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Algorithms based on the method of moments (MOM) and the coupled dipole method
(CDM) are commonly used to solve electromagnetic scattering problems. In this paper,
the strong and the weak forms of both numerical techniques are derived for bianisotropic
scatterers. The two techniques are shown to be fully equivalent to each other, thereby
defusing claims of superiority often made for the charms of one technique over the other.
In the final section, reductions of the algorithms for isotropic dielectric scatterers are
explicitly given.

1. Introduction

The passage of an electromagnetic signal through a non-vacuous region is accompa-
nied by the causally-related disturbance of the centers of charges and currents from
their equilibrium positions. In the language of time-harmonic microscopic electro-
magnetism, it is therefore convenient to think that an electromagnetic wave induces
electric and magnetic multipoles that oscillate in definite phase relationship with
the incident wave and re-radiate energy in all directions. In time-harmonic macro-
scopic terms, the electric and the magnetic multipoles give rise to the polariza-
tion and the magnetization fields in matter,:? and the re-radiated energy is called
scattered radiation.

The frequency-domain interaction of electromagnetic waves with matter is gov-
erned by the time-harmonic form of Maxwell postulates® which appear to embrace
a wide range of electromagnetic phenomena.? Now, the importance of boundary
value problems in the understanding of physical processes cannot be exaggerated:
not only have these problems been applied for explaining such an everyday occur-
rence as the blue color of the sky, but have been used as scientific tools for scanning
the human anatomy, for determining the composition of materials, for the remote
sensing of the terrestrial surface, and so on. Yet, exact solutions of boundary value

problems are known only for very simple shapes.>
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584 A. Lakhtakia

With the advent of various new techniques that rely heavily on digital computers,
however, problems involving more complicated geometries have been treated. Apart
from some low-7 or high-3 frequency methods and the T-matrix method,? numerical
techniques involve the discretization of the region occupied by the scatterer.l? This
is generally true whether a differential formulation is used or an integrodifferential
formalism.

The method of moments (MOM),11713 as applied to an inhomogeneous dielectric
scatterer is an approach based on the evaluation of a volume integral equation over
the region occupied by the scatterer. This region is partitioned into a number of
subregions (generally cubical), the electromagnetic field in each subregion being
represented by local basis functions. In this manner, the volume integral equation
is converted into a set of simultaneous algebraic equations that are solved using
standard procedures.

Whereas the MOM is an actual field formalism, the coupled dipole method
(CDM) is based on the concept of an ezciting field. The CDM was formulated
very heuristically by Purcell and Pennypacker!* for dielectric scatterers. Although
it used to be thought of as a microscopic approach, it was shown by Lakhtakial®
that the CDM has, at most, a semi-microscopic basis. Indeed, the operational
basis for applying the CDM to boundary value problems is totally macroscopic.
Both the MOM and the CDM were recently extended to bianisotropic scatterers;
furthermore, what are called later as their respective weak forms, were shown to be
equivalent.!®

In the immediate past, there has been interest shown!?'® in comparing nu-
merical results obtained from implementing CDM and MOM algorithms on digital
computers. In some of these studies, the weak form of the CDM is compared with
a strong form of the MOM. If a comparison is not done with comparable levels
of sophistication, any conclusions regarding the superiority of one technique over
another can only be regarded with bemused contempt. Moreover, efforts have been
reported’®2° to improve the Purcell-Pennypacker algorithm of the CDM.

These developments catalyzed the present paper, its first aim being to provide
a uniform and self-consistent derivation of the MOM and the CDM for very general
boundary value problems. The second aim is to identify the strong and the weak
forms of, as well as to demonstrate the formal equivalence of, both numerical tech-
niques. The plan of this paper is as follows: In Sec. 2, the geometry of the boundary
value problem is described, followed in the next section by a brief foray into the
characteristics of homogeneous bianisotropic media. Two integrals, of seminal im-
portance for the identification of the strong and the weak forms, are discussed in
Sec. 4. Coupled volume integral equations are set up in Sec. 5, the MOM algebraic
equations are derived in Sec. 6, and the CDM equations in Sec. 7. In the next sec-
tion, remarks are made on the strong and the weak forms of the methods; in Sec. 9,
formulae for scattering and absorption quantities are given. Finally, in Sec. 10 the
reduction of both techniques for isotropic dielectric scatterers is given.
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2. The Scattering Geometry

As is schematically illustrated in Fig. 1, let all space be divided into two mutually-
disjoint regions, Vine and Vex:, that are distinguishable from each other by the
occupancy of matter. The region Vex: is vacuous; hence,

D(x) = eoE(x), B(x) = poH(x), x € Vext - (1a,b)
The region Vin, is filled with a general, linear, possibly inhomogeneous, non-diffusive

bianisotropic continuum with frequency-dependent [exp(—iwt)] constitutive
equations®!

D(x) = o [&,(0) - E(x) +£,(x) - HD)| , X € Vine, (22)
B(x) = o [, (x) - B() + 1, () - ()|, x € Ve, (2b)

where £,(x) is the relative permittivity dyadic, g (x) is the relative permeability
dyadic, while £ (x) and ¢_ (x) represent the magnetoelectric dyadics.

