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• More about Entropy


• Absolute value of entropy?


• How can we measure entropy?

Lecture 18. Third Law
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In Chapter 13, we presented the second law of thermodynamics in var-
ious different forms. In Chapter 14, we related this to the concept of
entropy and showed that the entropy of an isolated system always either
stays the same or increases with time. But what value does the entropy
of a system take, and how can you measure it?

One way of measuring the entropy of a system is to measure its heat
capacity. For example, if measurements of Cp, the heat capacity at
constant pressure, are made as a function of temperature, then using

Cp = T

(

∂S

∂T

)

p

, (18.1)

we can obtain entropy S by integration, so that

S =

∫

Cp

T
dT. (18.2)

This is all very well, but when you integrate, you have to worry about
constants of integration. Writing eqn 18.2 as a definite integral, we have
that the entropy S(T ), measured at temperature T , is

S(T ) = S(T0) +

∫ T

T0

Cp

T
dT, (18.3)

where T0 is some different temperature (see Fig. 18.1). Thus it seems

Fig. 18.1 A graphical representation of
eqn 18.3.

that we are only able to learn about changes in entropy, for example
as a system is warmed from T0 to T , and we are not able to obtain an
absolute measurement of entropy itself. The third law of thermodynam-
ics, presented in this chapter, gives us additional information because it
provides a value for the entropy at one particular temperature, namely
absolute zero.

18.1 Different statements of the third law

Walter H. Nernst (1864–1941) (Fig. 18.2) came up with the first state-
ment of the third law of thermodynamics after examining data on chem-
ical thermodynamics and doing experiments with electrochemical cells.
The essential conclusion he came to concerned the change in enthalpy
∆H in a reaction (the heat of the reaction, positive if endothermic,
negative if exothermic; see Section 16.5), and the change in Gibbs’ func-
tion ∆G (that determines in which direction the reaction goes). Since
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We can only learn about change in entropy 
rather than entropy itself. 

Third Law of Thermodynamics provides 
the reference entropy at T=0
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Third Law (Nernst and Planck)
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204 The third law

G = H − TS, we expect that

∆G = ∆H − T∆S, (18.4)

so that as T → 0, ∆G → ∆H. Experimental data showed that this was
true, but ∆G and ∆H not only came closer together on cooling, but
they approached each other asymptotically. On the basis of the data,
Nernst also postulated that ∆S → 0 as T → 0. His statement of the
third law, dating from 1906, can be written as

Nernst’s statement of the third law
Near absolute zero, all reactions in a system in internal equilibrium
take place with no change in entropy.

Fig. 18.2 W. Nernst
Max Planck (1858–1947) (Fig. 18.3) added more meat to the bones of
the statement by making a further hypothesis in 1911, namely that:

Planck’s statement of the third law
The entropy of all systems in internal equilibrium is the same at abso-
lute zero, and may be taken to be zero.

Fig. 18.3 M. Planck

Planck actually made his statement only about perfect crystals. How-
ever, it is believed to be true about any system, as long as it is in internal
equilibrium (i.e., that all parts of a system are in equilibrium with each
other). There are a number of systems, such as 4He and 3He, which
are liquids even at very low temperature. Electrons in a metal can be
treated as a gas all the way down to T = 0. The third law applies to all
of these systems. However, note that the systems have to be in inter-
nal equilibrium for the third law to apply. An example of a system not
in equilibrium is a glass, which has frozen-in disorder. For a solid, the
lowest-energy phase is the perfect crystal, but the glass phase is higher
in energy and is unstable. The glass phase will eventually relax back to
the perfect crystalline phase but it may take many centuries to do this,
and possibly a time greater than the age of the Universe.11The idea that the glass in the windows

of very old cathedrals has flowed over
the centuries is popularly believed, but
has been debunked, see “Do Cathedral
Glasses Flow?”, E.D. Zanotto, Am. J.
Phys. 66, 392 (1998), see also E. D.
Zanotto and P.K. Gupta, Am. J. Phys.
67, 620 (1999).

