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• In these units we will review some basics of 
exact differentials

Supplement: exact differential
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C.6 Partial derivatives 471

i.e., as a geometric progression. Hence we can evaluate the following
integral:

∫ ∞

0

xn−1 dx

z−1ex − 1
=

∞
∑

m=0

∫ ∞

0
xn−1((ze−x)m+1,

=
∞
∑

m=0

zm+1

∫ ∞

0
xn−1e−(m+1)x

=
∞
∑

m=0

zm+1

(m + 1)n

∫ ∞

0
yn−1e−y

= Γ(n)
∞
∑

m=0

zm+1

(m + 1)n

= Γ(n)
∞
∑

k=1

zk

kn

= Γ(n)Lin(z). (C.34)

Similarly one can show that
∫ ∞

0

xn−1 dx

z−1ex + 1
= −Γ(n)Lin(−z). (C.35)

Combining these equations, one can write in general that

∫ ∞

0

xn−1 dx

z−1ex ± 1
= ∓Γ(n)Lin(∓z) . (C.36)

Note that when |z| # 1, only the first term in the series in eqn C.32
contributes, and

Lin(z) ≈ z. (C.37)

Note also that

Lin(1) =
∞
∑

k=1

1

kn
= ζ(n), (C.38)

where ζ(n) is the Riemann zeta function (eqn C.21).

C.6 Partial derivatives

Consider x as a function of two variables y and z. This can be written
x = x(y, z), and we have that

dx =

(

∂x

∂y

)

z

dy +

(

∂x

∂z

)

y

dz. (C.39)

But rearranging x = x(y, z) can lead to having z as a function of x and
y so that z = z(x, y), in which case

dz =

(

∂z

∂x

)

y

dx +

(

∂z

∂y

)

x

dy. (C.40)
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472 Useful mathematics

Substituting C.40 into C.39 gives

dx =

(

∂x

∂z

)

y

(

∂z

∂x

)

y

dx +

[

(

∂x

∂y

)

z

+

(

∂x

∂z

)

y

(

∂z

∂y

)

x

]

dy.

The terms multiplying dx give the reciprocal theorem
(

∂x

∂z

)

y

=
1

(

∂z
∂x

)

y

, (C.41)

and the terms multiplying dy give the reciprocity theorem
(

∂x

∂y

)

z

(

∂y

∂z

)

x

(

∂z

∂x

)

y

= −1. (C.42)

This can be combined with the reciprocal theorem to write that
(

∂x

∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z

∂y

)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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For thermal physics, a crucial point to remember is that functions of
state have exact differentials.

Reciprocal theorem 

472 Useful mathematics
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x
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x
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1
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For an inexact differential this is not true and knowledge of the initial
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F · dr =

∮
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∂x
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∂F1
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or
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∂2f

∂x∂y

)
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∂2f

∂y∂x

)
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For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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and the terms multiplying dy give the reciprocity theorem
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z
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x
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y
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)

z

= −
(

∂x

∂z

)

y

(
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∂y

)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)
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or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(
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∂x
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=

(

∂F1

∂y

)
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(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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know which path was taken.
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For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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and the terms multiplying dy give the reciprocity theorem
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)
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This can be combined with the reciprocal theorem to write that
(

∂x

∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z

∂y

)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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and the terms multiplying dy give the reciprocity theorem
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This can be combined with the reciprocal theorem to write that
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)

z

= −
(

∂x

∂z
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(
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, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential
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(

∂f
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)
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(

∂f
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of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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and the terms multiplying dy give the reciprocity theorem
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)
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(
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This can be combined with the reciprocal theorem to write that
(
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∂y

)

z

= −
(
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∂z

)
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(
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)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f
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)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.

472 Useful mathematics

Substituting C.40 into C.39 gives

dx =

(

∂x

∂z

)

y

(

∂z

∂x

)

y

dx +

[

(

∂x

∂y

)

z

+

(

∂x

∂z

)

y

(

∂z

∂y

)

x

]

dy.
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and the terms multiplying dy give the reciprocity theorem
(
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)

z

(
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x

(
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)

y
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This can be combined with the reciprocal theorem to write that
(
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∂y

)

z

= −
(
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∂z

)

y

(
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)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.

Gradient of f: 
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The terms multiplying dx give the reciprocal theorem
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, (C.41)

and the terms multiplying dy give the reciprocity theorem
(

∂x

∂y

)

z

(

∂y
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)

x

(

∂z

∂x

)

y

= −1. (C.42)

This can be combined with the reciprocal theorem to write that
(

∂x

∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z

∂y

)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.

Path independent
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The terms multiplying dx give the reciprocal theorem
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and the terms multiplying dy give the reciprocity theorem
(

∂x

∂y

)

z

(

∂y

∂z

)

x

(

∂z

∂x

)

y

= −1. (C.42)

This can be combined with the reciprocal theorem to write that
(

∂x

∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z

∂y

)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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and the terms multiplying dy give the reciprocity theorem
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This can be combined with the reciprocal theorem to write that
(
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z
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(
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∂z

)

y

(
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)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.

Condition: 
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and the terms multiplying dy give the reciprocity theorem
(
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z
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This can be combined with the reciprocal theorem to write that
(
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∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z

∂y

)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f
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)

dx +

(

∂f

∂y

)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(

∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.

Stokes Theorem
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and the terms multiplying dy give the reciprocity theorem
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This can be combined with the reciprocal theorem to write that
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∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z
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)

x

, (C.43)

which is a very useful identity.

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(

∂f
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)

dx +

(
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)

dy, (C.44)

of a differentiable single-valued function f(x, y). This implies that

F1 =
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∂f

∂x

)

, F2 =

(

∂f

∂y

)

, (C.45)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]
∫ 2

1
F1(x, y) dx+F2(x, y) dy =

∫ 2

1
F ·dr =

∫ 2

1
df = f(2)−f(1), (C.46)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:
∮

F1(x, y) dx + F2(x, y) dy =

∮

F · dr =

∮

df = 0, (C.47)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence
(

∂F2

∂x

)

=

(

∂F1

∂y

)

or

(

∂2f

∂x∂y

)

=

(
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∂y∂x

)

. (C.48)

For thermal physics, a crucial point to remember is that functions of
state have exact differentials.
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For an inexact differential this is not true and knowledge of the initial and final states is 
not sufficient to evaluate the integral: you have to know which path was taken.

For thermal physics, a crucial point to remember is 
that functions of state have exact differentials.
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Problem: integrate from (0,0) to (1,1)
x = y

<latexit sha1_base64="1mRkzgvIfibMkI2Ii9TDXd+QX7E="></latexit>

y = x4/3

<latexit sha1_base64="wO3X8zT7ezZEPdP+8wsv1BxsgDM="></latexit>

x = y2

<latexit sha1_base64="fSdvJCXANhRUjG/m6E14xK2YbqE="></latexit>

Three possible paths

df = ydx+ xdy
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Same surface areas under the curves!
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Problem: integrate from (0,0) to (1,1)
x = y
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y = x4/3
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Three possible paths

Inexactdf = ydx+ x2dy
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Different surface areas!

x = y2
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