Fig. 1. Schematic of the scattering problem. The unshaded region Vex: extends to infinity in all
directions, while the shaded regions collectively constitute Vint-

There is no requirement that Vi, be a simply-connected convex region; how-
ever, the boundary surface that separates Vine from Veye must be at least once-
differentiable everywhere to enable the unambiguous prescription of a unit normal
at every point on this surface. Furthermore, the maximum linear extent of Vin, must
be bounded so that only the region Vex extends out to infinity in all directions.
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3. Homogeneous Bianisotropic Media

Before continuing, it pays to attend to the homogeneous counterparts of the inho-
mogeneous equations (2a,b). Such a medium, described by the Tellegen relations

D(x) = €0 [e, “B(x) +&, “HEX)], BE) = o [¢, B+, - H)], (3a)

in the frequency domain, occurs readily in nature. Physically possible forms, consis-
tent with Lorentz covariance and causality, of the constitutive dyadics in Egs. (3a,b)
were discussed at length by Post.!

Using the Maxwell curl postulates in the frequency domain, it can be shown
that the electric and the magnetic fields in a source-free homogeneous bianisotropic
medium satisfy the dyadic differential equations

W.(V)-E(x)=0, W,(V)-H(x)=0, (4a,b)

where the dyadic differential operators are given by
W,(V) = [VxI+iveo, | ot [V x I~iwpog,| —Kle,,  (59)
W, (V)= [VxI- iw,;ogr] ey [v x I+ iwgoér] ~Kp,,  (5b)

ko = wy/(pto€0) is the free space wave number, I is the identity dyadic and 0 is the
null dyadic, while =1 is the dyadic inverse of u,, etc.
In general, a plane wave propagating in the direction u, satisfies the equations

W.(iqu,) -eg =0, W, (iquy) -h, =0, (6a,b)

with ¢ as the wave number, the associated fields being E(x) = e, exp [iqu, - x] and
H(x) = h, exp [iqu, - x]. The determination of the triads {q, eg, h,} for a given
u, from Eqs. (6a,b) may be carried out using either eigenfunction analysis2? or
matrix differential equations.?® This determination is not necessary for the present
purposes, and all that is needed is the two solutions q(uy) of either

determinant [W,(iqu,)] =0 (7a)

or, equivalently,
determinant [W,, (iqu,)] =0, (7b)

that are consistent with the Maxwell postulates for a given ug; it is possible that
the two solutions are identical. By ¢! is denoted the maximum of lg(ug)| over all
directions u,.

4. Dyadic Green’s Function and Self-Integrals

It is also advisable to consider beforehand a couple of integrals that involve the free
space dyadic Green’s function®22

G(x, x') = I+ (1/k3)V V] g(x, x') (8a)



Strong and Weak Forms of the Method of Moments ... 587

and its circulation

H(x, x') = V x G(x, x') = [Vg(x, x")] x I, (8b)
where

9(x, x') = (1/4x) {exp [tko}x — x'[}/|x — x'[} (8¢)

is the scalar Green’s function for the three-dimensional scalar Helmholtz equation.
It is noted that G(x, x') is of the order 1/|x — x/|® for |x — x/| = 0, and becomes
singular at x = x/, this singularity requiring special attention. The dyadic H(x, x')
is also singular at x = x’, but as it is of only the order 1/}x — x'|? for |x — x'| =0,
its singularity is integrable per a lemma of Kellogg.?*

The first of these two integrals is given as

m(xo) = [[[ #x'Gx, x)-bx), (9a)

where V is the region bounded by the surface S, as shown in Fig. 2. This integral
is not problematic if x, were to lie outside V. However, what will be needed in the
hereafter is that x, be a distinguished point lying inside V. As shown by Wang,?®
following up on Fikioris,2® Eq. (9a) is transformed to

a;(xo) = ///V_Vo d>x’ {G(x0, x') - b(x")}

+ff [ (G, X) BX) - G (0, ) - b))

— (1/k3) [ d*xup, {(x' — x0)/4m|x' — %0’} -b(x0),  (9b)
So

where Vp is an exclusionary region bounded by the surface Sy, as shown in Fig. 2;
u), is the unit normal to Sp, pointing away from Vjp, at the point x’ € So; while

G, (x, x') = (1/k3)VV{1/4xlx — x'|} . (10)

As Fikioris2% noted, the exclusionary region V; should be small but not infinitesimal,
and it must be wholly contained within V. Moreover, there is no requirement that
So be a miniature copy of S.

Now, we substitute b(x’) by {[b(x’) —b(xc)] + b(x0)} in the second integral on
the right-hand side of Eq. (10) to obtain

mxa) = [[[ | dx (G, x)-bo)+ [ dx (G, x) - )b
+ [[]| (1800, %) = G, 0] bixo))

—(1/k2) //S d*x’ u, {(x' — xo0)/4m|x’ — x0|*} - b(x0) - (9¢)
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Fig. 2. For the evaluation of the integral in Eq. (9a) when x' € V and xp € V..