Planck’s choice of zero for the entropy was further motivated by the
development of statistical mechanics, a subject we will tackle later in
this book. It suffices to say here that the statistical definition of en-
tropy, presented in eqn 14.36 (S = kB ln Ω), implies that zero entropy
is equivalent to Ω = 1. Thus at absolute zero, when a system finds its
ground state, the entropy being equal to zero implies that this ground
state is non-degenerate.

At this point, we can raise a potential objection to the third law in
Planck’s form. Consider a perfect crystal composed of N spinless atoms.
We are told by the third law that its entropy is zero. However, let us
further suppose that each atom has at its centre a nucleus with angular
momentum quantum number I. If no magnetic field is applied to this
system, then we appear to have a contradiction. The degeneracy of the

Change in enthalpy  in a reaction and change in Gibbs function . ΔH ΔG

As T goes to zero, the change in Gibbs is the change in enthalpy.


This was confirmed experimentally. However, experiments shows that they approached each other 
asymptotically. Nernst postulated that  when .  ΔS → 0 T → 0
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Planck's statement of the third law: The entropy of all systems in internal 
equilibrium is the same at absolute zero, and may be taken to be zero.

Nernst's statement of the third law: Near absolute zero, all reactions in a 
system in internal equilibrium take place with no change in entropy.
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Notes
Only true at internal equilibrium (for instance: not glass)


This is compatible with the statistical mechanics definition
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Is the entropy really zero?
Imagine  spinless atoms in a perfect crystal. Their entropy should be zero. But if one 
considers the nucleus momentum’s  and if it is  then, we have  possible 
orientations for each nuclear spin. The entropy is thus not zero!


What is wrong? In an actual system, the components of the system must be able to 
exchange energy with each other. Nuclear spins do indeed feel a tiny but non-zero magnetic 
field due to the other momenta! We would need to go down a lot in  to get zero… or would 
we?


What about very weak interaction within the nucleus, etc?


We have many subsystems that are weakly coupled to each other. 


Simon called those subsystems “aspects” and formulated the third law as:  

N
I I > 0 2I + 1

T

18.2 Consequences of the third law 205

nuclear spin is 2I + 1 and if I > 0, this will not be equal to one. How
can we reconcile this with zero entropy since the non-zero nuclear spin
implies that the entropy S of this system should be S = NkB ln(2I +1),
to however low a temperature we cool it?

The answer to this apparent contradiction is as follows: in a real sys-
tem in internal equilibrium, the individual components of the system
must be able to exchange energy with each other, i.e., to interact with
each other. Nuclear spins actually feel a tiny, but non-zero, magnetic
field due to the dipolar fields produced each other, and this lifts the de-
generacy. Another way of looking at this is to say that the interactions
give rise to collective excitations of the nuclear spins. These collec-
tive excitations are nuclear spin waves, and the lowest-energy nuclear
spin wave, corresponding to the longest-wavelength mode, will be non-
degenerate. At sufficiently low temperatures (and this will be extremely
low!) only that long-wavelength mode will be thermally occupied and
the entropy of the nuclear spin system will be zero.

However, this example raises an important point. If we cool a crystal,
we will extract energy from the lattice and its entropy will drop towards
zero. However, the nuclear spins will still retain their entropy until
cooled to a much lower temperature (reflecting the weaker interactions
between nuclear spins compared with the bonds between atoms in the
lattice). If we find a method of cooling the nuclei, there might still be
some residual entropy associated with the individual nucleons. All these
thermodynamic subsystems (the electrons, the nuclear spins, and the
nucleons) are very weakly coupled to each other, but their entropies are
additive. Francis Simon (1893–1956) (Fig. 18.4) in 1937 called these
different subsystems “aspects” and formulated the third law as follows:

Simon’s statement of the third law
The contribution to the entropy of a system by each aspect of the
system which is in internal thermodynamic equilibrium tends to zero
as T → 0.

Fig. 18.4 F.E. Simon
Simon’s statement is convenient because it allows us to focus on a

particular aspect of interest, knowing that its entropy will tend to zero
as T approaches 0, while ignoring the aspects that we don’t care about
and which might not lose their entropy until much closer to T = 0.

18.2 Consequences of the third law

Having provided various statements of the third law, it is time to exam-
ine some of its consequences.

