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University Park, PA 16802 facturing and in-service inspection. The purpose of this paper is to provide a vision of
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An increased understanding of the basic physics and wave mechanics associated with
guided wave inspection has led to an increase in practical nondestructive evaluation and
inspection problems. Some fundamental concepts and a number of different applications
that are currently being considered will be presented in the paper along with a brief
description of the sensor and software technology that will make ultrasonic guided wave
inspection commonplace in the next centdOl: 10.1115/1.1491272
Introduction waves can propagate in the structure and by way of mode conver-

0%'on and reflection from the surfaces of the structure can lead to
interference patterns as a resulting wave vector propagates along

work in [1-8] builds upon the work presented by giants over thg]eassér%gﬁgrg{ SQOeIITI]Setil;Vgscﬁgfe?fegStgdaéoacf‘é%l;fr t:e gfﬁglstl'gg
last two centuries in the areas of wave mechanics and elasticty.”; Y, S D - yp :
Contemporary work efforts over the last two decades illustrat doing calculations of finding out what interference packages

some of the technology transfer efforts from guided wave m _|.ght come about in the material, one can produce a s_o-lqa.llled
chanics to nondestructive evaluation. The works from mandiSPersion curve that shows the wave propagation possibilities

guided wave nondestructive evaluation pioneers are presente firphase velocity and frequer]cy that could possmly propagate in
[9—25. Some of my own recently published papers that sho e structure. Asepond technique of producing gmdeo! waves in a
some of the new directions in guided wave application are ift'Ucture is by using a comb transducer. The technique is pre-

cluded in[26—40. Additional references useful to the reader of€Nted in Fig. 1. Anumber of elements are placed on the structure

both theoretical and experimental aspects of guided waves can/Bi Some spacing that pumps energy into the structure either all

found in referenceg41-207. Some basic concepts in guided'n phase or out of phgse if we were qsing a phased array trans-
wave propagation and limitations with respect to their use is foflUCer approach, causing ultrasonic guided wave energy to propa-

lowed by a section on sample problems and natural wave-guidgéte in both directions along the structure. The spacing and the
requency selection allow us to decide the mode types that would

actually propagate in the structure.
Basic Principles Dispersion curves show all of the constructive interference
nes that could occur as the waves reflect inside a structure,
guided wave propagation is the fact that a boundary is required (—Fmonstratlng the Kinds of waves and modes that could actua!ly
rﬁrr]opagate. Details for computing these phase and group velocity

guided wave propagation. As a result of a boundary along a t ;
plate or interface, we can imagine a variety of different Wave%ISperSIon curves can be found 8]. A tremendous amount of

reflecting and mode converting inside a structure and superimpggprmat'on can be found on the dispersion curves that can be

ing with areas of constructive and destructive interference thlé?ed to design and analyze a guided wave nqnqlegtructnve testing
gxperiment. The curves are produced for an infinite plane wave

finally leads to the nicely behaved guided wave packets that c : o

travel in the structure. Classic surface wave propagation exampiis tation. Because of the transducer size itself and type of pump-

includes surface waves, Lamb waves, and Stonely waves. Re action of ultrasonic energy into m?‘te”a" a phas_e velocn_y

Lamb wave problem is reserved, strictly speaking, for wayiPectrum comes about similar to those illustrated in Fig. 2. So in
gdmon to the well-known frequency spectrum concept, we also

Basic information on the subject of guided wave propagati
can be obtained in many textbooks; see, for exanjfleg|. The

The major difference between bulk wave propagation al

propagation in a traction-free homogeneous isotropic plate, X o
though the terminology has been expanded to Lamb wave- ave a phase velocny spectrum that leads to a zone of excitation
we try to excite a particular mode and frequency. The zone of

propagation in a variety of structures including plates, multi-layét> °'= "5 * h th f q | d
plates, rods, tubes, etc., where the wave vector components cafffgtation is such that we often produce several modes at once.