When the integrals of the type (9a) are needed in the following sections, b(x) =
b(xp) Vx € V is assumed because V is supposed to have electrically small dimen-
sions. On using this long-wavelength approximation, (9c) reduces to

ap(xq) = jf-/tf-v, d®x’ {G(xo, x') - b(xg)}
+ [ 4 t1G6x0, %)~ G, x0, X)) - bxa))
- (1/!:3)]/80 d’x’ uf, {(x' — xo)/4m|x' — xo[°} - b(x0).  (9d)

Since V is now electrically small, but Vp need not be infinitesimal, we comfort-
ably set V =V and S = S5; to have

a;(xo) = [M — (1/k3)L] - b(xo) , (11a)

where

M= j f /V % {[G(x0, X') = G, (x0, )]} , (11b)

L= f d®x’u}, {(x' — x0)/47|x’' —x0|?} . (11c)
s
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The evaluation of M can be accomplished numerically for a variety of V shapes
using the coordinate-free expansions

G(x, x') = [(I - uxux) + (i/ko|X])
(14 é/ko|X[)(I — 3uxux)] g(x, x'), |X|#0, (12a)
G, (x, x') = (i/ko|X|)* (L — 3uxux))/47|X], |X]| # 0, (12b)

where X = x — x’ and ux = X/|X|. The evaluation of the depolarization dyadic L
is equally easy on a computer. However, analytical expressions for L are given by
Lakhtakia?” for the quite general ellipsoidal shapes; see also Yaghjian.?®

The second integral

az(xg) = // , d3x’ {H(xo, x') -b(x')}, x0€V, (13)

has an integrable singularity as mentioned above. Upon using the long-wavelength
approximation utilized for a;(xo), az(xo) may be estimated as

as(x0) = N - b(xo), (14a)

H_:///Vd?’x’l_{_(xo,x’). (14b)

In the computation of the integral (14b), the coordinate-free expression

H(x, x') = (iko — 1/|X])g(x, x")ux x I (15)

where the dyadic

may be used.
If V is extremely small in electrical size, the simplifications

a1(x0) = —(1/k3)L - b(xo), a2(x0) =0-b(xo), (16a,b)
are permissible and lead to the weak forms of the MOM and the CDM.

5. Coupled Volume Integral Equations

After these mathematical preliminaries we return to the scattering problem at hand.
The Maxwell curl postulates, in the absence of any externally impressed sources,
are given in Ve as

V x B(x) — iwpoH(x) = 0, V x H(x) + iweoE(x) = 0, x € Vex ; (17a,b)
and, similarly, in Vin¢ as

V x E(x) — iwpo [¢, (x) - E() + 1, (x) - H(x)| =0, x€Vim,
(18a)

V x H(x) + iweole, (x) - E(x) + € _(x) -H(x)] =0, x€ Vin, (18b)

with 0 being the null vector.
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As per the equivalence principle, we replace matter in Vint by electric and mag-
netic volume current densities, J(x) and K(x), that radiate into Viy;. Therefore,
the Maxwell curl postulates everywhere are rewritten as2®

V x E(x) —iwpoH(x) = -K(x), V xH(x)+ weoE(x) = J(x), x € Vipe+ Vexe,

(19a,b)
where
J(x)=0, K(x)=0, X€E Vex, (20a,b)
J(x) = iwep[{I— ,(x)} ‘E(x) - &(x) - H(x)], x€ Vi, (21a)
K(x) = iwpo[~¢ (x) - E(x) + {I - s (x)}-H(x), x€ Vip,. (21b)

The solutions of the differential equations (19a,b) are given as the coupled volume
integral equations?®

E(x) — Ejne(x) = ///V d®x' {iwpoG(x, x') - J(x')
- H(x,x') - K(x')}, x € Vige + Vixe, (22a)

and

H(x) — Hinc(x) = ///V &*x'{iweo G(x, x') - K(x')
+E(x, x’) . J(x')}, X € Vine + Vext - (22b)

The fields Ejnc(x) and Hinc(x) are the solutions of the sourceless (i.e. right side = 0)
counterparts of the differential equations (19a,b), and represent the electromagnetic
field that exists in Vi, + Viye if g(x) =1, ﬁr(x) =1 gr(x) =0 and §r(x) = 0.
The integral equations (22a) and (22b) are utilized in setting up the MOM and the
CDM, and this commonality reaffirms the algorithmic equivalence of the two.

