimum when / ¼ 0 corresponds to a maximum

when / ¼ p=2, as predicted by (13). The shapes in

the reflected pulse tails are not much affected by

changes in / because they consist mostly of RCP
light with wavelengths in the Bragg regime. Hence,

the product 2gLCPðtÞgRCPðtÞ in (13) is small. The

third term on the right side of (13) – the only one

that depends on the carrier phase – is then insig-

nificant compared with the first two, and conse-

quently the tails of those reflected pulses are

largely unaffected by /.
The effects of carrier phase are not very signifi-

cant in the refracted pulses shown in Figs. 6–9. At

the time of the snapshots, most of the energy at

wavelengths in the Bragg regime in those pulses has

been either absorbed by the chiral STF or bled

back to the reflected pulse. We note that absorption

is higher in the nonlinear STFs, a result of the en-

hancement of the oscillator strength pa;b;c by the

nonlinearity parameter pnl in (7).
4. Concluding remarks

Clearly, the effects of carrier phase shall have

repercussions on the design of STF devices meant

for shaping pulses. Indeed, measurement of the
reflected pulse power as a function of time yields

information about the carrier phase of the incident

pulse, especially when the shape of the incident

pulse is known initially. The carrier phase can carry

information in a pulse independently of its dura-

tion, carrier polarization, spectral content, and
proximity in time to other pulses (used, for exam-

ple, in pulse position modulation [21]). Reflection

and transmission of pulses through chiral STFs can

independently tease out the bits encoded by several

of these methods – including carrier phase – si-

multaneously. Hence, we expect chiral STFs to find

some uses in optical communication systems.

Moreover, due to their porosity, the properties
of STFs change when fluids are allowed to enter

their interstices [19,20], thereby changing their

linear and nonlinear optical properties. Hence, by

monitoring the reflected pulse shape, spectral

content, and duration one can deduce changes in

the STF optical properties due to fluid infiltration.

From that information one may infer the types

and concentrations of fluids present in the film. We
expect that interrogation of chiral STF sensors

with optical pulses of varying carrier phase will

provide even more information about the analyte

than is possible simply by sticking to more tradi-

tional methods.

Finally, because of the mathematical isomor-

phism between the dielectric properties of chiral

liquid crystals [22,23] and chiral STFs, we expect
the results of our calculations to hold for the for-

mer types of materials.
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Abstract

We study the scattering of pulsed optical beams from chiral sculptured thin films (STFs). The spatiotemporal anat-

omy of the circular Bragg phenomenon (CBP) exhibited by chiral STFs is examined in two spatial dimensions, and we

comment on its implications for pulsed beam shaping by STF-based devices. We highlight several differences between

the time-domain manifestation of the CBP for pulsed plane waves and pulsed beams; and we present the reflection,

refraction, and diffraction of a pulsed beam when it impinges upon the corner of a chiral STF.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Beam shaping; Circular Bragg phenomenon; Optical pulse; Pulsed beam; Pulse shaping; Sculptured thin film; Structural

chirality
1. Introduction

The practice of intentionally and precisely con-

trolling the nanoscale morphology of solid thin

films most probably began in 1959 [1]. In that year,

Young and Kowal reported their measured values

of optical rotation by fluorite films that had been
0030-4018/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.optcom.2005.04.001
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evaporated onto a rotating substrate. They cre-

ated, perhaps, the first thin films with helical mor-

phology sculptured at the nanoscale. Although an

unambiguous determination of the nanostructure

of the resulting films was not made, the researchers

measured the optical activity and found it in qual-

itative accord with predictions. Several decades la-
ter, with the discovery and direct imaging of the

morphology of structurally chiral thin films [2],

and the coalescence of a theoretical framework

to guide their fabrication and application [3–5],
ed.
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intensive studies of sculptured thin films (STFs)

began.

STFs are nanoengineered materials [6]. Even

though the benefits of nanotechnology – better de-

vice performance, possibilities for novel material
properties, and prospects for reduction of the uses

of toxic materials – must ultimately be balanced

against concerns about its (potential) effects on hu-

man and environmental health [7], and abuse [8],

such technology is here to stay; and so we continue

our investigations into the electromagnetic proper-

ties of STFs.

Every STF is an assemblage of parallel, bent
nanowires affixed to a substrate. The nanowires

comprise clusters that are �1–3 nm in size [6].

The equipment required to deposit STFs is simple,

consisting of a vacuum chamber, a crucible con-

taining the material to be deposited, and a sub-

strate mounted to a stepper motor. The material

is either evaporated or sputtered onto the rotating

and/or translating substrate [5,6,9–12]. In this re-
port, we focus on chiral STFs which consist of par-

allel helical nanowires of constant pitch whose axis

of spirality lies normal to the substrate plane. Fig.

1 shows the scanning electron micrograph of a chi-

ral STF.

Due to their unidirectionally periodic nonho-

mogeneity and helical morphology, chiral STFs

exhibit the circular Bragg phenomenon (CBP)
[6]. The effect, in essence, is a circular-polariza-

tion-sensitive photonic band gap. Circularly polar-

ized light in a certain wavelength band, called the
Fig. 1. Scanning electron micrograph of a chiral STF of silicon ox
Bragg regime, is largely reflected if its handedness

matches the structural handedness of the chiral

STF; but is reflected little, if otherwise. This phe-

nomenon is exploitable for many purposes.

