Special Mathematical Functions

Hermite polynomials

Note

Hermite polynomials

Spherical harmonics

Note

\begin{aligned}
Y_{0,0}(\theta, \phi) &=\sqrt{\frac{1}{4 \pi}} \\
Y_{1,\pm 1}(\theta, \phi) &=\mp \sqrt{\frac{3}{8 \pi}} e^{\pm i \phi} \sin \theta \\
Y_{1,0}(\theta, \phi) &=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{2,\pm 2}(\theta, \phi) &=\sqrt{\frac{15}{32 \pi}} e^{\pm 2 i \phi} \sin ^{2} \theta \\
Y_{2,\pm 1}(\theta, \phi) &=\mp \sqrt{\frac{15}{8 \pi}} e^{\pm i \phi} \sin \theta \cos \theta \\
Y_{2,0}(\theta, \phi) &=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)
\end{aligned}

Spherical harmonics

Legendre Polynomial

Laguerre Polynomial

Spherical Bessel Functions

\begin{array}{l}
j_{0}(\rho)=\frac{\sin \rho}{\rho} \\
j_{1}(\rho)=\frac{\sin \rho}{\rho^{2}}-\frac{\cos \rho}{\rho} \\
j_{2}(\rho)=\left(\frac{3}{\rho^{3}}-\frac{1}{\rho}\right) \sin \rho-\frac{3 \cos \rho}{\rho^{2}}
\end{array}

Spherical Neumann Functions

\begin{array}{l}
\eta_{0}(\rho)=-\frac{\cos \rho}{\rho} \\
\eta_{1}(\rho)=-\frac{\cos \rho}{\rho^{2}}-\frac{\sin \rho}{\rho} \\
\eta_{2}(\rho)=-\left(\frac{3}{\rho^{3}}-\frac{1}{\rho}\right) \cos \rho-\frac{3 \sin \rho}{\rho^{2}}
\end{array}

https://dlmf.nist.gov