6. The Method of Moments

Although the method of moments, used widely in the electromagnetics community,
has grown increasingly sophisticated in the last decade,3%3! a simple enough version
provides for the conversion of the integral equations (22a,b) into algebraic equa-
tions with facile ease. The scatterer region Vi, is considered as the union of non-
overlapping simply-connected subregions Vn,(m=1,2,... , M ), each bounded
by a closed surface S,, so that Vi, = Y-m Vm. The requirements are as follows:
(i) each boundary surface S,., that separates V,, from other parts of Vipy and/or
Vext, is at least once-differentiable; (ii) the subregion V,, is homogeneous so that

& (x) = Er,m) E,.(x) il P _C_,.(x) = _C_,.,mr §,.(x) = é,.,m’ XEVm; (23)
and (iii) the maximum linear extent 2a,, of Vm is such that k,a,, < 0.1 and gham <
0.1. In these stipulations, the MOM and the CDM are also identical.
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The second and the third requirements permit a long-wavelength
approximation.?®32 Let the volumetric capacity of Vi, be denoted by vy, =
If fVm d3x. Let x,, denote a distinguished point lying inside V;,,, and let E,, =
E(xm) and Hy, = H(xm) be the actual fields at that point; then, we use the ap-
proximations E(x) 2 E,, and H(x) & H,, for all x € V,,. Now by setting x = x;
in Egs. (22a,b) the 2M vector equations are obtained,

E, - iwl‘O[Mk - (l/kg)Lk] . J(Xk) + .I!k : K(xk) = Einc(xk)

+ Z Vm{iwpo G(Xk, Xm) - I (Xm)
mm#£k

—H(xg, xm) -K(xm)}, £=1,2,... , M, (24a)
Hy — iweo[M, — (1/k5)Ly] - K (xi) — N - J(xk) = Hinc(xi)

+ Z Vm {iweo G(xk, Xm) - K(xm)
m,m#k

+H(xk, Xm) - I(xm)}, k=1,2, ..., M. (24b)

In obtaining Egs. (24a,b), each integration on the subregion Vi, m # k, was
done very simply by evaluating the specific integrand at x, and multiplying it
by the volumetric capacity vn. The integrals [ff, d*x'G(xx,x) - J(x') and
[y, #x'G(xx, x') - K(x') were estimated using the formula (lla), while
[ffy, @x'H(xi, x') - I(x') and [ff,, @®z"H(xz, x') - K(x') were estimated using
the formula (13).

Using Egs. (21a,b) and (23), Eqgs. (24a,b) are transformed into 6M simultaneous
algebraic equations containing 6M complex scalar unknowns that are constituted
by the cartesian components of E,;, and H,,. These equations are compactly stated
as

Einc(xt)= .  [Atm Em+Bim -Hnl, k=1,2,..., M,  (25a)
me{1,2,... M}

Hinc(x)= >,  [Cim Em+Dim -Hn], k=1,2,...,M.  (25b)
meq{1,2,...,M}

With Gy,,, = G(xk,Xm) and H;,,, = H(xk,Xm), we have

Ay =T+ kM, —Ly]- (I g, ;) — iwpoN; Coro (26a)
By = —[k3M; — Ly] &g FiwpoNe - (I-p ), (26b)
Cii = (M — L] - ¢, — iweoNi - (T—g.4), (26¢)

Dy =T+ kM, — L) - (I- B, ) —weoNg - ) (264)
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and, for k # m,
Arm = —iwpoVm(iweoGrpm - (L — &, ) + Hypy Gl (27a)
B = twpovm[iweo Gy, - §m THim T—p (27b)
Cim = iweoUm[iwpo Gy, - Sm Him T, (27¢)
Dy = —iweoUm[iwpo Gy - (I - g, ) H, &l (27d)

In this straightforward version of the MOM, therefore, one may solve the algebraic
equations (25a,b) for E,, and H,,.

Once E,, and H,, have been calculated, J(xm) and K(x,,) may be obtained
using Egs. (21a,b) and (23) for all m € {1, 2, ..., M}, and the scattered fields in
Vext may then be computed as

Esca(x) = E(X) - Einc(x) = Z {#m[iwllog(X, xm) : J(xm)
me{1,2,... M}
—E(X, xm) . K(xm)]}, X € Vext ’ (28&)
Hca(x) = H(x) — Hipe(x) = Z {Vm[iweo G(x, xm) - K(xm)
me{1,2,... .M}
+ H(x, Xm) - J(xm)]}, X € Vexe, (28b)

which follow from Eqs. (22a,b). Since all x,, are generally distributed around the
origin, these expressions lead to

Limggz, - 00 Esca(5u,) 2 [exp (tkoz,)/zs]Fsca(u,), (29a)

Limg,z, 0o Haca(5u,) 2 [exp (ikozs) /7] (ko/wpo)u, x Fsca(u,), (29b)
in the far zone, with the far-zone scattering amplitude defined by
Fyca(u,) = —tu, x Z {Vm exp (—ikou, - xp)[wpou, x J(xm) + koK(xp))/47} .
" (29¢)

7. The Coupled Dipole Method

The heart of the MOM is constituted by Egs. (24a,b) that involve the fields, E;
and H;, that are actually present at x;. However, in the coupled dipole method
one considers the fields that ezcite the subregion Vi. To make the corresponding
transformations, it is observed that the right-hand sides of Egs. (24a,b) are fields
that do not have their sources in Vi. In other words, the fields that excite Vi have
to be