The course of theoretical research on chiral
STFs began with studies of planewave reflection

and transmission, first at normal incidence (i.e.,

parallel to the axis of spirality) whereby chiral

STFs can be excited axially. From those investiga-

tions, devices such as circular polarization filters,

polarization-handedness inverters, and spectral

hole filters were proposed; they were subsequently

fabricated and tested [13–15]. The CBP plays a
central role in the operation of these devices. Fre-

quency-domain investigations of oblique incidence

were then undertaken [16], and also studies of

guided wave propagation within STFs, or space-

guiding [17]. Frequency-domain analysis of non-

linear chiral STFs, specifically on second harmonic

generation and STF lasers, yielded several device

proposals as well [18–21].
A focus on communication systems led to the

development of time-domain analysis of electro-

magnetic fields in chiral STFs. Time-domain anal-

ysis offers the advantage of allowing for the

complete spatiotemporal evolution of a pulse to

be examined, though at the cost of introducing

computationally expensive convolutions into the

material constitutive relations [22]. The time-
domain analysis of chiral STFs is following a sim-

ilar development as frequency-domain analysis,

and has already yielded results beyond that
ide (Courtesy: M.W. Horn, Pennsylvania State University).



Fig. 2. Schematic of the region R: fðx; y; zÞ j �Ly=2 6 y 6
Ly=2; 0 6 z 6 Lzg of computation. The chiral STF occupies

the region RSTF : fðx; y; zÞ j �dy0 6 4y 6 dy1; dz0 6 z 6 dz0

þdzg.
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attainable easily with the latter. In particular,

examination of the axial excitation of chiral STFs

by pulses modulating the amplitudes of normally

incident, circularly polarized, carrier plane waves

elucidated the time-domain signature of the CBP,
dubbed as pulse bleeding [23,24]. In the time

domain, energy is continually bled back from the

refracted pulse to the reflected pulse, if the handed-

ness of the carrier plane wave matches the struc-

tural handedness of the chiral STF; but not, if

otherwise. Of course, the spectrum of the incident

pulse must substantively overlap the Bragg regime

for pulse bleeding to occur [25]. Therefore, chiral
STFs are capable of selectively manipulating the

shapes, amplitudes, and durations of optical pulses

– depending on the pulse amplitude, as well as the

phase and the circular polarization state of the

carrier plane wave [23,24,26].

Analysis of pulsed beams incident normally on

STFs is the next logical step, all the more so be-

cause of advances in experimental techniques that
have motivated the analysis of that problem. Al-

ready device research with STFs has moved be-

yond axial-excitation designs and toward general

STF architectures. Indeed, chiral STFs with peri-

odic nonhomogeneities in three directions have re-

cently been fabricated [27,28]. These advances in

fabrication techniques call for a concerted pro-

gram of theoretical work to guide the development
of STF pulse- and/or beam-shaping devices.

In addition, chiral STFs have been infiltrated

with liquid crystals, which alters their optical prop-

erties in a manner that is tunable by application of

an electric field [29]. Piezoelectric manipulation of

STF optical properties has also been suggested

[19,30]. Such advances raise the possibility of tun-

able pulsed-beam-shapers. Nonlinear dyes could
be diffused into STFs [20], which also might be

useful in pulsed-beam-shaping. The determination

of the advantages and disadvantages of STF shap-

ers with respect to their homogeneous isotropic

counterparts will require experimental as well as

theoretical analyses.

In this paper, we take the first steps towards the

design of STF pulsed-beam-shaping devices by
building a framework to analyze their operation.

The plan of our exposition is as follows. In Section

2, we outline the mathematics necessary to analyze
the reflection, refraction, and diffraction of nor-

mally incident pulsed beams by chiral STFs. First,

we describe the geometry of the problem and con-

stitutive relations of the chosen STF; then we de-

rive a matrix partial differential equation
(MPDE), describing the propagation of pulsed

beams parallel to the axis of spirality. We present

a finite-difference algorithm to solve the MPDE.

Section 3 contains the results of several illustrative

calculations; and in Section 4, we sum up our main

conclusions.
2. Problem description and solution method

A chiral STF occupies the regionRSTF : fðx; y; zÞ
j �dy0 6 y 6 dy1; dz0 6 z 6 dz0 þ dzg depicted in

Fig. 2, while the remaining space is vacuous. A

pulsed beam launched in vacuum propagates paral-

lel to the z-axis and eventually encounters the chiral

STF, whereupon part is reflected and part is trans-
mitted. In the development that follows, vectors are

underlined once and dyadics [31] twice; the matrix

representation of a dyadic is indicated by enclosing

the symbol for the dyadic within square brackets;
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the real-valued vectors E and D denote the electric

field and electric flux density, respectively, whereas

B and H denote the corresponding magnetic vari-

ables. The set of three cartesian unit vectors is de-

noted as {ux,uy,uz}.