• Heat capacities tend to zero as T → 0
This consequence is easy to prove. Any heat capacity C given by

C = T

(

∂S

∂T

)

=

(

∂S

∂lnT

)

→ 0, (18.5)

Simon's statement of the third law


The contribution to the entropy of a system by each aspect of the system which is 
in internal thermodynamic equilibrium tends to zero as T → 0
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Consequences of the third law (1) 
Heat capacities tend to zero as T → 0

18.2 Consequences of the third law 205
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because as  and  Hence 


This result disagrees with the classical prediction of  per mole per degree of freedom.

T → 0, ln T → − ∞ S → 0. C → 0

C = R/2



PHYS 4420 — FALL 2021 310

Consequences of the third law (2) 
Thermal expansion stops

since  as , we have for example that





as  but by a Maxwell relation, this implies that
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βp → 0
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Consequences of the third law (3) 
No gas remains ideal at T  0→

For an idea gas, we saw  per mole. 


However, as  both  and  tend to zero, and this equation cannot be satisfied. 


In addition, the expression for its entropy  fails as well:  As 
 this equation yields  .


The ideal gas model does not work at low-T.


Of course, it is at low temperature that the weak interactions between gas molecules 
become more important.

Cp − CV = R

T → 0, Cp CV

(S = CV ln T + R ln V +  constant )
T → 0, S → − ∞
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Consequences of the third law (4) 
Curie’s Law breaks down

Must tend to zero but this disagrees with Curie’s law
The issue is the independence between magnetic moments! 

Susceptibility measures the infinitesimal response to infinitesimal applied field. When 
thermal fluctuations are removed at T=0, these become apparent. 

The microscopic parts of a system can behave independently at high temperature, where 
the thermal energy  is much larger than any interaction energy.kBT

206 The third law

because as T → 0, lnT → −∞ and S → 0. Hence C → 0.
Note that this result disagrees with the classical prediction of C =
R/2 per mole per degree of freedom. (We note for future reference
that this observation emphasizes the fact that the equipartition
theorem, to be presented in Chapter 19, is a high temperature
theory and fails at low temperature.)

• Thermal expansion stops
Since S → 0 as T → 0, we have for example that

(

∂S

∂p

)

T

→ 0 (18.6)

as T → 0, but by a Maxwell relation, this implies that

1

V

(

∂V

∂T

)

p

→ 0 (18.7)

and hence the isobaric expansivity βp → 0.

• No gases remain ideal as T → 0
The ideal monatomic gas has served us well in this book as a simple
model that allows us to obtain tractable results. One of these
results is eqn 11.25, which states that for an ideal gas, Cp−CV = R
per mole. However, as T → 0, both Cp and CV tend to zero,
and this equation cannot be satisfied. Moreover, we expect that
CV = 3R/2 per mole, and as we have seen, this also does not
work down to absolute zero. Yet another nail in the coffin of
the ideal gas is the expression for its entropy given in eqn 16.79
(S = CV lnT +R lnV +constant). As T → 0, this equation yields
S → −∞, which is as far from zero as you can get!
Thus we see that the third law forces us to abandon the ideal gas
model when thinking about gases at low temperature. Of course,
it is at low temperature that the weak interactions between gas
molecules (blissfully neglected so far since we have modelled gas
molecules as independent entities) become more important. More
sophisticated models of gases will be considered in Chapter 26.

• Curie’s law breaks down
Curie’s law states that the susceptibility χ is proportional to 1/T
and hence χ → ∞ as T → 0. However, the third law implies that
(∂S/∂B)T → 0 and hence
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V B
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must tend to zero. Thus
(

∂χ
∂T

)

→ 0, in disagreement with Curie’s

law. Why does it break down? You may begin to see a theme
developing: it is interactions again! Curie’s law is derived by con-
sidering magnetic moments to be entirely independent, in which
case their properties can be determined by considering only the
balance between the applied field (driving the moments to align)

Curie's law: the susceptibility  is proportional to  and hence  
as  However, the third law implies that  and hence