Eexc,k = Einc(xk) + Z Vm {iwl‘ogkm ) J(Xm) " gkm ) K(xm)} ’ (303')
mm#£k
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Hexc,k = Hinc(xk) + Z Vm {inOVka . K(xm) + H;p, - J(xm)} ’ (30b)
mm#k

consistent with the long-wavelength approximation.
After making the identifications (30a,b), Eqs. (24a,b) are rewritten as

Ei — iwpo[My — (1/k)Ly] - J(xk) + Ni - K(xi) = Eexcr, k=1,2,..., M,

(31a)
H; — iweo[M; — (1/kDL;] - K(xx) — Ny - I(xi) = Hexers k=1,2,..., M.
(31b)
But Egs. (31a,b) are nothing but
Ay Ep+By - Hi =FEecc, k=1,2,..., M, (32a)
Cit ‘Er+Dpi Hi =Hexer, k=1,2,..., M; (32b)
hence,
E: = A} [Bii - Bexck — Dip -Hexcl, £=1,2,..., M, (33a)
Hi = A7} [Af) Eexer — Cip -Hexct], k=1,2,..., M, (33b)
where
A, =B;} Ay -Dil Cu, App=Ajy B~ Gy ‘Due- (34aD)
Finally, the use of Egs. (21a,b) and (23) yields
I(xk)/iweo = ({L— .4} - ATL By =€, - ALy ALY Bexck
+(—{I-ga} ATE D +€, - Ank - Cre) Hexe
(35a)
K(xi)/iwpo = (=¢, . - Ak -Bid +{I- 1, ,} ALk Age) - Bexcyp
+(C, . A D —{I-p .} ‘AL Cin) Hexer - (35b)

Consistently with the long-wavelength approach, we define the equivalent dipole
moments, pr and m; — of the electric and the magnetic types, respectively —
located at xj; thus,!52°

pr = ((/wnd(xe), m = (Hw)nK(x), k=1,2,3,..., M. (36a,b)
Equations (35a,b) and (36a,b) yield

Pk = ek * Eexck+ Bepk Hexck, mp = ape - Eexck+_hhk Hexck, (37ab)
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where
..k = —ViEo ( &1} A7 By £, ALk 'Al:kl) ) (38a)
—chk_—VkEO( {I-e,}-A0% Dl:kl+€ K A% Ch ), (38b)
Bpe k= —VkHo ( C,,k : B;:: +{I- e, } Ah Jk Akk) )
(38¢)
awe = v (- AZE Dt —{I-p,,)} A7L-Ci) . (389)

These four dyadics a,, 4, etc. are the polarizabilities of the material region Vi when
it is immersed in free space all by itself.
With the definitions (36a,b), Egs. (30a,b) become

Eexck = Einc(xk) —iw D {iwpoGm - Pm — Him -mm},  (39a)
m,m#k

Hexc,k = Hinc(xk) — tw z {iWEogkm cmpy + Ekm : pm} ) (39b)
m,m#k

and the further substitution of Eqs. (37a,b) leads to

Eexc,k = Einc(xk) —w z [{iwl“ogkm . gee,m - Ekm : ghc,m} : Eexc,m

mm#k
+ {iw/‘O(—;km ‘Behm T Hkm ' ghh,m} ' Hexc,m] ) (406‘)
Hexc,k = Hinc(xk) —iw E [{iweogkm *8ph,m + Ekm : gch,m} ' Hexc,m
m,m#k
+ {iweogkm *Bpem +Ekm : Qee,m} : Eexc,m] . (40b)

Equations (40a,b) constitute the core of the CDM and can be solved in terms of
the 6M algebraic scalar equations

Einc(xk)= z [Bkm'Eexcm+Q excm], k=1,2;--~’M’
me{1,2,..., M} (41a)

Hinc(xk) = Z [Ekm . Eexc,mgkm . Hexc,m]; k= 1; 2; ey M:
me{1,2,..., M} (41b)

for the cartesian components of Eex ; and Heyc,i; here

Pim = Lokm + iw(iwpoGim * Beem — Him - 8he m)(1 — 6km) (42a)
ka = iw(iwl“ogkm ‘Bepm — H;.. 'th,m)(l - 6km)’ (42b)
Rim = w(iweg Gy - Bpem t+ H,,. - gce,m)(l = bkm), (420)

§km = I6em + iw(iwef)gkm "Appm + Ekm ' geh,m)(l = 6’"") s (42d)
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8rm being the Kronecker delta.

The solution of Egs. (41a,b) can be used in Eqgs. (37a,b) to find the dipole
moments, pm and m,, corresponding to all Vi,, m € {1,2,..., M}, and the
scattered fields can then be ascertained from

Esca(x) = E(x) — Eine(x) = —iw

Z {iw#og(X, xm) *Pm — ﬂ(x) xm) : mm}) X € Vext,
me{1,2,..., M} (43a)

and

H,ca(x) = H(x) — Hjpo(x) = —iwh

Z {iwfo(_;(X, xm) s My +H_(x) xm) : Pm}) X € Vext -
me{1,2,..., M} (43b)

Equations (29a,b) still apply for the far zone scattered fields, but the far-zone
scattering amplitude is now given by

Fca(u,;) = —wu, x E {exp (—ikou, - Xpm)[wpous X pm + komy,]/47} . (44)

m

8. Remarks on the Strong and the Weak Forms

Before continuing further, it is noted that Secs. 6 and 7 are refinements on
Lakhtakia'® who did not consider the self-terms arising from the dyadics M, and
N, but confined himself to the self-terms arising out of L, only. With that state-
ment as the backdrop, we may think of two forms of CDM:

(i) the Weak-CDM (W-CDM), in which the dyadics M; and N, are ignored,
and
(ii) the Strong-CDM (S-CDM), in which the dyadics M, and N are retained.