2.1. Constitutive relations

The constitutive relations of the linear chiral

STF are:

Dðr; tÞ ¼ e0ðe � EÞðr; tÞ
Bðr; tÞ ¼ l0Hðr; tÞ

�
; r 2 RSTF; ð1Þ

where e(r,t) is the relative permittivity dyadic; t de-

notes time; r = xux + yuy + zuz is the position vec-

tor; while e0 and l0 denote the permittivity and

permeability of free space (i.e., vacuum), respec-

tively. The symbol * denotes convolution with re-
spect to time as follows:

ðe � EÞðr; tÞ ¼
Z 1

0

eðr; t0Þ � Eðr; t � t0Þdt0. ð2Þ

The relative permittivity dyadic is conveniently

written as

eðr; tÞ ¼ dðtÞI þ vðr; tÞ; ð3Þ

where d(t) is the Dirac delta function and I is the

identity dyadic, while the anisotropic and nonho-

mogeneous electromagnetic properties of the chi-

ral STF are contained in the dielectric

susceptibility dyadic

vðr; tÞ ¼ S
z
ðz� dz0Þ � Sy

ðaÞ � v0
ref
ðtÞ � ST

y
ðaÞ

� ST

z
ðz� dz0Þ; r 2 RSTF; ð4Þ

wherein the superscript T denotes the transpose.

The tilt dyadic

S
y
ðaÞ ¼ ðuxux þ uzuzÞ cos aþ ðuzux � uxuzÞ

� sin aþ uyuy ð5Þ

depends solely on the angle of rise a > 0. The mate-

rial nonhomogeneity along the z-axis is captured

in the rotation dyadic

S
z
ðzÞ ¼ ðuxux þ uyuyÞ cos

pz
X

� �
þ hðuyux � uxuyÞ sin

pz
X

� �
þ uzuz; ð6Þ
where X is the structural half-period, and h is the

structural handedness parameter. We set either

h = +1 for a structurally right-handed chiral

STF, or h = �1 for structural left-handedness. As

chiral STFs are deemed to possess local ortho-
rhombic symmetry [6], the representation

v0
ref
ðtÞ ¼ vaðtÞuzuz þ vbðtÞuxux þ vcðtÞuyuy ð7Þ

is appropriate at visible and infrared wavelengths.

We assumed a single-resonance Lorentzian model

for the dispersion in the film [32]; hence

va;b;cðtÞ¼pa;b;cxa;b;c sinðxa;b;ctÞexp � xa;b;ct
2pNa;b;c

� �
UðtÞ;

ð8Þ
where UðtÞ is the unit step function; while the

parameters pa,b,c are the oscillator strengths,

xa,b,c = 2pc0/ka,b,c are angular frequencies related

to the material resonances, and ka;b;cð1þN�2
a;b;cÞ

�1=2

are the resonance wavelengths; c0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0l0

p
is

the speed of light in vacuum.
2.2. Derivation of matrix partial differential

equation

In the absence of sources, the Faraday and Am-

pere–Maxwell equations are:

r� Eðr; tÞ ¼ �otBðr; tÞ; ð9Þ

r � Hðr; tÞ ¼ otDðr; tÞ; ð10Þ

respectively, where oq denotes partial differentia-

tion with respect to q, which stands for any space

or time variable. On substitution of (1)–(8) into (9)

and (10), we obtain:
r�Eðr; tÞ ¼�l0otHðr; tÞ
r�Hðr; tÞ ¼ e0 otEþ v�otE

� �h i
ðr; tÞ

)
; r 2RSTF.

ð11Þ
These can be rearranged in matrix form as

½A
y
�oy ½F � þ ½A

z
�oz½F �

¼ ½B�ot½F � þ ½C� � ot½F �
� �

; r 2 RSTF; ð12Þ
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where

½A
y
� ¼

0 0 1 0 0 0

0 0 0 0 0 0

�1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 �1 0 0

2
666666664

3
777777775
; ð13Þ

½A
z
� ¼

0 �1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; ð14Þ

½B� ¼
½0� �l0½I �
e0½I � ½0�

" #
; ð15Þ

½Cðy; z; tÞ� ¼ e0
½0� ½0�
½v� ½0�

" #
; ð16Þ

½F ðy; z; tÞ� ¼ Ex Ey Ez Hx Hy Hz½ �T; ð17Þ

[0] indicates the null 3 · 3 matrix, and [I] the iden-

tity 3 · 3 matrix. The electromagnetic field is inde-

pendent of x here.

Premultiplying both sides of (12) by [B]�1, we

obtain the MPDE

ot½F � ¼ ½V y �oy ½F � þ ½V z�oz½F �

� ½W � � ot½F �; r 2 RSTF; ð18Þ

wherein the shorthand notation:
V y

h i
¼ B
h i�1

A
y

h i
V z

h i
¼ B
h i�1

A
z

h i
W
h i

¼ B
h i�1

C
h i

9>>>>>=
>>>>>;
; ð19Þ
has been used for convenience. The derived MPDE

(18) has to be solved numerically.
2.3. Finite-difference algorithm

Eq. (18) alsodescribespulsepropagation invacuum

when [W] = [0]. This equation is therefore extended to

thehalf-space z > 0bysettingpa,b,c = 0 in those regions
that are not occupied by the chiral STF. We confine

our calculations to the region R: ðx; y; zÞ j �Ly=2
�

6 y 6 Ly=2; 0 6 z 6 Lzg shown in Fig. 2.