both parallel and perpendicular to the particle vibration in a vel-"€ Phase velocity and frequency spectrum principles must be
tical plane through the structure, opposed to horizontal shegnsidered when designing a guided wave experiment. An experi-
waves where the particle motion is only normal to the wave vectBpenta! versus theoretical result for a traction-free aluminum plate
in a horizontal plane as the wave propagates along the structul® Nustrated in Fig. 3 to demon_strate this source influence con-
There are many different techniques for generating guid@@pt- The theoretical and experimental curves are shown plotted
waves, two of the most common being illustrated in Fig. 1. It g top of each other, showing the approximations that come about
possible to use an angle beam transducer for the generationPgfause of the source influence in conducting an actual
guided waves by pulsing a piezoelectric element on the wed§¥Periment. _ _ o )
placed on a test surface. As a result of refraction at the interfacgAnother tremendously important consideration in the selection

between the wedge and the test specimen, a variety of differ&htguided wave modes for a particular experiment is associated
with wave structure. The in-plane displacement, out-of-plane dis-
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Fig. 1 Techniques for the generation of guided waves—  (a) oblique incidence, (b) comb transducer

exactly the same. It changes from one point to another in phaBeis is because of the wave resonances that can be established
velocity frequency space. Thus, wave structure must be consietween transducer and flaw, which depends strongly on the par-
ered if one were to try to establish maximum penetration powécular defect characteristics and size. The response function from
for structures, perhaps under coatings or insulation for exampéedefect varies with frequency.
as well as to establish maximum sensitivity to a defect either onLet us now briefly consider some of the benefits of guided
the surface of the structure or at the centerline or elsewherewaves. The major benefits are clearly outlined in Table 1. Another
sample wave structure result is presented in Fig. 4, for a thremncept worth considering at this point is related to the benefits of
layer structure. Imagine a substrate bonded to a substrate. Wahatomb transducer. Some of these benefits are summarized in
mode and frequency could be selected in order to obtain the makable 2. They again are self-explanatory.
mum sensitivity? We can see in this one example that if the sen-
sitivity variable were to be longitudinal power for interface evalu;
ation, as an example, you would select the mode and frequer%?mple Problems
illustrated in Fig. 4a). If only the substrate were of importance It is convenient to consider guided wave inspection over natural
for any defect analysis, the mode and frequency illustrated in Figave-guides that have portions of the structures hidden or in dif-
4(b) could be selected. ficult to access situations. A few natural wave-guide examples are
The ability to utilize the various wave structures that affeqiresented in Table 3. Let us consider a few possibilities currently
penetration power and sensitivity in a guided wave inspection isceiving some attention. A rail is a natural wave-guide. Some
related to an ability to get onto a dispersion curve at a particulework is reported in37] that makes use of train-generated ultra-
phase velocity and frequency test zone. Two mode excitation zaseund traveling down the track over long distances, whereby re-
possibilities are shown in Fig. 5. In this case, a sample problemftéctions from broken rail can be determined by way of sensors
pipe inspection is considered as discussed in referd26¢27. A placed on the rail or on the train itself. The rail has natural filter-
variable angle beam probe is shown on the pipe, whereby eneigy characteristics and its own dispersion curve with respect to the
refracted into the structure can have its phase velocity calculatedds of waves that can travel in the rail.
by way of Snell's law. For each particular angle there is a hori- Another interesting example is for boiler tube inspection over
zontal activation line on the dispersion curve. By sweeping fréang distances, where access from only one side is possible.
guency then, it becomes possible to activate the modes illustrai@dnsducers must be placed over the surface with less than 180
in Fig. 5 along the horizontal line. On the other hand, if comldeg circumferential loading. Some techniques have been devel-
transducer excitation were selected, like that also shown in Fig.dped recently on nonaxisymmetric wave propagation making use
spacing would determine the slope of the activation line on tia# flexural modes that show how it becomes possible to place a
dispersion curve. The slope is shown for a particular spacingansducer on one side of a tubular structure and yet be able to
whereby sweeping frequency now moves along the sloped limspect the far side. This technique is being exploited to develop
from the origin as illustrated in the diagram. In this case thgractical guided wave inspection techniques for many problems,
modes are excited in a different order. It becomes possible itothis case for a boiler tubing panel. A theoretical result showing
change the slope by changing the spacing or by using some tihmw flexural modes can propagate along a pipe configuration is
delay profiling for the comb elements. Quite often an experimeiilustrated in Fig. 6. Imagine loading over only 180 deg where
tal search process calling for a tuning procedure of phase veloaditifrasonic energy travels over a pipeline, let us say from 0 to 8 m.
and frequency would be required to detect the flaws of interedtle are considering the out-of-plane displacement profile on the
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Fig. 2 Sample phase velocity spectra showing excitation am-
plitude versus phase velocity  (frequency =4.3 MHz, bandwidth
=.6 MHz)
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Fig. 3 Experimental versus theoretical results for a traction-
free aluminum plate (showing source influence )

Journal of Pressure Vessel Technology

surface of the pipe in this example, in order to determine the
sensitivity of finding corrosion or defects close to the surface of
the pipe as you travel along the pipeline. In the diagram, you can
see that for this one particular value of frequency and phase ve-
locity, the initial distribution at 0 m is energy concentration pri-
marily only in the contact zone; but as you travel along the struc-
ture, you can see that at 8 m, because of the interference process,
the energy is totally contained on the far side of the structure. This
shows how a transducer on one side of a pipe can be used to
inspect the far side of the pipe. Obviously, by changing frequen-
cies, modes, and degrees of partial loading it becomes possible
then to carry out a complete inspection of the pipe along its
length, even with much of the pipe hidden.

