Guided Wave Resonance Tuning for Pipe Inspection

Tremendous interest has surfaced recently on the use of guided waves in pipe inspection in the oil, chemical, and power generating industries. Relatively long lengths of piping can be inspected for corrosion and cracking from a single probe position. This saves a great deal of time and money compared to using more standard point-by-point normal beam inspection procedures. Pipes can be inspected without removing insulation or tar coatings by controlling the guided wave modes and frequencies used to carry out the study. This paper will review the history and state of the art of the guided wave techniques in piping. Benefits and limitations of the various methods will be pointed out along with a vision of future directions in the area of pipe inspection. [DOI: 10.1115/1.1491580]

Although Navier’s equation is intractable in this form, it can be reduced into scalar and vector wave equations by the method of Helmholtz, (2), where the displacement field is assumed to be a combination of the gradient of a scalar potential field, Φ, and the curl of a vector potential field, \mathbf{H}, with the additional constraint that $\nabla \cdot \mathbf{H} = 0$ [9].

$$u = \nabla \Phi + \nabla \times \mathbf{H}$$

(2)

Thus, the resulting wave equations are (3) and (4), where (3) represents the longitudinal wave motion in the structure and (4) represents the shear wave motion; c_1 and c_2 are the longitudinal and shear wave velocities of the medium.

$$\nabla^2 \Phi = \frac{1}{c_1^2} \frac{\partial^2 \Phi}{\partial t^2}, \quad c_1 = \sqrt{(\lambda + 2\mu)/\rho}$$

(3)

$$\nabla^2 \mathbf{H} = \frac{1}{c_2^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}, \quad c_2 = \sqrt{\mu/\rho}$$

(4)

If Eqs. (3) and (4) are solved entirely, a theoretical solution will be developed that represents all modes of propagation in the hollow cylinder, including the axially symmetric, nonaxisymmetrical and torsional guided wave modes [15,17]. However, the axially symmetric guided wave solution can be isolated by assuming that only the theta component of the vector potential field is nonzero and that both the vector and scalar potential fields are only functions of coordinates r and z [9]. Assuming time harmonic motion in the z coordinate direction, the solution of the scalar and vector wave equations is (5) and (6).

$$\Phi = A_{l_{(\perp)}} H_{l_{(\perp)}}^{(\alpha r)} + A_{l_{(\perp)}} H_{l_{(\perp)}}^{(\alpha r)} e^{ikz}$$

(5)

$$\mathbf{H} = A_{s_{(\perp)}} H_{s_{(\perp)}}^{(\beta r)} + A_{s_{(\perp)}} H_{s_{(\perp)}}^{(\beta r)} e^{ikz}$$

(6)

The quantities involved in the solution are defined as follows: $A_{l_{(\perp)}}$, $A_{s_{(\perp)}}$, $A_{s_{(\perp)}}$, $A_{s_{(\perp)}}$ are the unknown amplitude constants for longitudinal and shear waves propagating in the layer in the outward and inward directions, ω is the angular frequency, k is the wave number, and α and β are given by (7). The functions $H_{n_{(\perp)}}^{(\alpha)}(z)$ are the nth order Hankel functions of the first and second kind. Hankel functions are used instead of Bessel functions because they provide better numerical stability when seeking solutions in the range of phase velocities where individual wave components become nonpropagating across the layers.

$$\alpha^2 = (\omega^2/c_1^2 - k^2), \quad \beta^2 = (\omega^2/c_2^2 - k^2)$$

(7)