In order to solve the extendedEq. (18) overR and

time t > 0, we first discretize space and time. Thus,

yi ¼ iDy; i ¼ 0;�1;�2; . . . ;�Ny ; ð20Þ

zj ¼ jDz; j ¼ 0; 1; 2; . . . ;Nz; ð21Þ
t ¼ nDt; n ¼ 0; 1; 2; . . . ;N ; ð22Þ
n t

where Dy and Dz are the space increments; Dt is the
time increment; and Ny = Ly/2Dy, Nz = Lz/Dz, and
Nt are the numbers of space and time increments

used in the calculation.

On approximating derivatives with finite differ-
ences using the leapfrog method [33], we obtain

½F �nþ1

i;j ¼ F½ �n�1

i;j þ
by

c0
V y

h i
½F �niþ1;j � ½F �ni�1;j

� �

þ bz

c0
½V z� ½F �ni;jþ1 � ½F �ni;j�1

� �

�
Xn�1

m¼1

½W �mi;j ½F �n�mþ1

i;j � ½F �n�m�1

i;j

� �
Dt

� W
h in

i;j
½F �1i;j � ½F �0i;j
� �

Dt. ð23Þ

In this equation,wehaveused the shorthandnotation:

½F �ni;j ¼ F ðyi; zj; tnÞ
� 	

½M �ni;j ¼ M yi; zj; tn

 �h i

9=
;; ð24Þ

with [M] denoting any arbitrary matrix; while the

stability parameters by = c0Dt/Dy and bz = c0Dt/
Dz. For all calculations reported here, we kept

Dy = Dz; hence, by = bz = b > 0. We set b to values

less than unity to keep the finite-difference algo-

rithm stable [34]. The last term on the right side
of (23) is null-valued, because [F(y,z,0)] = [0] for

the initial conditions to be described later.

2.4. Simplification of the convolution term

The computational expense incurred due to the

convolution sum



312 J.B. Geddes III, A. Lakhtakia / Optics Communications 252 (2005) 307–320
½U �ni;j ¼
Xn�1

m¼1

½W �mi;j ½F �n�mþ1

i;j � ½F �n�m�1

i;j

� �
Dt ð25Þ

on the right side of (23) can be reduced consider-

ably, because Lorentzian constitutive properties

have been assumed for the chiral STF [24,35]. This

reduction is accomplished as follows; similar recur-

sive techniques for simpler materials have been

used in the past [36,37].

Our task is to find ½U �nþ1

i;j for given ½U �ni;j. We be-
gin by defining the matrixes

½u�j ¼ S
z
zj � dz0


 �h i
� ½S

y
ðaÞ� �

vbðDtÞ
pbxb

0 0

0 vcðDtÞ
pcxc

0

0 0 vaðDtÞ
paxa

2
6664

3
7775

� S
y
að Þ

h iT
� S

z
zj � dz0


 �h iT
;

ð26Þ

v
h i

j
¼ S

z
zj � dz0


 �h i
� ½S

y
ðaÞ�

�

vbðDtÞ cotðxbDtÞ
pbxb

0 0

0 vcðDtÞ cotðxcDtÞ
pcxc

0

0 0 vaðDtÞ cotðxaDtÞ
paxa

2
6664

3
7775

� ½S
y
ðaÞ�T � S

z
zj � dz0


 �h iT
; ð27Þ

where [Sy(Æ)] is a 3 · 3 matrix equivalent to the dya-

dic Sy(Æ), etc. Then

½U �nþ1

i;j ¼ ½v�j½U �ni;j þ ½u�j½V �
n
i;j

þ ½c�j½u�j ½F �nþ1

i;j � ½F �n�1

i;j

� �
Dt; ð28Þ

where ½V �ni;j is defined recursively as

½V �nþ1

i;j ¼ ½v�j½V �
n
i;j � ½u�j½U �ni;j

þ ½c�j½v�j ½F �nþ1

i;j � ½F �n�1

i;j

� �
Dt ð29Þ

and

½c�j ¼ S
z
zj � dz0


 �h i
� ½S

y
ðaÞ� �

pbxb 0 0

0 pcxc 0

0 0 paxa

2
64

3
75

� ½S
y
ðaÞ�T � S

z
zj � dz0


 �h iT
.

ð30Þ
Finally, we note that ½U �0i;j ¼ ½V �0i;j ¼ ½0�, while [u]j
and [v]j are null-valued for ðyi; zjÞ 2 R�RSTF.