χ 1/T χ → ∞
T → 0. (∂S/∂B)T → 0
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dipole moment has magnitude pE = qa. The force on each charge due
to the electric field has magnitude qE. A small change da in the length
a means that the dipole moment changes by dpE = q da. Modelling the
bond between the charges as a spring, the work done on this spring be-
cause of the change of length is given by the force qE times the distance
da which equals E(q da) = E dpE. In the case in which the electric field
is at an angle to the dipole moment, only the component of the elec-
tric field parallel to the dipole moment acts to stretch the spring, so in
general we can write this contribution as +E · dpE. Adding this stored
energy to the interaction energy from eqn 17.26 gives the work supplied
to the system as44This is the work added to the system

(where system here means the electric
dipole and its interaction with the field)
and hence is the free energy of the elec-
tric dipole. Because the energy of the
dipole in the electric field is shared be-
tween the dipole and the field (it is an
interaction energy, belonging to both
parties) it does not make sense to think
of energy that is internal to the dipole
itself, and the “system” means the in-
teracting dipole and field.

d̄W = −pE · dE. (17.27)

Analogous arguments can be used to show that the work supplied to a
magnetic dipole is given by

d̄W = −m · dB. (17.28)

We consider assemblies of magnetic moments in more detail in the next
section.

17.4 Paramagnetism

Consider a system of magnetic moments arranged in a lattice at temper-
ature T . We assume that the magnetic moments cannot interact with
each other. If the application of a magnetic field causes the magnetic
moments to line up, the system is said to exhibit paramagnetism. The
equivalent formulation of the first law of thermodynamics for a param-
agnet is

dU = T dS − mdB, (17.29)

where m is the magnetic moment and B is the magnetic field.5 The

5B is often known as the magnetic
flux density or the magnetic induc-
tion, but following common usage, we
refer to B as the magnetic field; see
Blundell (2001). The magnetic field
H (often called the magnetic field
strength) is related to B and the mag-
netization M by

B = µ0(H + M).

magnetic moment m = MV , where M is the magnetization and V is
the volume. The magnetic susceptibility χ is given by

χ = limH→0
M

H
. (17.30)

For most paramagnets χ " 1, so that M " H and hence B = µ0(H +
M) ≈ µ0H. This implies that we can write the magnetic susceptibility
χ as

χ ≈ µ0M

B
. (17.31)

Paramagnetic systems obey Curie’s law, which states that

Fig. 17.6 The magnetic susceptibility
for a paramagnet follows Curie’s law
which states that χ ∝ 1/T .

χ ∝ 1

T
, (17.32)

as shown in Fig. 17.6, and hence
(

∂χ

∂T

)

B

< 0, (17.33)

a result that we shall use later.6
6Curie’s law itself is derived in Exam-
ple 20.5.
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Magnetic susceptibility  
(Curie’s law)
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Consequences of the third law (5) 
Unattainability of zero T

Cooling is produced by isothermal increases in  and 
adiabatic decreases in . 


If the third law did not hold, it would be possible to 
proceed according to Fig. A and cool all the way to 
absolute zero. 


However, because of the third law, the situation is as 
in Fig. B and the number of steps needed to get to 
absolute zero becomes infinite.

X
X

18.2 Consequences of the third law 207

and temperature (driving the moments to randomize). The sus-
ceptibility measures their infinitesimal response to an infinitesimal
applied field; this becomes infinite when the thermal fluctuations
are removed at T = 0. However, if interactions between the mag-
netic moments are switched on, then an applied field will have
much less of an effect because the magnetic moments will already
be driven into some partially ordered state by each other.
There is a basic underlying message here: the microscopic parts
of a system can behave independently at high temperature, where
the thermal energy kBT is much larger than any interaction energy.
At low temperature, these interactions become important and all
notions of independence break down. To paraphrase (badly) the
poet John Donne:

No man is an island, and especially not as T → 0.

• Unattainability of absolute zero
The final point can almost be elevated to the status of another
statement of the third law:

It is impossible to cool to T = 0 in a finite number of steps.

Fig. 18.5 The entropy as a function of
temperature for two different values of
a parameter X. Cooling is produced by
isothermal increases in X (i.e., X1 →
X2) and adiabatic decreases in X (i.e.,
X2 → X1). (a) If S does not go to 0
as T → 0 it is possible to cool to ab-
solute zero in a finite number of steps.
(b) If the third law is obeyed, then it is
impossible to cool to absolute zero in a
finite number of steps.