In order to construct the boundary conditions for the problem, it is necessary to make the layer matrix specific to a particular layer and interface. Inserting the appropriate elastic or viscoelastic material properties into the layer matrix, and inserting the radius of the boundary or interface that is being considered accomplishes...
this. The notation that is used here is to use subscripts to indicate the layer, and radius of the layer is being evaluated, such that
\[\mathbf{A}_{ij} \] is the layer matrix evaluated for the first layer at its outside radius as defined by Fig. 1. An additional matrix, \(\mathbf{F} \), is defined as the lower 2 × 4 submatrix of the layer matrix, \(\mathbf{A} \). This matrix is used to prescribe the boundary conditions on the free surfaces, where the displacement components of the layer matrix must be omitted. The specific boundary conditions for the problem are the vanishing of normal and shear stresses and the free surfaces of the problem, and the continuity of stress and displacement at the interfaces between layers. Using the matrix formalism of (8), each boundary condition for the problem can be prescribed. The total set of boundary conditions can then be constructed into a global matrix equation. For instance, the global matrix equation for a four-layer system is (9). This matrix contains the layer matrices for each layer, evaluated at the interfaces where a boundary condition is prescribed. The subvectors \(\mathbf{A} \) contain the unknown amplitude constants for the layers. The next step towards solving the boundary value problem for the multi-layer hollow cylinder is to generate the equations for the displacement and stress fields in the layer. The displacement field is generated by substituting the scalar and vector potential solutions into Eq. (2). The stress field is derived by consecutively applying the strain-displacement and stress-strain constitutive equations to the displacement field equations. The displacement and stresses are expressed in a matrix format as in (8), where \(\mathbf{A} \) is called the layer matrix.

\[
\begin{align*}
\mathbf{u}_z & = A_{(L-1)} e^{i(kz - \omega t)} \\
\mathbf{u}_r & = A_{(S-1)} e^{i(kz - \omega t)} \\
\sigma_{rr} & = A_{(L-1)} e^{i(kz - \omega t)} \\
\sigma_{rz} & = A_{(S-1)} e^{i(kz - \omega t)}
\end{align*}
\]

\[
\begin{bmatrix}
\mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} & \mathbf{A}_{14} \\
\mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} & \mathbf{A}_{24} \\
\mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} & \mathbf{A}_{34} \\
\mathbf{A}_{41} & \mathbf{A}_{42} & \mathbf{A}_{43} & \mathbf{A}_{44}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u}_z \\
\mathbf{u}_r \\
\sigma_{rr} \\
\sigma_{rz}
\end{bmatrix}
= 0
\]

To obtain a nontrivial solution for the problem, the determinant of the global matrix must equal zero, resulting in a dispersion equation for the layer system. Aside from the material constants for each layer, there exists a single independent variable of frequency, and a single dependent variable of wave number. A plot of the wave number roots versus frequency yields the dispersion curve for the structure. The roots of the dispersion equation can be real, imaginary, or complex [69]. For elastic waveguides, the roots will be either real or imaginary, where the real roots describe a wave mode that is propagating with no attenuation, and the imaginary roots describe non-propagating wave modes. Complex roots exist when material attenuation is included in the model. These roots describe a propagating wave mode that is attenuating with distance from the source [69]. This is the type of result that is of interest for viscoelastic or combination elastic/viscoelastic waveguides.

Numerical Results

The complex roots of the dispersion equation can be quite difficult to find, due to the fact that the absolute value of the equation changes over many orders of magnitude between roots. Thus, root-finding routines, such as Müllers method that rely on the slope of the function, tend to extrapolate wildly, finding some roots, but not being able to find all of the roots for a particular frequency of interest. An alternative to traditional root finding routines, is to find the local minima of the absolute value of the dispersion equation [4]. Although the method is computationally inefficient, it tends to reliably find all of the roots of the dispersion equation.

The real and imaginary parts of the complex wave number roots of the dispersion equation can be converted into phase velocity and attenuation values from Eqs. (10)–(12). This alternative representation is important in that the phase velocity values can be directly tied to the means of generating the guided wave, and the attenuation values are directly useful for choosing modes to penetrate a coated structure. The plots of phase velocity versus frequency are termed phase velocity dispersion curves, while the plots of attenuation versus frequency are attenuation dispersion curves.

\[
\begin{align*}
C_{ph} & = \frac{\omega}{\text{Re}(k)} \\
\alpha & = \text{Im}(k) \\
\text{Attenuation}(dB/m) & = 20 \log_{10}(e^{\alpha \cdot 1000})
\end{align*}
\]
In order to calculate the dispersion equation for a particular system of layers, it is necessary to obtain the material constants for each of the materials involved. The material constants are the longitudinal and shear wave velocities, and the material density. For elastic layers, the wave velocities are purely real quantities, while for viscoelastic layers, the wave velocities have an imaginary component. The complex wave velocities for viscoelastic materials are seldom published so it is necessary to measure the quantities. This can be done by measuring velocity and attenuation of longitudinal and shear waves in the material. The material properties for the elastic steel and viscoelastic bitumen coating are shown in Table 1. The phase velocity and attenuation dispersion curves for a 4-in. schedule 40 steel pipe, coated with 0.006 in. of bitumen are shown in Fig. 2.