2.5. Representation of the incident pulsed beam

With g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
denoting the intrinsic imped-

ance of free space, we chose the field of the pulsed

beam to have the form

½F ðy;0;tÞ�¼

ffiffiffiffiffiffiffiffiffiffiffi
g0

ffiffiffi
2

p

psw0

s
exp �ðt� tdÞ2

2s2

 !
exp

�kcary2

2zR

� �

�

cos 2pmcartþuðsÞ
 �
� 1þ y2

2z2
R

h i
cos 2pmcartþuðpÞ
 �

y
zR

h i
sin 2pmcartþuðpÞ
 �

1
g0
cos 2pmcartþuðpÞ
 �

1
g0

1þ y2

2z2
R

h i
cos 2pmcartþuðsÞ
 �

� 1
g0

y
zR

h i
sin 2pmcartþuðsÞ
 �

2
666666666666664

3
777777777777775

UðtÞ

ð31Þ

on the plane z = 0 when jyj 6 NapDy, where the

integer Nap dictates the width of an aperture
through which the pulsed beam must pass to enter

the domain of computation; thus [F(y,0,t)] =

[0,0,0,0,0,0]T for jyj > NapDy. The focal plane of

the pulsed beam is z = 0, and zR is the Rayleigh

range (i.e., a measure of the collimation) of the

carrier beam, while mcar is the carrier frequency,

kcar = 2p/kcar is the carrier wavenumber, and kcar
is the carrier wavelength in free space. The car-
rier phases u(s) and u(p) correspond to the s- and

p-polarized components of the beam, respectively.

The waist w0 of the carrier beam is related to the

Rayleigh range by the relation 2zR ¼ kcarw2
0. The

time delay td and time constant s fix the properties

of the temporal pulse envelope.

The boundary value (31) was derived under

the approximations kcar/w0 � 1 (i.e., the paraxial
approximation) and 1/(mcars) � 1; when these

approximations are satisfied, the pulsed beam is sep-

arable into factors that dependonly on space or time

[38].We nulled the electromagnetic field at the other

boundaries of R; i.e., when either yi = ± NyDy or

zj = NzDz or both, then [F(y,z,t)] = [0,0,0,0,0,0]T.
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3. Results and discussion

We performed our computations, coded in

Fortran 90, on the HP GS1280 system at the Pitts-

burgh Supercomputing Center. For the calculated
results shown in Figs. 3–12, we set Ny = 1502,

Nz = 1002, Nt = 2002, b = 0.5, and Dy = Dz =
10 nm. When the difference between the carrier

phases is u(p) � u(s) = p/2, the incident beam is pre-

dominantly left circularly polarized (LCP); when

that difference equals �p/2, the incident beam is

predominantly right circularly polarized (RCP).

Note that optical beams, in general, do not possess
a pure polarization state [39], unlike plane waves.

For all calculations presented in this section, we

chose u(p) � u(s) = p/2, so that the incident pulsed

beams are predominantly LCP.

The properties of the chiral STF were chosen as

follows: we set pa = 0.40, pb = 0.52, pc = 0.42; the
Fig. 3. Snapshots of jEj (in arbitrary units) of a pulsed beam at time t =

achiral (AC, in center), or right-handed (RH, at right), and the carr

polarized (LCP). The axes of each plot are labeled in lm, and the line

only a portion of R is shown.

Fig. 4. Same as Fig. 3, except at time t = 33.4 fs. Note that when the ST

wider in the y-direction than when the STF is either AC or RH.
choices ka = kc = 280 nm, kb = 290 nm, and

Na,b,c = 100 place the resonance wavelengths in

the ultraviolet regime. We chose X = 200 nm and

a = 20�, and hence the Bragg wavelength – the cen-

ter wavelength of the Bragg regime – for the film is
about 516 nm.

We chose kcar = 516 nm – and so the carrier

period Tcar = 1/mcar = 1.72 fs – and set s = 2Tcar =

3.44 fs. Furthermore, we set the time delay

td = 2.5s = 8.61 fs. Thus, the computation domain

is about 58kcar · 19kcar in spatial size.
3.1. Reflection and refraction of pulsed beams by

STFs

Figs. 3 and 4 show the electric field magnitude

j E j¼ ðE2
x þ E2

y þ E2
z Þ

1
2, for pulsed beams incident

on three different STFs, at two different times
16.7 fs. The STF is either structurally left-handed (LH, at left),

ier beam of the incident pulse is predominantly left circularly

bisecting each plot marks the left boundary of RSTF. Note that

F is LH, the reflected pulse is longer in duration and apparently



5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

LH

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

AC

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

RH

Fig. 5. Energy U(tn) (ordinate; in arbitrary units) as function of time (abcissa; in fs) in the vacuous region 0 6 z < dz0 for the pulses in

Figs. 3 and 4. Note the upward turn in U(tn) at tn � 31 fs when the STF is structurally LH. This upward turn is due to the bleeding of

energy from the refracted pulse to the reflected pulse.

Fig. 6. Snapshot of the z-component of the Poynting vector P(r,t) = E(r, t) ·H(r,t) at time t = 33.4 fs. Black areas of the plots indicate

regions where energy is flowing in the +z-direction, and white areas of the plots indicate regions where energy is flowing in the

�z-direction. The plots have been scaled to increase the contrast between regions where P Æ uz > 0 and where P Æ uz < 0. Note the long

region of backward-going (�z) energy, dubbed the light pipe, when the STF is structurally LH.

