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Lecture 3: chapters 5,6,and 8



Lecture 5. he Maxwell-Boltzmann distribution

« |In this unit we will learn about Maxwell-Boltzmans

dastribnition

* Motion of gas molecule

Next few lectures will be on kinetic theory of gas
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Setting the stage

* (Gas is monoatomic (we ignore rotational and vibrational degrees of freedom)

* There is no interacting force between molecules

Molecules can exchange energy and momentum through collisions

We consider only linear motion

The energy is thus, simply:
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Velocity distribution

» Each molecule can be considered as a system connected to a bath of the other
molecules and the Boltzmann distribution applies

* |In one dimension, the velocity distribution function is the probability density of finding
the particle with velocity between v_and v, + dx

q (Um) x E—mwi/ﬂkBT
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Normalisation

/ g(vg)dv, =1

g(vy)
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Statistical properties
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Total probability (3D)

g (vg) dueg (vy,) duyg (v ) du,

This is the fraction of molecules with velocities between (vx, Vys v;) and (vx + dv,, vy + dvy, v. + dv;)
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Speed distribution

* Question: number of molecules with velocity
between v and v + dv

« This is different from what we calculated
hefore (shell vs. cube)

. . . 3
* Volume in velocity space is dmv-dy

* Fraction of molecules that have velocity
between v and v + dv:

F(v)dv o v3dve ™V /2ksT
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Normalization
/ f(v)dv =1
0
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Expectation values (V) and (1)

w=[ vt )dv\/gﬁf

(7 - / _ 3kpT

m

* Root mean square of velocity:
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Mean kinetic energy of a gas molecule
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More information on the distribution

Umax <1’1} Urms
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Example: rms speed of N2 molecules at RT?

For nitrogen at room temperature,

m = (0.028kg)/(6.022 x 10~) and so

Vi 500ms~'. This is about 1100 miles per
hour, and is the same order of magnitude as
the speed of sound.
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Summary

We have shown that the corresponding expression for the probability
distribution of molecular speeds is given by

f{“} x ?JEE—HMJE,"E}:E T

This is known as a Maxwell-Boltzmann distribution, or sometimes as a Maxwellian
distribution.

Two important average values of the Maxwell-Boltzmann distribution are:
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Lecture 6. Pressure

« |In this unit we will learn about
* Pressure of a gas

* The origins of the ideal gas law

* Connection between pressure and kinetic
energy density

https://taaublogwordpress.com/2017/12/11/pressure/
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Definition

FORCE
AREA

PRESSURE =

The pressure p due to a gas (or any fluid) is

defined as the ratio of the perpendicular
contact force to the area of contact.

The unit is that of force (N) divided by that of area (mz) and is called the pascal
(Pa = Nm™).

The direction in which pressure acts is normal to the surface upon which it is
acting.
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lllustration: estimation of atmosphere height

Air has a density of about 1.29 kg m™

Atmospheric pressure p = 10° Pais due to the
weight of air pgh in the atmosphere (with assumed  Force
height /1 and uniform density p ) pressing down Area
on each square meter.

Hence h = p/pg =~ 10* m (which is about the cruising
altitude of planes).

Of course, in reality the density of the atmosphere
falls off with increasing height.

https:/hankweisingerphd.com ftake-pressure-
dynamics-101102-required-success/
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Equation of state

The pressure p of a volume V of gas (comprising N molecules) depends on its temperature T
via an equation of state, which is an expression of the form

p=f(T,V.N)

where is some function.

One example of an equation of state is that for anideal gas
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Kinetic theory of gas

Daniel Bernoulli (1700-1782) attempted an
explanation of Boyle's law (p o« 1/V) by assuming
(controversially!) that gases were composed of a vast
number of tiny particles.

This was the first serious attempt at a kinetic
theory of gases of the sort that we will describe in
this lecture to derive the ideal gas equation.

<\
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Inthe KTG a gas is modeled as a

number of individual tiny particles,
which can bounce off the walls of the

container and each other.
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We need to calculate the total impulse on a surface area per unit time

How many particles have speed v?
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Molecular distribution
I 3/ 2 —mw” 2k T
flv) = :/1; (ZkET) vre /

In the previous chapter we derived the
Maxwell-Boltzmann speed distribution

function fiv). y <u> v

We denote the total number of molecules 1
per unit volume by the symbol n.

b s

The number of molecules per unit volume
traveling with speeds between v and
v+ dvis then given by nfiv)dy .

We now seek to determine the
distribution function of molecules
traveling in different directions.
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Solid Angle




If we have an isotropic system, the fraction of
particles that are in a d{2 solid angle is

i}
47
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Number of molecules hitting a wall

In a small time dt, the molecules traveling at angle § to
the normal to the wall sweep out a volume Avdi cos (.,

ro—

Multiplying this volume by the number of particles ﬁ” dt
described in the previous slide implies that in time d,

the number of molecules hitting a wall of area A is AL

1
Awvdt cos Hllf'{r.']{lr.'i sin fdf

il

PO NN ROV RONNRNN Y

The number of molecules hitting a unit area of wall in
unit time, and having speeds between and and
traveling at angles between and is given by
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Theideal gas law

Each molecule hitting the wall of the container has a momentum change of 2nivcos (),