The phase velocity dispersion curve looks quite typical as compared with dispersion curves for a single layer, elastic hollow cylinder. This is likely due to the fact that the viscoelastic coating is thin in comparison with the elastic layer. The attenuation dispersion curve is very interesting in that it shows drastic attenuation changes for the different modes over the frequency range of interest. The two lowest-order modes at low frequency show very good attenuation performance except at the point of the cutoff frequency for the \(L(0,2) \) mode. As frequency increases the attenuation of the modes is tending to increase, although there are many specific points along the modes that have quite low attenuation values. These modes have great potential for performing a nondestructive test in a coated pipe.

Experimental Results on Defect Detection in a Clean Pipe

To illustrate the benefits of frequency tuning, a sample problem is given here. A hole defect and seven-hole cluster defect in a clean pipe were insonified with varying frequency. The peak-to-peak amplitude response for each frequency was measured and plotted as a function of frequency to identify any preferred frequency (ies). To perform the experiment, a Matec Explorer II™ tone-burst pulser/receiver was used with a 6-ft long 8-in. schedule 40 stainless steel pipe.

Figure 3 shows a schematic of the testing arrangement. Figure 4 shows the Matec Explorer II instrument and a view the 15-element array. Each array element has a 500-kHz transducer mounted on a Plexiglas shoe that is cut to provide a phase velocity of 0.116 in/\(s\) or 2.95 mm/\(s\) and conforms to the curvature of the pipe. Figure 5 shows the “hole” defect and the “cluster” defect. Figure 6 shows the pipe, seven-hole cluster, and 15-element array.

Figure 7 shows the RF waveforms obtained from the hole defect and from the cluster defect. The main bang portion of the signals as well as the pipe end echo have been partially removed from the signals. The excitation frequency was varied from 100 to 675 kHz in 25-kHz increments. The gates indicate the hole position 22 in., and the cluster position 46 in. The bars to left and right show the peak-to-peak amplitude within the gates selected for the hole and for the cluster, respectively. Figures 8, and 9 show the bars transposed to a frequency axis slightly magnified for bet-

Table 1 Elastic and viscoelastic material properties

<table>
<thead>
<tr>
<th>Material</th>
<th>(\text{Re}(c_1)) ((\text{km/s}))</th>
<th>(\text{Im}(c_1)) ((\text{km/s}))</th>
<th>(\text{Re}(c_2)) ((\text{km/s}))</th>
<th>(\text{Im}(c_2)) ((\text{km/s}))</th>
<th>(\rho) ((\text{gm/cm}^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>5.90</td>
<td>0.00</td>
<td>3.19</td>
<td>0.00</td>
<td>7.80</td>
</tr>
<tr>
<td>Bitumen Coating</td>
<td>1.86</td>
<td>-0.08</td>
<td>0.73</td>
<td>-0.13</td>
<td>1.50</td>
</tr>
</tbody>
</table>

1Explorer II™ is a trademark of the Matec Corporation, Northborough, MA
Experimental Results From Defect Detection in a Coal Tar-Coated Pipe

In order to apply the knowledge gained from the attenuation dispersion curves, two test samples were prepared. Both samples consisted of a 10.5-ft length of 4-in. schedule 40 steel pipe with a transverse saw cut. The depth of the saw cut was made to 0.150 in. that produces a notch area that is equivalent to 5% of the total cross-sectional area of the pipe wall. A bitumen coating was applied to one of the test samples to an approximate thickness of 0.006 in.

Three modes were chosen from the attenuation dispersion curve to inspect the test samples: the $L(0,2)$ mode at 190 kHz, the $L(0,3)$ mode at 630 kHz, and the $L(0,3)$ mode at 740 kHz (see the circled modes on Fig. 2). From the attenuation dispersion curve, the expected result is that the $L(0,2)$ mode at 190 kHz, and the $L(0,3)$ mode at 740 kHz would be good choices for performing an inspection, while the $L(0,3)$ mode at 630 kHz would have unacceptably large attenuation. Figures 10–12 show the test results.