For isotropic dielectric scatterers, the W-CDM is exemplified by Purcell and
Pennypacker!* using isotropic dielectric spherical subregions, and was considerably
generalized by Lakhtakial® for bianisotropic nonspherical subregions. The S-CDM
does not appear to have been explicitly given elsewhere; in Sec. 7 is, perhaps, the
first derivation of S-CDM.

We may also think of two forms of MOM:

(i) the Weak-MOM (W-MOM), in which the dyadics M, and N, are ignored,
and
(ii) the Strong-MOM (S-MOM), in which the dyadics M; and N, are retained.

The W-MOM was derived for bianisotropic scatterers by Lakhtakia.!® The S-
MOM for bianisotropic scatterers appears to have been given explicitly for the first
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time in Sec. 6, though it has been used for isotropic dielectric scatterers for many
years; see, e.g. Refs. 12, 33-35.

The W-MOM corresponds exactly to the W-CDM, as has been demonstrated
by Lakhtakia,'®6 while it follows from the two previous sections that the S-MOM
corresponds exactly to the S-CDM. When all volumetric capacities v}, are very small,
the S-MOM/S-CDM effectively transmutes into the W-MOM/W-CDM. Generally
stated, therefore, it follows that the scattering region Vi, must be discretized into
a larger number of subregions Vi when the W-MOM/W-CDM is used than if the
S-MOM/S-CDM is used. Comparison of S-MOM results with the W-CDM results,
with identical discretization of the scattering region — as was done, for instance,
by Hage and Greenberg!” — is not quite kosher.

9. Scattering and Absorption

Because Fgca(u,) is of the form u, x b, it follows that u, - Fea(u,) = 0; in
turn, by virtue of Eqgs. (29a,b), this implies that the scattered field in the far
zone is transverse-electromagnetic3® in character. This leads quite naturally to
the planewave scattering dyadics, to which concept mere allusion suffices here.3”

The time-averaged scattered power per unit solid angle
dPyca(u,)/dQ(u,) = (1/2) Real [z2u, - {Esca(zsu,) x Hy,(z,5u,)}] (45a)

computed in the far-zone, with dQ(u,) = sin ,d6, dp, as is customary in spherical
coordinates, and the asterisk denoting the complex conjugate. From Egs. (29a,b),
therefore, we get

dPyca(u,)/dQ(u,) = (1/2n0)Fsca(us) - Fiea(us), (45b)

where 19 = \/(po/€0) is the intrinsic impedance of free space. Consequently, the
time-averaged scattered power can be computed as

2 x
P, = (1/2170)/ d<p_,/ df, sin 6, Fgca(u,) - Fiy(uy). (46)
0 0

Unless the scatterer material is intrinsically lossless,?!38 there is absorption of
electromagnetic energy in Vi,.. The time-averaged power absorbed in Vi, may be
computed as the volume integral

P R [(iw/?) / / /V &2 {B(x) D" —H‘(x)-B(x)}] L@
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Using Egs. (3a,b) and (23), as well as the long-wavelength approximation of Sec. 6,
this expression converts to the sum

Paps = Real [(iw/2) > vm{€oEm - lefm En+ § . Hil
~ 0B (G, B+, Hin]}]
= —(w/2) Imag [Eu,,, {€0Em - [e7n - Era + & -H ]
™
- hoHl [, B+, Hil| (48)

Insofar as the MOM is concerned, the solution {(E,,,H,,); m = 1,2, ..., M} of
Egs. (25a,b) may be directly substituted into Eq. (48) for the computation of P,ps.
The calculation of P, in the CDM is only slightly more complicated: the exciting
fields {(Eexc,m;Hexe,m); m = 1,2, ..., M} obtained by solving Egs. (41a,b) have
to substituted into Egs. (33a,b) to get {(E,, Hy); m = 1,2, ..., M} for use in
Eq. (48). The total time-averaged power extinguished is the sum

Peyt = Psca + Pabs - (49)
Quite often, one is interested in the extinction of the plane wave
Einc(x) = €inc exp [ikokincX], Hinc(x) = (1/70)kinc X €inc exp [ikokinc-x], (50a,b)

where e, carries the units of volts per meter and k;,. is a dimensionless unit vector
such that ejn¢ - kinc = 0. In this case, the total power extinguished by the presence
of matter in Vj,; can be estimated using the forward scattering amplitude as3”