This is messy to prove rigorously, but we can justify the argument
by reference to Fig. 18.5, which shows plots of S against T for
different values of a parameter X (which might be magnetic field,
for example). Cooling is produced by isothermal increases in X
and adiabatic decreases in X. If the third law did not hold, it
would be possible to proceed according to Fig. 18.5(a) and cool all
the way to absolute zero. However, because of the third law, the
situation is as in Fig. 18.5(b) and the number of steps needed to
get to absolute zero becomes infinite.

Before concluding this chapter, we make one remark concerning Carnot
engines. Consider a Carnot engine, operating between reservoirs with
temperatures T! and Th, having an efficiency η = 1−(T!/Th) (eqn 13.10).
If T! → 0, the efficiency η tends to 1. If you operated this Carnot engine,
you would then get perfect conversion of heat into work, in violation of
Kelvin’s statement of the second law of thermodynamics. It seems at
first sight that the unattainability of absolute zero (a version of the third
law) is a simple consequence of the second law. However, there are diffi-
culties in considering a Carnot engine operating between two reservoirs,
one of which is at absolute zero. It is not clear how you can perform an
isothermal process at absolute zero, because once a system is at abso-
lute zero it is not possible to get it to change its thermodynamical state
without warming it. Thus it is generally believed that the third law is
indeed a separate postulate which is independent of the second law. The
third law points to the fact that many of our “simple” thermodynamic
models, such as the ideal gas equation and Curie’s law of paramagnets,
need substantial modification if they are to give correct predictions as

X can be 
magnetic field
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Before concluding this chapter, we make one remark concerning Carnot
engines. Consider a Carnot engine, operating between reservoirs with
temperatures T! and Th, having an efficiency η = 1−(T!/Th) (eqn 13.10).
If T! → 0, the efficiency η tends to 1. If you operated this Carnot engine,
you would then get perfect conversion of heat into work, in violation of
Kelvin’s statement of the second law of thermodynamics. It seems at
first sight that the unattainability of absolute zero (a version of the third
law) is a simple consequence of the second law. However, there are diffi-
culties in considering a Carnot engine operating between two reservoirs,
one of which is at absolute zero. It is not clear how you can perform an
isothermal process at absolute zero, because once a system is at abso-
lute zero it is not possible to get it to change its thermodynamical state
without warming it. Thus it is generally believed that the third law is
indeed a separate postulate which is independent of the second law. The
third law points to the fact that many of our “simple” thermodynamic
models, such as the ideal gas equation and Curie’s law of paramagnets,
need substantial modification if they are to give correct predictions as
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Carnot Engine
A Carnot engine operating between reservoirs has an efficiency 


If  the efficiency  tends to  If you operated this Carnot engine, you would then get 
perfect conversion of heat into work, in violation of Kelvin's statement of the second law of 
thermodynamics. 


Is the unattainability of absolute zero (a version of the third law) is a simple consequence 
of the second law?


How can a Carnot engine operate between two reservoirs, one of which is at absolute zero. It is 
not clear how you can perform an isothermal process at absolute zero, because once a system is 
at absolute zero it is not possible to get it to change its thermodynamical state without warming 
it (heat capacity being zero!). 


Thus the third law is a separate postulate which is independent of the second law. 


η = 1 − (Tℓ/Th)
Tℓ → 0, η 1.
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The third law points to the fact that many of our 
"simple" thermodynamic models, such as the ideal gas 
equation and Curie's law of paramagnets, need 
substantial modification if they are to give correct 
predictions as T → 0
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• The third law of thermodynamics can be stated in various ways:


Nernst: Near absolute zero, all reactions in a system in internal equilibrium take place 
with no change in entropy.


Planck: The entropy of all systems in internal equilibrium is the same at absolute zero, 
and may be taken to be zero.


Simon: The contribution to the entropy of a system by each aspect of the system which 
is in internal thermodynamic equilibrium tends to zero as 


• Unattainability of it is impossible to cool to  in finite number of steps.


• The third law implies that heat capacities and thermal expansivities tend to zero as 
Interactions between the constituents of a system become important as  and this 
leads to the breakdown of the concept of an ideal gas and also the breakdown of Curie's law.

T → 0

T = 0 : T = 0

T → 0
T → 0,