Hence, if we multiply 2nn cos ¢ by the number of molecules hitting unit area per unit time, and

“having speeds between v and v+ dv and angles between @ and @ + d& and then integrating over
& and v, we get

MOMENTUM TRAMSFER NUMBER OF MOLECULES HITTING SURFACE

oo pw/f2
p:/ / (2mw cost) (vmsﬂnf[v}dv%shlﬂdﬂ)

0 0
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Total number of molecules N in volume Vas N =nV

pV = %Nm (’-'_JE}
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Connection between pressure and kinetic energy

The kinetic energy of a gas molecule moving with speed v is

1
—m”

The total kinetic energy of the molecules of a gas per unit volume, i.e.
the kinetic energy density, which we will call , is therefore given by

so that we have that

PHYS 4420 = FALL 2021 99



Dalton’s law

If one has a mixture of gases in thermal equilibrium, then the total pressure p = nkgT is simply
the sum of the pressures due to each component of the mixture. We can write n as

n = E T
i

where is the number density of the th species. Therefore

where is known as the partial pressure of the th species.

The observation that is known as Dalton's law, after the British chemist John Dalton
(1766-1844), who was a pioneer of the atomic theory.
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Example of Dalton’s law

0.05

_ 14 _ ‘
PCO, = %55 sor = 0.00033atm

23.2 1.3
28 + 32 +ﬁ+ 44

% latm
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Summary

1) The pressure, p, is given by

P = %nm(w%

where is the number of molecules per unit volume and

2} This expression agrees with the ideal gas equation

is the molecular mass.

where is the volume, is the temperature and is the Boltzmann constant.
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Lecture 8. Mean free path and collisions

« |In this unit we will learn about
* Mean free path

« Collision cross-section

In this lecture we will model the effect of collisions in a gas and develop the concepts of a mean
collision time, the collision cross-section and the mean free path.
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Setting the stage

At room temperature, the rms speed of O, or N, is about 500 ms~ .

Processes such as the diffusion of one gas into another would therefore be almost
instantaneous, were it not for the occurrence of collisions between molecules.

Collisions are fundamentally quantum mechanical events, but in a dilute gas, molecules spend
most of their time between collisions and so we can consider them as classical billiard balls and
ignore the details of what actually happens during a collision.

After collisions the molecules' velocities become essentially randomized.
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Mean collision time

Suppose a molecule travels at speed v among other, stationary,
molecules.

Suppose a molecule as section (“cross-section®) o.("molecule
personal space”)

During time dt, the molecule will “sweep” volume ovd: Vdf

If a molecule happened to be in that volume a that time, there will
be a collision

If we suppose that the density of molecule is n, the probability of a
collision is thus newdr

)
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Probability that we do not have a collisionup totime ¢

dF
P(t +dt) = P(t) + Edt

« P(t+ di) is the probability of no collision up to
time t and from t+dt.
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Probability of no collision up to t and then collision in the
next dt

e~ "y sudt

+» Of course integrates to1 as a probability should

* Mean scattering time 7: average time elapsed
between collisions for a given molecule
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Collision cross-section

» Consider two spherical molecules with a hard-
sphere potential

* Impact parameter: distance of closest approach
that would result if the molecular trajectories
were undeflected by the collision

* e.g., for the HSP, there is only collision if

b < a; +as. 0 R>ap+a

oo < ay 4 as

V(R) = {
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it g
o= m{a;+ay)

A collision will only take place if the centre of these other molecules comes inside a tube
of radius a1 + az (i.e., A would not collide, B and C would)

Thus our first molecule can be considered to sweep out an imaginary tube of space
of cross-sectional area Ta; + a:z)/2 that defines its “personal space”.

The area of this tube is called the collision cross-section 0 and is then given by

r :?T(f_ll + ﬂ’rg)g
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Note: Is the hard-sphere potential correct?

It is a good approximation at lower temperatures, but
progressively worsens as the temperature increases.

Molecules are not really hard spheres but slightly
squashy objects, and when they move at higher speeds
and plough into each other with more momentum, you
need more of a direct hit to cause a collision. Thus as
the gas is warmed, the molecules may appear to
have a smaller cross-sectional area.

V(R) = {

0 H>a +as
o I oag e
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The mean free path

Having derived the mean collision time, it is tempting to derive the mean free path as

.
. v)

A= {vir =L
TLF i

but what should we take as
A first guess is to use but that turns out to be not quite right. What has gone wrong?

Our approach to molecular scattering has been to focus on one molecule as the moving one,
and think of all of the others as sitting ducks, fixed in space waiting patiently for a collision to
occur,
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We should therefore take v as the average relative velocity, i.e., {v,.}, where

=11 —vrgnd and arethe velocities of two molecules labelled 1and 2.
, s0 that

because (which follows because ).

The quantity which we want is but what we have an expression for is If the
probability distribution describing molecular speed is a Maxwell-Boltzmann distribution, then

the error in writing is small, so to a reasonable degree of approximation we can
write
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(v} 22 {02} R ‘u"EI::'H:I

and hence we obtain an expression for as follows:

To increase the mean free path by a certain factor, the pressure needs to be decreased by the
same factor.
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Summary

1) The mean scattering time is given by
1
T = ,
T (i)

where the collision cross-section is is the molecular diameter and

2) The mean free path is
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