In all results, the echoes shown from left to right are as follows: 1) the initial excitation of the transducer; 2) the echo from the defect; and 3) the echo from the end of the pipe (BWE). The results are arranged in two columns, one for the clean pipe and one for the coated pipe. The upper results were taken with the same instrument gain to show a comparison of the actual signal strength of the defect and backwall for the two samples. For the lower results, the instrument gain was adjusted to bring the defect signal to 80% of full screen height. Then the defect signal strength can be compared with the baseline noise of the system to see if there was enough strength to resolve the defect from the noise.

As expected, the result showing the least amount of attenuation was the $L(0,2)$ mode at 190 kHz. The gain and signal to noise of the defect was quite similar for both the clean and coated pipes. The results for the $L(0,3)$ mode at 630 kHz are generally unacceptable from a nondestructive point of view, because the signal strength is almost entirely attenuated. Increasing the frequency of excitation to 740 kHz, the $L(0,3)$ again becomes usable, showing some attenuation, but still having excellent signal to noise on the defect. In fact, even though the frequency of operation has almost quadrupled from 190 to 740 kHz, the attenuation and signal to noise of the tests are very similar. Additionally, an interesting observation is that the back-wall is reduced in amplitude from the uncoated case. This is most likely due to mode conversion effects and not due to the presence of the coating. This result demonstrates the importance of having knowledge of the attenuation characteristics of guided waves propagating in a coated structure.
Fig. 6 (a) End-on view of pipe showing location of seven-hole cluster; (b) view of 15-element array

Fig. 7 Gated RF waveforms from hole (left) and seven-hole cluster (right); medium gray bars are peak-to-peak values in the "hole" gate and the darker bars are peak-to-peak values in the "cluster" gate (on the right and left sides of the RF waveforms, respectively)—(a) frequency range (100, 375) kHz; (b) frequency range (400, 675) kHz
Fig. 8 Amplitude versus frequency distribution of echoes from seven-hole cluster

Fig. 9 Amplitude versus frequency distribution of echoes from lone hole

Fig. 10 Test results for a clean and coated pipe with a transverse notch of 5% cross-sectional area using the $L(0,2)$ mode at 190 kHz for inspection. The upper waveforms show the defect and back wall results for an equivalent instrument gain to demonstrate the attenuation difference between clean and coated test samples. The lower waveforms show the result when the instrument gain is adjusted to bring the notch to 80% of full screen height to demonstrate the difference in signal to noise of the test for clean and coated test samples. Despite the coating, excellent results are obtained.
It is now quite obvious that there are many low attenuation modes to choose beyond the $L_0(2)$ mode at low frequency.

Concluding Remarks

Great potential exists for the guided wave inspection of piping over long distances from a single probe position. Phase velocity and frequency wave resonance tuning, however, are often essential. Results for a set fixed phase velocity and frequency are not dependable. As a result of tuning, it becomes possible to improve penetration power despite coatings on the pipe and also to be able to detect difficult defect shapes. Theoretical and experimental results show that many choices of mode and frequency can be made to produce a good result. Quite often higher frequencies can have much better penetration power than lower frequencies.

Fig. 11 Test results for a clean and coated pipe with a transverse notch of 5% cross-sectional area using the $L_0(3)$ mode at 630 kHz. The upper waveforms show the defect and back wall results for an equivalent instrument gain to demonstrate attenuation differences between clean and coated test samples. The lower waveforms show the result when the instrument gain is increased to bring the notch to 80% full screen height to show the difference in signal to noise of the test for clean and coated test samples. Poor results are obtained because of the coated pipe and improper mode and frequency selection.

Fig. 12 Test results for a clean and coated pipe with a transverse notch of 5% cross-sectional area using the $L_0(3)$ mode at 740 kHz for inspection. The upper waveforms show the defect and back wall results for an equivalent instrument gain to demonstrate the attenuation difference between clean and coated test samples. The lower waveforms show the result when the instrument gain is adjusted to bring the notch to 80% of full screen height to demonstrate the difference in signal to noise of the test for clean and coated test samples. Despite the coating, excellent results are obtained.

References

