Supplement: exact differential

- In these units we will review some basics of exact differentials

Partial Differentials

$$
\begin{array}{ll}
x=x(y, z) & \mathrm{d} x=\left(\frac{\partial x}{\partial y}\right)_{z} \mathrm{~d} y+\left(\frac{\partial x}{\partial z}\right)_{y} \mathrm{~d} z \\
z=z(x, y) & \mathrm{d} z=\left(\frac{\partial z}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial z}{\partial y}\right)_{x} \mathrm{~d} y \\
\mathrm{~d} x=\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial x}\right)_{y} \mathrm{~d} x+\left[\left(\frac{\partial x}{\partial y}\right)_{z}+\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}\right] \mathrm{d} y
\end{array}
$$

$$
\begin{aligned}
& \mathrm{d} x=\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial x}\right)_{y} \mathrm{~d} x+\left[\left(\frac{\partial x}{\partial y}\right)_{z}+\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}\right] \mathrm{d} y \\
& \left(\frac{\partial x}{\partial z}\right)_{y}=\frac{1}{\left(\frac{\partial z}{\partial x}\right)_{y}} \quad\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
\end{aligned}
$$

Reciprocal theorem

Reciprocity theorem

$$
\left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}
$$

Exact differential

$$
f(x, y) \longrightarrow \mathrm{d} f=\left(\frac{\partial f}{\partial x}\right) \mathrm{d} x+\left(\frac{\partial f}{\partial y}\right) \mathrm{d} y \longrightarrow \int_{1}^{2} \mathrm{~d} f=f(2)-f(1)
$$

Gradient of $\mathrm{f}: \quad F_{1}=\left(\frac{\partial f}{\partial x}\right), \quad F_{2}=\left(\frac{\partial f}{\partial y}\right) \longrightarrow F_{1}(x, y) \mathrm{d} x+F_{2}(x, y) \mathrm{d} y$

$$
\int_{1}^{2} F_{1}(x, y) \mathrm{d} x+F_{2}(x, y) \mathrm{d} y=\int_{1}^{2} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}=\int_{1}^{2} \mathrm{~d} f=f(2)-f(1)
$$

Exact differential

$$
\begin{array}{r}
\int_{1}^{2} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}=\int_{1}^{2} \mathrm{~d} f=f(2)-f(1) \xrightarrow[\text { Stokes Theorem }]{\longrightarrow} \nabla \times \boldsymbol{F}=0 \\
\\
\left(\frac{\partial F_{2}}{\partial x}\right)=\left(\frac{\partial F_{1}}{\partial y}\right) \\
\\
\\
\\
\\
\\
\\
\\
\left(\frac{\partial^{2} f}{\partial x \partial y}\right)=\left(\frac{\partial^{2} f}{\partial y \partial x}\right)
\end{array}
$$

Inexact differential d

For an inexact differential this is not true and knowledge of the initial and final states is not sufficient to evaluate the integral: you have to know which path was taken.

$$
\begin{aligned}
& \int_{1}^{2} \mathrm{~d} f=f(2)-f(1) \longrightarrow \oint \mathrm{d} f=0 \\
& \int_{1}^{2} \mathrm{~d} f \neq f(2)-f(1) \longrightarrow \oint \mathrm{d} f \neq 0
\end{aligned}
$$

For thermal physics, a crucial point to remember is that functions of state have exact differentials.

Example

Problem: integrate from $(0,0)$ to $(1,1)$

Three possible paths

Same surface areas under the curves!

Example

Problem: integrate from $(0,0)$ to $(1,1)$

Different surface areas!

Three possible paths