Pext = (27 /wpo) Imag [ef,, - Fsca(Kinc)] - (51a)

Substitution of (44) and (50a) in (51a) then gives

Peye = (k0/2l‘0) Imag I:Z {E;nc(xm) : [ﬂopm — Kijne X mm]/47r}] (51b)

m

for use with the CDM. Comparison of Egs. (29c) and (44) shows that the two
formulae are identical if the identifications (36a,b) are borne in mind; hence,

Pext = (1/2n0) Real I:E Vi {Efpc(Xm) - 103 (Xm) — Kine X K(xm)]/47"}] (51c)

for MOM-users.
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10. Isotropic Dielectric Scatterers

The scatterers most commonly studied by far are isotropic dielectric. Therefore, in
this section, the MOM and the CDM are specialized to the case

e =6 p(x)=L ¢ ()=0,£x) =0, x€Vim, (528
that implies
J(x) = iweo[{1 — &, (x)}E(x)], K(x) =0, x € Vint . (52b)

Hence, we need to solve only the electric field integral equation
E(x) — Eipc(x) = /// dx' {iwpoG(x, x') - J(x')}, X € Vine + Vext . (52¢)
Vint

With the piecewise constant representation €, (x) = €,,m for Vx € Vi, Eq. (52¢)
can be discretized as

Ep — iwpo[M, — (1/k5)Ly] - I(xk)

= Einc(xz) + E Vm {iwpo G(xy, Xm) I(Xm), £=1,2,..., M,
m,m#k (53)

that leads to the MOM algebraic equations

Einc(xk) = z [Akm : Em]) k= 1) 2,..., M) (543')
me{1,2,... M}

with
Ap = {1+ [B2My — LJ(1 = 6r0)}km + {vmnk3(L = €r,m) G }(1 = Bim) . (54)
Coming to CDM for isotropic dielectric scatterers, it is noted that
At Bt =Eegcr > Er=Ay  Eexci, (55a)
whence
I(xx)/iweo = (1= €r,k)Azp - Eexek = Pk = —vio(1 — £rk)Asy - Eexck, (55b)
fork=1,2,..., M. Hence,
8. = —vico(l —&rk)Afy, k=1,2,..., M, (55¢)

is the only non-zero polarizability dyadic. This finally leads to the CDM algebraic
equations

Einc(xi)= >, [Pim Bexeml k=1,2,..., M, (56a)
me{1,2,... M}
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where
Pim = Lkm — {wzﬂogkm . g—ee,m}(l - 6’"") . (56b)

Although spheroidal and ellipsoidal subregions have been used, 3?4 it is com-
monplace in literature to have cubical or spherical subregions. Cubes and spheres
have the same depolarization dyadic L, and it is customary'? to estimate the M
dyadic of a cube as that of an equivoluminal sphere. Without any particular loss
of generality therefore, the subregions are taken to be spherical in the remainder of
this section.

Let the subregion V,, be the sphere of radius a,, with its center at x,,. As a
result, the volumetric capacity v, = (47/3)ad,, the depolarization dyadic L,, =
(1/3)1, and the dyadic M,,, = (2/3k3)[(1 — ikoam) exp (ikoam) — 1]L; see Fikioris?®
and Yaghjian.2® (The dyadic N for a sphere is always null, due to the asymmetry
factor ux x I in Eq. (15); however, it is not needed in the present instance.) From
Eq. (54b), the MOM self-term reduces to

A = {1+ (1 —erp)[(2/3)(1 — ikoar) exp (ikoar) — 1]}1. (57)
It is of interest to rewrite
Ay = {Ap + A, (58a)
where
Ar = (enp +2)/3, (58b)
Are = (2/3)(1 — &r4)[(1 — ikoar) exp(ikoar) — 1] . (58c)

Both Az and Az should be called self-terms; instead, perhaps mistakenly, only
Apgy has been accorded that honor in the literature.17:18,34
Going on to the self-term in CDM, it is noted the polarizability dyadic

Beek = 1(47"/3)‘1250(51',1: - 1)/(Akk + Akk) s (593,)

may be rewritten as ek = Lacek, where

Geep = Qee k /(1 + Ari/Art), (59b)

and
Qee,k = 47ra:,3€o(€,-,k - 1)/(€r,k + 2) (590)

is the polarizability of an electrically small dielectric sphere derivable from the
Clausius-Mossotti relation.®! Let koar < 1 in Eq. (58c) and A be evaluated
correct to order k3a3, so that

ek = Aok /{1 — k2(a;! + 2iko/3) alphae.r/4meo) ; (60)
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it is observed here that the (2ik3/3)c.. r /47€o term in the denominator of the right
hand side of (60) is the radiative reaction term of Draine.!® More commonly, Ay
is evaluated correct only to order koag, leading to @eer = ok, and thereby giving
rise to the semi-microscopic flavor of this numerical approach.!®

A comparison of the MOM and the CDM for isotropic dielectric scatterers is
now in order. To facilitate such a comparison, it is reiterated that