Fig. 7. Snapshot of electric field helicity E(r,t) Æ ($ · E(r,t)) at time t = 33.4 fs. White areas indicate regions where the helicity is

negative (RCP), and black areas indicate regions where the helicity is positive (LCP). The leading portion of the reflected pulse has a

net negative helicity, while its tail has a net positive helicity, when the CBP occurs.
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t = 1000Dt = 16.7 fs and t = 2000Dt = 33.4 fs. The

incident pulsed beams have w0 = 2kcar, and they

consist of largely LCP light. We chose Nap = 207,
so that NapDy � 2w0. The STFs are either structur-

ally left-handed (LH, h = �1), achiral (AC,

X ! 1), or structurally right-handed (RH,



Fig. 8. Snapshots of jEj (in arbitrary units) of a pulsed beam with w0 = 2kcar (1032 nm, at left), 3kcar (1548 nm, in center), or 4kcar
(2064 nm, at right) at time t = 16.7 fs. The chiral STF is structurally LH, and the incident pulsed beam is predominantly LCP. The

scaling of the plots is different than in Figs. 3 and 4.

Fig. 10. Snapshots of P(r,t) Æ uz (in arbitrary units) of a pulsed beam with w0 = 2kcar (1032 nm, at left), 3kcar (1548 nm, in center), or

4kcar (2064 nm, at right) at time t = 33.4 fs. The chiral STF is structurally LH and the incident pulse is largely LCP. The contrast

between regions where P Æ uz > 0 and regions where P Æ uz < 0 has been enhanced, but the scaling is different than in Fig. 6. The light

pipe widens in the y-direction as w0 increases.

Fig. 9. Same as Fig. 8, except at time t = 33.4 fs. The width of the reflected pulses in the y-direction increases as w0 increases.
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h = 1), and their boundaries are located at

dz0 = 500Dz = 5 lm and dz0 + dz = 1000Dz =
10 lm; we set dy0 = dy1 = 1500Dy = 15 lm.1 These
1 The achiral STF is simply a columnar thin film [6,40], and

therefore, does not display any Bragg phenomenon.
choices mean that the right, upper, and lower

boundaries of RSTF lie just inside R. In Fig. 3, at

t = 16.7 fs, the pulsed beams have almost reached

the films. In Fig. 4, at t = 33.4 fs, the pulsed beams

have suffered reflection and refraction at the left
boundary of RSTF.



Fig. 11. Snapshots of jEj (in arbitrary units) at time t = 16.7 fs for a largely LCP incident pulsed beam with w0 = 2kcar. The pulsed

beam impinges on the corner of an STF, which occupies most of the upper right quadrant of each plot. The STF is either structurally

LH (at left), achiral (at center), or structurally RH (at right). The incident pulsed beam is predominantly LCP. The z-coordinate of the

left boundary of RSTF and the y-coordinate of the lower boundary of RSTF are delineated. The scaling of these plots is different than in

Figs. 3, 4, 8, and 9.

Fig. 12. Same as Fig. 11, but at time t = 33.4 fs. Refracted and diffracted pulses are visible in all three plots, but pulse bleeding creates a

longer and more intense reflected pulse when the STF is structurally LH. The lag between the refracted and diffracted pulses (of �1 lm)

is present in all three cases; it is marked in the rightmost plot.
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In Fig. 4, when the predominant circular

polarization state of the incident light matches

the structurally handedness (if present) of the

STF – as is the case for the leftmost plot – the

reflection of the incident pulsed beam is greater

than if otherwise. When the STF is achiral (mid-

dle plot) or the predominant handedness of the

incident light and the structure of the STF are
opposite (rightmost plot), then the reflection

from the STF is not as prominent. Notice too

that the duration (which is proportional to its

length in the z-direction) and apparent width

(in the y-direction) of the reflected pulse are also

greater in the former case than in the latter two

cases.

The observation of greater reflection when the
criterions for the CBP are satisfied is clarified by

plots of the energy
UðtnÞ ¼
1

2

XNy

i¼�Ny

Xdz0=Dzð Þ�1

j¼0

e0 E yi; zj; tn

 ��� ��2n

þl0 H yi; zj; tn

 ��� ��2oDyDz ð32Þ

in the vacuous region 0 6 z < dz0 presented in Fig.

5. In all three plots in that figure, U(tn) rises to a

maximum value as the pulse enters the vacuous re-

gion 0 6 z < dz0, and then falls as the pulse begins

to refract into the STF. When the CBP does not

occur, U(tn) continues to fall. However, in the left-

most plot U(tn) falls for a time and then increases

once more. Hence, when the CBP occurs, there
must be a bleeding of energy from the refracted

pulse inside the film back into the vacuous region.