Many problems in the aircraft industry have also been consid-
ered that make use of guided wave inspection. A test protocol and
sample result for a lap splice inspection on an aircraft is illustrated
in Fig. 7. Some of the aircraft examples come from references
[34] and[36]. The guided wave inspection approach here appears
fairly straightforward, the idea being to consider ultrasonic energy
traveling across the test joint from position one to position two.
The difficulty that comes about, though, is that the right mode and
frequency must be selected that allows energy to leak from sub-
strate one to substrate two. If the wrong mode and frequency is
selected, a false alarm is obtained, energy reflects back to position
one and never reaches the receiver at position two. A tuning pro-
cess of phase velocity and frequency can make this test success-
ful. Another example on a tear strap inspection can be considered.
Again, the proper mode and frequency must be selected that al-
lows leakage of ultrasonic energy into the tear strap. Speaking of
natural wave-guides, consider now the skin of an F-18 Naval air-
craft. Several problems have been studied with guided waves; one
in particular is related to the tail rudder assembly. A C-scan test is
often conducted. In order to run a C-scan test, the entire rudder
must be disassembled, removed from the aircraft, placed in a bub-
bler or squirter scanning tank, calling for several days of down
time of the aircraft just to carry out the inspection. On the other
hand, a guided wave technique could be used to look at points on
a random fashion, that could easily tell skin delamination from
good areas of the rudder. The test is fast. No down-time is re-
quired of the aircraft. The adhesive bond inspection process be-
tween skin and core has details that are expanded in references
[34-34. The techniques are straightforward, again though, point-
ing to a reasonable tuning process so that the proper modes and
frequencies are selected to allow energy to leak to the core if a
good bond exists.

Another aircraft inspection problem currently studied is for sec-
tions of the transmission beam of an H-60 helicopter. Crack
propagation in the transmission beam is being studied with guided
waves. Small leave-in-place comb-type transducers are placed on
the structure at critical positions, whereby, after so many flights, a
lunchbox-type PC computer with a simple Berg connector can be
taken to the rotor craft, and hence inspection and data recording
carried out immediately.

Continuing on with some of the benefits and potential applica-
tions of guided wave analysis, consider a pipe elbow. In order to
send ultrasonic energy along a pipe, through an elbow, and to be
able to inspect in the elbow region or beyond the elbow region, is
quite difficult. If an axisymmetric wave is placed into the struc-
ture, blind spots could occur because of the interference patterns
that occur as the wave travels around the elbow region. As re-
ported in[38], however, if a series of probes were placed around
the circumference at one end of the pipe using phased array tech-
nology, it would now become possible to control the flexural
mode input, that now actually adjusts the focusing mechanisms
inside that elbow and beyond to be able to focus on any point that
you wish inside the entire structure, hence making defect detec-
tion and location analysis possible. This is particularly useful if
sections of the elbow and pipe are totally hidden, or inaccessible
by any transducer assembly.
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Fig. 4 Sample power distribution and wave structure results taken for U, in-plane displacement, and W, out-of-plane displace-

ment from specific points on a dispersion curve: (a) f=0.293 MHz, C,=4.48 km/s; (b) f=0.664 MHz, C,=4.85km/s