Amm = {1 + (1 - E",m)

x [(2/3)(1 — ikoam) exp(ikoam) — 1]}1, [S-MOM] (61a)
Anm = {(erm +2)/3}L; [W-MOM] (61b)
correspondingly,

Qee,m = (47!’/3)03160(6,.,," - 1)/{1 + (1 - E,-’m)

- [(2/3)(1 — tkoam) exp(ikoan,) — 1]}, [S-CDM] (62a)
Geeym = 4maneo(erm — 1)/ (Erm +2) . [W-CDM] (62b)

There are at least two more CDM algorithms available. Draine!® used
Geeym = Ceem /{1 — (i/67E0)k§Ctee,m}) ; [D-CDM] (62¢)

while Dungey and Bohren,?° with inspiration from Doyle*? and the Mie analysis,®4!

used

Bee,m = (i67€0/k3) [er/m ¥ (k)0 (o m) — ¥ (ko Gm)O¥ (kmarm)]
, [er/m ¥ (kmam )¢ (koam) — ((koam)¥ (kmam)]
[DB-CDM]  (62d)

where kp, = koei,/,,z., ¥(B) = B! sin(B) —cos(B), 8¥(B) = d¥/dB, ((B) = — (i~ +
1) exp(iB), and 8¢(B) = d(/dp.

The remarks made in Sec. 8 still apply, and it is repeated here that W-CDM
should not be compared with S-MOM. Draine!® and Dungey and Bohren?° con-
cluded from their numerical investigations that D-CDM and DB-CDM, respectively,
generally provide results superior to those from W-CDM, but this does not come
as a surprise since the self-terms in W-CDM (or W-MOM) are estimated the least
accurately. On the other hand, although it is difficult to provide general enough
conclusions for the adequacy of either D-CDM or DB-CDM vis-a-vis that of the
S-CDM/S-MOM, it is safe to state that any claims of superiority — based purely
on the estimation of some gross parameter, such as the scattering cross section —
are debatable.
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To round up this discussion on isotropic dielectric scatterers, it is noted that the
far zone scattered amplitude for the present case turns out from Eq. (44) to be

Fyca(u,) = —(w?po/4m)u, x [u, X {Z exp (—tkou, - Xpm)Pm }] (63a)
for the CDM, and
Fsca(u,) = —(iwpo/47)u, x [u, X {Z exp (—ikou, ~xm)umJ(xm)}] (63b)

from Eq. (29c) for the MOM. Next, since Ep, = Eexc,m/(Amm + Amm) and p, =
@ee,m Eexc,m, the time-averaged power absorbed works out from Eq. (48) to be

Paps = —(weo/2) Imag [Z(s:,m"m)lpm/acc,m (Amm + Amm)lz] - (64)

Equations (58b,c) for Amm and Apm, and Egs. (62a—d) for the a..m in the four
CDM algorithms, may be substituted in Eq. (64) to obtain various estimates of
P.1s. In particular,

Pabs = —(w/260) Tmag | Y (€7, m/vm)IPm /(1 = e,,,,.)|2] (652)

for the W-CDM as well as for S-CDM, whence

Pubs = —(1/2w€0) Imag | J(€r m¥m)1I(xm)/(1 ~ €r,m)lz] (65b)

for both the W-MOM and the S-MOM.
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ERRATA

STRONG AND WEAK FORMS OF THE METHOD OF MOMENTS
AND THE COUPLED DIPOLE METHOD FOR SCATTERING
OF TIME-HARMONIC ELECTROMAGNETIC FIELDS

AKHLESH LAKHTAKIA

[Int. J. Mod. Phys. C3, 583 (1992)]

The correct forms of several misprinted equations are as follows:
A.kk = l+ [k(ZJM.k - Lk] ' (-I-— Er,k) - iwﬂomk ’ Sr,k (263)

D, = I+ kM, - L] -(I- ﬁ,,k) —iweoN, - €, (26d)

Eia(X) = E(X) = Einc(x) = Y {UmliwpoG(x, Xm) - J(Xm)

me{l1,2,... M}

- H(xy xm) . K(xm )]}a x € Vexe (283')

Hinc(xk) = E mkm : Eexc,mgkm : Hexc,m]; k=1,2,..., M (41b)

me{1,2,... .M}

Heca(x) = H(X) — Hine(x) = —iw Y
me{l,2,...,M}

{iweg G(x, Xm)

-mm + H(x, xm) 'Pm}, X € Vexe (43'3)




22 Brrate
Pabs = Real [(iw [2)D vm{ €oEm - [efm - Em + £ - Hy]
ot (G, B+ s, Hnl}]
= ~(o/2)mag | T vm { 0B [EE B+ £, H )
~poHy, - [¢ - Em +p - Hm]] (48)
Paxs = (o/2u0) Imag [E {Efue(m) - [16Bm — Kine X mm]}] (51b)
Paxe = (1/270) Real [E v (k) - (103 (%) = Kine X K(xm)]}] (51¢)

Qee k = a’ec,k/(‘l + Akk/Akk) (591))

Gee = Qee /{1 — k3(ag" + 2iko/3)ace i /4TE0} (60)
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