That bleeding is evident in Fig. 6, where the z-

component of the Poynting vector P(r,t) =

E(r,t) · H(r,t) at t = 33.4 fs is plotted. The black
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areas of the plots indicate regions where energy is

flowing in the +z-direction, while the white areas

of the plots indicate regions where energy is flowing

in the�z-direction. The plots have been scaled to in-

crease the contrast between forward-going (+z) and
backward-going (�z) energy flows. In the case when

the CBP occurs – i.e., when the STF is structurally

LH – the reflected pulse is much longer than in the

cases when the CBP does not occur. Also in that

case, there is a region where P Æ uz < 0 that connects

the tail of the reflected pulse to the refracted pulse

across the boundary between vacuum and the film.

This connection, called the light pipe, is not present
in the other two cases, when the STF is structurally

AC or RH. The light pipe, and the bleeding of en-

ergy from the refracted pulse to the reflected pulse

it entails, is the time-domain fingerprint of the CBP.

An analogous phenomenon for pulsed plane

waves has already been found and described

[23,24]. There are, however, important differences

between the cases of pulsed plane waves and
pulsed beams. In the case of a two-dimensional

pulsed beam, the film shapes the distribution of en-

ergy in the pulse in two spatial dimensions and

time. For a pulsed plane wave, the distribution

of energy is affected by the film in only one spatial

dimension and time. Hence, the pulse bleeding

phenomenon in two dimensions can be used to

shape pulsed beams. For instance, notice that the
apparent widths (in the y-direction) of the reflected

pulse in Figs. 4 and 6 is greater when the CBP oc-

curs than otherwise.

The incident pulse comprises almost wholly

LCP light. What polarization(s) are present in

the reflected and refracted pulses? To answer that

question, we plotted the computed helicity of the

electric field, i.e., E(r,t) Æ ($ · E(r,t)), as shown in
Fig. 7 at t = 33.4 fs. The plots have been scaled

to more clearly show regions of positive (i.e.,

LCP, indicated by black) and negative (i.e., RCP,

indicated by white) helicity. As in Figs. 4 and 6,

the reflected pulses are much shorter in duration

when the CBP does not occur than when it does.

In Fig. 7, the reflected pulse consists mostly of

light having net negative helicity when the STF is
structurally RH or AC. However, when the STF

is structurally LH, only the leading portion

of the reflected pulse has net negative helicity.
Reflection from near the interface between vacuum

and film is responsible for the leading portion of

the pulse. The circular polarization state of the

incident light is inverted upon this initial reflection,

which is due to the impedance mismatch between
the vacuum and film. The tail portion of the re-

flected pulse, that part created by pulse bleeding,

has a net positive helicity. The interference be-

tween LCP and RCP components has been offered

as an explanation of spatial oscillations in P for

pulsed plane waves reflected from chiral STFs

[26]. Similar oscillations are evident in Fig. 6.

This is one example of the connections between
phase, length, and time in nanotechnology, a frame-

work for which has been described elsewhere [41].

Phase, length, and time have always been intercon-

nected in electromagnetics, but in that work they

were shown to be intertwined in new ways when

the microstructured geometry is a significant frac-

tionof kcar. The implications of these ideas for nano-

technology were expressed via several examples
using planewave arguments. Therefore, it is no sur-

prise that these interconnections should also appear

for pulsed beams, since such beams can be thought

of as combinations of plane waves with proper

wavelengths, directions, and phase shifts [42].

Another difference between the case of pulsed

plane waves and pulsed beams is that of diffrac-

tion. The shapes of pulsed plane waves do not
change as they propagate through vacuum. The

shape and intensity (but not the total energy) of

a pulsed beam in vacuum do change as a function

of the distance away from the focus of the beam –

a phenomenon due to diffraction. In addition, the

shapes of pulsed beams reflected from an STF slab

of sufficiently large thickness change as they prop-

agate away from the film, and their energy densi-
ties decrease. Hence, if a certain pulsed-beam

shape or intensity is desired for a given application,

and an STF-based device is in the optical path,

designers must be careful to position the STF at

the proper distance from the focus of the pulsed

beam (because the properties of the pulsed-beam

that the STF will shape depends on that distance).

This phenomenon could be used to make a tunable
pulsed-beam-shaping device. Such a device could

be realized, for example, by mounting the STF on

a piezoelectric stage. Then the distance between
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the STF and the focus of the pulsed beam could be

increased and decreased easily, causing concomi-

nant changes in the shapes and intensities of

reflected and transmitted pulsed beams. This con-

cept is a good candidate for further study with
our numerical methods.

The Bragg wavelength of a chiral STF, and its

absorption, reflection, and transmission properties

in general, change with the angle of plane wave inci-

dence [43]. Even though we consider normal inci-

dence of a pulsed beam in this problem, that

observation is relevant to the situation here, be-

cause diffraction of the incident beam means that
some of its constituent plane waves strike the film

at an oblique angle. The portion of the incident

pulsed beam energy that strikes obliquely is deter-

mined in part by the beam waist. The effects of

changing the beam waist are shown in Figs. 8 and

9. We chose the beam waist w0 equal to 2kcar, 3kcar,
or 4kcar, and we set NapDy � 2w0 – i.e., Nap = 207,

310, or 413, respectively. The incident light is pre-
dominantly LCP, the chiral STFs are structurally

LH, and the carrier wavelength lies within the

Bragg regime; so the criterions for the CBP are sat-

isfied. Snapshots of jEj are shown in Figs. 8 and 9,

and of P(r,t) Æ uz in Fig. 10. The boundaries of the

chiral STF remain the same as for Figs. 3–7.