Another very interesting application of guided wave analysi®liable inspection. One such device being considered is associ-
can be considered for a containment structure, where steel is exted with magnetic flux leakage in addition to a utilization of
bedded in concrete. To remove the concrete to carry out the #rcumferential guided waves for defect sizing. Primary develop-
spection is tremendously expensive. It has been done in the pasént of these efforts is moving forward by way of the Gas Tech-
Now with guided wave inspection, it becomes possible to semglogy Institute.
ultrasonic energy along the steel plate with minimal leakage into \Many other guided wave inspection possibilities exist. Scan-
the concrete, allowing us to locate corrosion and cracking in thgng acoustic microscopy is used to obtain close-to-the-surface
_steel plate. A horizontal shear wave EMAT technique is presentgqrmation by using leaky guided waves along the surface of the
in [32]. . . L structure. Much effort today is also being focused on a Lamb
angfflg;e;olflupnoééigio%rr?g'ge};“s 'QiSgﬁnzgvevﬁﬁo%??grtitlggeé?gfﬁr é;);_ided wave tomographic inspection. Some pioneering work ef-
portunity to be able to inspect structures under tar coating. GuidedrtS on the_ tomog_raphlc test teghnlqugs are presgnté_tl?ﬂn .
waves make this possible. Again, it is very expensive to remove”nother |nt_erest|ng problem is on titanium-to-titanium diffu-
the tar coatings to carry out the inspection on a point-by-poiﬁ{On bonding; 5_6@8]' Even though_ amplltut_je itself is a poor
basis. Guided waves, on the other hand, can be used to Séqf'bture for solving problems, amplitude ratios are traditionally
ultrasonic energy under the coating by adjusting wave structfBOWn as an excellent feature. In the sample problem illustrated
across the thickness of the structure. The tuning and selectionl§f€. two modes are actually produced in the titanium diffusion
the appropriate frequency and phase velocity makes this possifiending experiment. One of the modes is sensitive to the poor
Both Lamb waves and horizontal shear wave EMATS are beifggnds and one is not. Therefore, by simply examining the ampli-
considered in this work. tude ratio of the two modes it becomes possible to classify the

A great deal of work is currently being carried out on the destructure as good, intermediate, or a poor bond.
velopment of pipe inspection gear that can actually travel throughMuch interest in guided wave analysis is now focused on defect
pipe lines at reasonably high speeds and to be able to carry owizing analysis. A sample very promising BEM result for SH
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Fig. 5 Lamb wave mode activation possibilities—  (a) angle beam probe, (b) comb probe, (c), mode excitation zones. (Angle beam
shoe-constant phase velocity  (horizontal line ) determined from Snell’'s law for a given angle. Comb transducer excites modes with
a constant wavelength (sloped line ) determined by the spacing of the elements. )

Table 1 Benefits of guided waves

o Inspection over long distances from a single probe position.

i By mode and frequency tuning, to establish wave resonances and excellent overall defect
detection potential

o Sensitivity often greater than that obtained in standard normal beam ultrasonic inspection
or other NDT techniques.

® Ability to inspect structures under water, coatings, insulation, multi-layer structures or
concrete with excellent sensitivity.

hd Potential with multi-mode and frequency Lamb type, Surface or Horizontal Shear waves to
detect, locate, classify and size defects.

[ ]

Cost effectiveness because of inspection simplicity and speed. (Often less than 1/20 the
cost of standard normal beam ultrasonic and other inspection techniques.)
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Table 2 Benefits of a comb transducer

d Can produce surface and guided waves in any structure and material including low
wave velocity composite materials.
b Mode and frequency tuning and the establishment of “wave resonances” for optimal
defect detection sensitivity is possible.
b Reduced energy loss compared to angle beam techniques.
. Higher frequency excitation for improved sensitivity and resolution is possible
compared to angle beam techniques.
b Simple manufacture techniques are available utilizing broad band piezocomposites or
PVDF film.
d Smaller size and flat low profile transducers, compared to angle beam techniques, are
possible that are useful in hard to access places.
b Can be robust and compact
Table 3 Natural waveguides waves is shown in Fig. 8, taken frof89]. A monotonic increase
=  Plates (aircraft skin) in reflection factor amplitude is shown over the entire frequency
* Rods (cylindrical, square, rail, etc.) range considered. This is possible because of less mode conver-
*  Hollow cylinder (pipes, tubing) sion compared to that in Lamb wave studies.
=  Multi-layer structures Countless other examples as you extend your imagination into
=  Curved or flat surfaces on a half-space the world around you can be tackled with guided wave inspection
* Layer or multiple layers on a half-space technology. The sensors, the instrumentation, the software, and
= Aninterface the basic physics and wave mechanics are available now to allow

Fig. 6 Nonaxisymmetric wave circumferential displacement distribution (circum. angle
=180 deg, freq. =0.39 MHz, modes: L(0,1)—F(10,1), wall thickness =5/16 in.)
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Fig. 7 A lap splice inspection sample problem— (&) ultrasonic through-transmission approach for lap splice joint inspection, (b)
double spring “hopping probe” used for the inspection of a lap splice joint
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