For all three values of w0, the reflected pulse is

of long duration. The apparent width of the re-
flected pulse in the y-direction increases as w0 in-

creases, as is evident from Fig. 9. The reason for

this widening is due to the widening of the light

pipe, as seen in Fig. 10. More of the pulse energy

tends to hit the film obliquely when w0 is smaller,

so more of the light may tend not to fulfill the

Bragg condition for normal incidence and be re-

flected. This comparison is apt only when the fo-
cuses of all pulsed beams lie at the same distance

from the chiral STF. We expect the latter effect

to exhibit itself through reduced pulse bleeding at

the edges of the reflected pulse. The previous three

sentences are not true without qualification, how-

ever. Chiral STFs can exhibit Bragg reflection at

oblique angles, too, and the first-order Bragg

wavelength changes with angle of incidence
(approximately, the Bragg wavelength is propor-

tional to cos1/2h, where h is the angle of incidence

measured with respect to the normal [43]). Calcu-
lations that allow the reflected pulse to develop

more fully over a longer period of time will be

needed to test these assertions.

3.2. Diffraction from an STF corner

We also examined diffraction of a pulsed beam

from an STF corner. Plots of the electric field mag-

nitude at t = 16.7 fs and t = 33.4 fs can be found in

Figs. 11 and 12. In this case, RSTF is {x,y,zj0 6 y 6

1500Dy, 500Dz 6 z 6 1000Dz}, i.e., dy0 = 0 lm,

dy1 = 15 lm, dz0 = 5 lm, and dz0 + dz = 10 lm.

The film is either structurally LH, RH, or AC. The
beam waist w0 = 1032 nm, and the aperture width

is dictated by our choice Nap = 207.

In Fig. 11, the pulsed beams are shown as they

traverse vacuum en route to the chiral STF cor-

ner, which occupies most of the upper right quad-

rant of each plot. The effects of the STF on the

pulsed beam can be seen in Fig. 12. The reflection

from the STF is most pronounced when it is
structurally LH, as we expect from the previous

calculations in this work. In all three cases, part

of the incident pulse is diffracted from the edge

of the STF; these diffracted parts, found in the

vacuous lower right quadrants of the plots, are

quite similar in appearance, irrespective of the

microstructure of the STF. Thus, the incident

pulse is split into at least two significant parts in
all three cases. When the CBP occurs, there is a

reflected pulse, a refracted pulse, and a diffracted

pulse. When the CBP does not occur, there is a

refracted pulse and a diffracted pulse, but the

reflected pulse has little energy. In addition, the

STF slows the propagation of the refracted pulse,

and in so doing creates a lag in space and time

between the diffracted pulse and the refracted
pulse. This lag, of about 1 lm, is evident in all

three plots of Fig. 12; it is marked in the right-

most plot. Therefore, chiral STFs have potential

applications as circular-polarization-sensitive

beamsplitters and time-delay elements.
4. Concluding remarks

We investigated the reflection, refraction, and

diffraction of pulsed optical beams by chiral and
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achiral STFs. Based on the results obtained, we

consider the following points to be those of most

technological relevance.

	 Since pulsed beams undergo diffraction, the
position of an STF-based device with respect

to the beam source will influence any spatiotem-

poral pulse shaping that takes place. Of course,

this effect will apply to any optical element

operating on a pulsed beam. However, due to

the inhomogeneous, anisotropic structure of

chiral STFs, positioning is especially important

in light of new relationships that connect phase,
length, and time at a confluence of optical wave-

lengths and nanoscale morphology [41].

	 Some of the results from time-domain studies of

pulsed plane wave shaping by STFs carry over

to our studies of pulsed beams. The CBP in

the two-dimensional case, as in the one-dimen-

sional case, manifests itself as a continuous

bleeding of energy from the refracted pulse
(inside the STF) to the reflected pulse (in vac-

uum). When the CBP occurs, the reflected pulse

consists of a leading portion with predominant

circular polarization opposite that of the struc-

tural handedness of the film, and a tail portion

with predominant circular polarization identical

to that of the incident pulse.

	 The beam waist could have a significant influ-
ence on the shapes of pulses reflected from

and transmitted through chiral STFs, though

more quantitative measures of pulse shape are

needed to explore this possibility fully.

	 The corner of a chiral STF could be used

as a circular-polarization-sensitive beamsplitter.

Depending on its predominant polarization, an

incident pulsed beam would either be split into
a reflected pulse, refracted pulse, and diffracted

pulse (the latter two of which would become

transmitted pulses on leaving the device), or

into two transmitted pulses. The transmitted

pulses would be separated in space by the effects

of diffraction and the slowing of the refracted

pulse inside the STF. We expect the position

of the STF edge – with respect to the center
of the pulsed beam on the y-axis and with

respect to the location of the beam focus on

the z-axis – to affect splitting.
We hope that this information will be of use in

designs of STF-based pulsed beam shaping devices.
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